

Pump Drive F600 Standard and High IP

Model size 3 to 12

Variable speed AC drive for induction and permanent magnet motors for pump control systems

Part Number: 0478-0622-05

Issue: 5

Compliance Information

Manufacturer: Nidec Control Techniques Limited ("we", "our")

Registered office: The Gro, Newtown, Powys, SY16 3BE United Kingdom Registered in: England and Wales, company registration number 01236886

Manufacturer's EU Authorised Representative: Nidec Netherlands B.V., Kubus 155, 3364 DG Sliedrecht, the Netherlands, registered at the Dutch

Trade Register under number 33213151; Tel. +31 (0)184 420 555, info.nl@mail.nidec.com

Original instructions

With reference to the UK Supply of Machinery (Safety) Regulations 2008 and the EU Machinery Directive 2006/42/EC, the English version of this Manual constitutes the original instructions. Manuals published in other languages are translations of the original instructions and the English language version of this Manual prevails over any other language version in the event of inconsistency.

Documentation and user software tools

Manuals, datasheets and software that we make available to users of our products can be downloaded from: http://www.drive-setup.com MARSHAL (Mobile App): This application is available for download from the Google Play Store and the Apple App Store.

Warranty and liability

The contents of this Manual are presented for information purposes only, and while every effort has been made to ensure their accuracy, they are not to be construed as warranties or guarantees, express or implied, regarding the products or services described herein or their use or applicability. All sales are governed by our terms and conditions, which are available on request. We reserve the right to modify or improve the designs, specifications or performance of our products at any time without notice. For full details of the warranty terms applicable to the product, contact the supplier of the product.

In no event and under no circumstances shall we be liable for damages and failures due to misuse, abuse, improper installation, or abnormal conditions of temperature, dust, or corrosion, or failures due to operation outside the published ratings for the product, nor shall we be liable for consequential and incidental damages of any kind.

Environmental management

We operate an Environmental Management System which complies with the requirements of ISO 14001:2015. Further information on our Environmental Statement can be found at: http://www.drive-setup.com/environment.

Restriction and control of hazardous substances

The products covered by this Manual comply with the following legislation and regulations on the restriction and control of hazardous substances:

UK Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012

UK REACH etc. (Amendment etc.) (EU Exit) Regulations 2020, European Union REACH Regulation EC 1907/2006

EU restriction of the Use of certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) - Directive 2011/65/EU

EC Regulation 1907/2006 on the Registration, Evaluation, authorisation, and restriction of Chemicals (REACH)

Chinese Administrative Measures for Restriction of Hazardous Substances in Electrical and Electronic Products 2016/07/01

U.S. Environmental Protection Agency ("EPA") regulations under the Toxic Substances Control Act ("TSCA")

MEPC 68/21 / Add.1, Annex 17, Resolution MEPC.269(68) 2015 Guidelines for the development of the inventory of hazardous materials

The products covered by this Manual do not contain asbestos.

Further information on REACH and RoHS can be found at: http://www.drive-setup.com/environment.

Conflict minerals

With reference to the Conflict Minerals (Compliance) (Northern Ireland) (EU Exit) Regulations 2020, the U.S. Dodd-Frank Wall Street Reform and Consumer Protection Act and Regulation (EU) 2017/821 of the European Parliament and of the European Council:

We have implemented due diligence measures for responsible sourcing, we conduct conflict minerals surveys of relevant suppliers, we continually review due diligence information received from suppliers against company expectations and our review process includes corrective action management. We are not required to file an annual conflict minerals disclosure. Nidec Control Techniques Limited is not an issuer as defined by the U.S. SEC.

Disposal and recycling (WEEE)

The products covered by this Manual fall within the scope of the UK Waste Electrical and Electronic Equipment Regulations 2013, EU Directive 2012/19/EU amended by EU Directive 2018/849 (EU) on Waste Electrical and Electronic Equipment (WEEE).

When electronic products reach the end of their useful life, they must not be disposed of along with domestic waste but should be recycled by a specialist recycler of electronic equipment. Our products are designed to be easily dismantled into their major component parts for efficient recycling. Most materials used in our products are suitable for recycling.

Our product packaging is of good quality and can be re-used. Smaller products are packaged in strong cardboard cartons which have a high recycled fibre content. Cartons can be re-used and recycled. Polythene, used in protective film and bags for the ground screws, can be recycled. When preparing to recycle or dispose of any product or packaging, please observe local legislation and best practice.

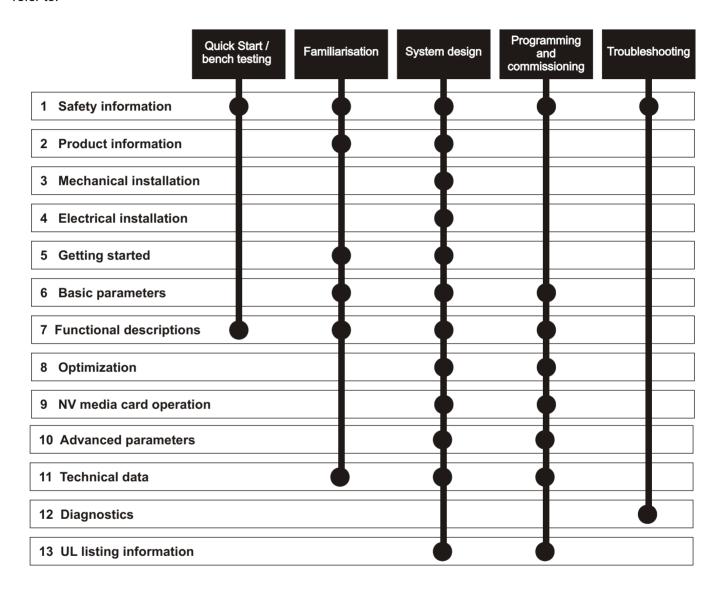
Copyright and trade marks

Copyright © 2 August 2021 Nidec Control Techniques Limited. All rights reserved.

No part of this Manual may be reproduced or transmitted in any form or by any means including by photocopying, recording or by an information storage or retrieval system, without our permission in writing.

The Nidec logo is a trade mark of Nidec Corporation. The Control Techniques logo is a trade mark owned by Nidec Control Techniques Limited. All other marks are property of their respective owners.

How to use this guide


This user guide provides complete information for installing and operating the drive from start to finish.

The information is in logical order, taking the reader from receiving the drive through to fine tuning the performance.

NOTE

There are specific safety warnings throughout this guide, located in the relevant sections. In addition, Chapter 1 *Safety information* contains general safety information. It is essential that the warnings are observed and the information considered when working with or designing a system using the drive.

This map of the user guide helps to find the right sections for the task you wish to complete, but for specific information, refer to:

Contents

1	Safety information	10	4
1.1	Warnings, Cautions and Notes	10	4
1.2	Important safety information. Hazards.		4
	Competence of designers and installers	10	4
1.3	Responsibility		4
1.4	Compliance with regulations	10	4
1.5	Electrical hazards		4
1.6	Stored electrical charge	10	4
1.7	Mechanical hazards	10	4
1.8	Access to equipment	10	4
1.9	Environmental limits	10	4
1.10	Hazardous environments	10	4
1.11	Motor		4
1.12	Adjusting parameters		4
1.13	Electromagnetic compatibility (EMC)		4
2	Product information	12	4
_ 2.1	Pump Drive F600 introduction		5
2.2	Overview		5
2.3	System configurations		5
2.4	General pump principles		5
2.5	Model number		5
2.6	Ratings		5
2.7	Operating modes		5
2.8	Drive features		5
2.9	Nameplate description		5
2.10	Options		5
2.10	HMI		5
2.11	Items supplied with the drive		5
			5
3	Mechanical installation		
3.1	Safety information	31	5
3.2	Planning the installation		6
3.3	Terminal cover removal	33	
3.4	Installing / removing option modules and		6
	keypads		6
3.5	Dimensions and mounting methods		
3.6	Enclosure for standard drives	61	
3.7	Enclosure design and drive ambient		
	temperature		
3.8	Heatsink fan operation		
3.9	Enclosing standard drive for high environment protection		
3.10	Heatsink mounted brake resistor		
3.11	External EMC filter		
3.12	Line reactor mounting dimensions for size 9E,	70	
J. 1Z	10E and 11E	g۵	
3.13	Electrical terminals		
	Routine maintenance	86	

4	Electrical installation	. 55
4.1	Power connections	96
4.2	AC supply requirements	
4.3	Supplying the drive with DC	108
4.4	DC bus paralleling	109
4.5	24 Vdc supply	110
4.6	Low voltage operation	111
4.7	Heatsink fan supply	112
4.8	Ratings	112
4.9	Output circuit and motor protection	117
4.10	Ground leakage	120
4.11	Braking	121
4.12	EMC (Electromagnetic compatibility)	125
4.13	Communications	135
4.14	Control connections	137
4.15	Safe Torque Off (STO)	141
5	Getting started / Running the Motor	143
- 4	Understanding the display	
5.1		143
5.1 5.2		
-	Keypad operation	143
5.2 5.3	Keypad operation Menu structure	143 145
5.2	Keypad operation Menu structure Menu 0	143 145 145
5.2 5.3 5.4	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC	143 145 145 146
5.2 5.3 5.4 5.5	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup	143 145 145 146 146
5.2 5.3 5.4 5.5 5.6	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus	143 145 145 146 146 158
5.2 5.3 5.4 5.5 5.6 5.6	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode	143 145 145 146 146 158 160
5.2 5.3 5.4 5.5 5.6 5.6 5.7	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus	143 145 145 146 146 158 160
5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults	143 145 146 146 158 160 160
5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8 5.9 5.10	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults Parameter access level and security	143 145 146 146 158 160 160
5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8 5.9 5.10	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults	143 145 146 146 158 160 160 161
5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8 5.9 5.10 5.11	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults Parameter access level and security Displaying parameters with non-default values	143 145 146 146 158 160 160 161
5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8 5.9	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults Parameter access level and security Displaying parameters with non-default values only Displaying destination parameters only	143 145 146 146 158 160 160 161 161
5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 5.10 5.11	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults Parameter access level and security Displaying parameters with non-default values only Displaying destination parameters only Basic parameters	143 145 146 146 158 160 160 161 161 161
5.2 5.3 5.4 5.5 5.6 5.6 5.7 5.8 5.9 5.10 5.11	Keypad operation Menu structure Menu 0 Connect and guided setup tool for PC Step by Step Setup Advanced menus Changing the operating mode Saving parameters Restoring parameter defaults Parameter access level and security Displaying parameters with non-default values only Displaying destination parameters only	143 145 145 146 146 158 160 161 161 161 162

7	Functional descriptions	217
7.1	Parameter menu and functionality overview	
7.2	Control mode and feature matrix	217
7.3	Control modes	218
7.4	Drive controls	
7.5	Pump software operating status	229
7.6	Hand mode	
7.7	Auto mode	235
7.8	PID	
7.9	PID thresholds	
7.10	Wake and sleep	
7.11	Over-cycle	
7.12	Pipe fill on start up	
7.13	Timer scheduling	
7.14	Level switches	
7.15	References, acceleration and deceleration	
7.16	Volume and flow using a pulsed flow meter .	
7.17	No flow detection	
7.18	Dry well	
7.19	Pump cleaning	
7.20	Cascade mode	
7.21	Multi-leader mode	
7.22	Flow Compensation	
7.23	Flow Compensation diagram	
7.24	Volume flow measurement diagrams	
7.25	Parameters for the keypad update	
7.26 7.27	External wake and sleep diagram	
7.27 7.28	External wake and sleep parameters	
1.20	Additional features	320
8	Optimization	327
8.1	Motor map parameters	327
8.2	Motor thermal protection	
8.3	Switching frequency	338
8.4	CT Modbus RTU specification	340
9	NV Media Card Operation	347
9.1	Introduction	
9.2	NV Media Card support	347
9.3	Transferring data	
9.4	Data block header information	
9.5	NV Media Card parameters	
9.6	NV Media Card trips	

10	Advanced parameters	353
10.1	Parameter ranges and Variable minimum/	
	maximums:	
10.2	Menu 1: Frequency / speed reference	
10.3	Menu 2: Frequency Ramps	365
10.4	Menu 3: Speed Control and Position	
	Feedback	
10.5	Menu 4: Torque and current control	
10.6	Menu 5: Motor control	
10.7	Menu 6: Sequencer and clock	
10.8	Menu 7: Analog I/O	
10.9	Menu 8: Digital I/O	
10.10	Menu 9: Programmable logic, motorized pot,	
40.44	binary sum and timers	
	Menu 10: Status and trips	
	Menu 11: Miscellaneous	
	Menu 12: User Functions 2	
	Menu 14: User PID controller	
	Menus 15, 16 and 17: Option module set-up	
10.10	Menu 18: Application menu 1 Menu 19: Application menu 2	406
	Menu 20: Application menu 3	
	Menu 22: Additional Menu 0 set-up	
	Menu 29: Pump Control	
11	Technical data	
11.1	Drive technical data	
11.2	Optional external EMC filters	456
12	Diagnostics	459
12.1	Trip indications	
12.2	Identifying a trip / trip source	
12.3	Trips, Sub-trip numbers	
12.4	Internal / Hardware trips	
12.5	Alarm indications	
12.6	Status indications	
12.7	Programming error indications	
12.8	Displaying the trip history	491
12.9	Behaviour of the drive when tripped	491

13	UL listing information	.492
13.1	UL file reference	492
13.2	Operating environment	492
13.3	Enclosure ratings	492
13.4	Through-panel (Type 12) mounting	492
13.5	Mounting bracket torque setting	492
13.6	Installation in air handling spaces (plenum	
	rating)	492
13.7	Mechanical Installation	492
13.8	Terminal Torque	492
13.9	Electrical Installation	
	Motor overload protection	
13.11	Thermal memory retention	492
13.12	Motor protection using an external sensor	492
	Transient Surge Suppression	
13.14	Dynamic braking	492
13.15	External Class 2 supply	493
13.16	Modular Drive Systems	493
13.17	AC supply, AC supply fuses and short circuit	
	current rating (SCCR)	
13.18	Modular / group / parallel installation	493

6

EU Declaration of Conformity

Nidec Control Techniques Ltd

The Gro

Newtown

Powys

UK

SY16 3BE

Nidec This declaration is issued under the sole responsibility of the manufacturer. The object of the declaration is in conformity with the relevant Union harmonization legislation. The declaration applies to the variable speed drive products shown below:

Model number	Interpretation	Nomenclature aaaa - bbc ddddde
aaaa	Basic series	M100, M101, M200, M201, M300, M400, M600, M700, M701, M702, F600, H300, E200, E300, HS30, HS70, HS71, HS72, M000, RECT
bb	Frame size	01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12
С	Voltage rating	1 = 100 V, 2 = 200 V, 4 = 400 V, 5 = 575 V, 6 = 690 V
ddddd	Current rating	Example 01000 = 100 A
е	Drive format	A = 6P Rectifier + Inverter (internal choke), D = Inverter, E = 6P Rectifier + Inverter (external choke), T = 12P Rectifier + Inverter (external choke)

The model number may be followed by additional characters that do not affect the ratings.

The variable speed drive products listed above have been designed and manufactured in accordance with the following European harmonized standards:

EN 61800-5-1:2007	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy
EN 61800-3: 2004+A1:2012	Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods
EN 61000-6-2:2005	Electromagnetic compatibility (EMC) - Part 6-2: Generic standards - Immunity for industrial environments
EN 61000-6-4: 2007+ A1:2011	Electromagnetic compatibility (EMC) - Part 6-4: Generic standards - Emission standard for industrial environments
EN 61000-3-2:2014	Electromagnetic compatibility (EMC) - Part 3-2: Limits for harmonic current emissions (equipment input current ≤16 A per phase)
EN 61000-3-3:2013	Electromagnetic compatibility (EMC) - Part 3-3: Limitation of voltage changes, voltage fluctuations and flicker in public, low voltage supply systems, for equipment with rated current ≤16 A per phase and not subject to conditional connection

EN 61000-3-2:2014 Applicable where input current < 16 A. No limits apply for professional equipment where input power ≥ 1 kW.

These products comply with the Restriction of Hazardous Substances Directive (2011/65/EU), the Low Voltage Directive (2014/35/EU) and the Electromagnetic Compatibility Directive (2014/30/EU).

Jonathan Holman-White Vice President, Technology

Date: 02/11/2020

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters.

The drives must be installed only by professional installers who are familiar with requirements for safety and EMC. Refer to the Product Documentation. An EMC data sheet is available giving detailed information. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

EU Declaration of Conformity (including 2006 Machinery Directive)

Nidec Control Techniques Ltd

The Gro

Newtown

Powys

UK

SY16 3BE

This declaration is issued under the sole responsibility of the manufacturer. The object of the declaration is in conformity with the relevant Union harmonization legislation. The declaration applies to the variable speed drive products shown below:

Model No.	Interpretation	Nomenclature aaaa - bbc ddddde
aaaa	Basic series	M300, M400, M600, M700, M701, M702, F600, H300, E200, E300, HS30, HS70, HS71, HS72, M000, RECT
bb	Frame size	01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12
С	Voltage rating	1 = 100 V, 2 = 200 V, 4 = 400 V, 5 = 575 V, 6 = 690 V
ddddd	Current rating	Example 01000 = 100 A
е	Drive format	A = 6P Rectifier + Inverter (internal choke), D = Inverter, E = 6P Rectifier + Inverter (external choke), T = 12P Rectifier + Inverter (external choke)

The model number may be followed by additional characters that do not affect the ratings.

This declaration relates to these products when used as a safety component of a machine. Only the Safe Torque Off function may be used for a safety function of a machine. None of the other functions of the drive may be used to carry out a safety function.

These products fulfil all the relevant provisions of the Machinery Directive 2006/42/EC and the Electromagnetic Compatibility Directive (2014/30/EU). EC type examination has been carried out by the following notified body:

TUV Rheinland Industrie Service GmbH

Am Grauen Stein D-51105 Köln

Germany

EC type-examination certificate numbers:

01/205/5270.01/14 dated 2014-11-11 01/205/5387.01/15 dated 2015-01-29 01/205/5383.02/15 dated 2015-04-21

Notified body identification number: 0035

The harmonized standards used are shown below:

EN 61800-5-1:2007	Adjustable speed electrical power drive systems - Part 5-1: Safety requirements - Electrical, thermal and energy
EN 61800-5-2:2007	Adjustable speed electrical power drive systems - Part 5-2: Safety requirements - Functional
EN ISO 13849-1:2008	Safety of Machinery, Safety-related parts of control systems, General principles for design
EN ISO 13849-2:2008	Safety of machinery, Safety-related parts of control systems. Validation
EN 61800-3: 2004+A1:2012	Adjustable speed electrical power drive systems - Part 3: EMC requirements and specific test methods
EN 62061:2005	Safety of machinery, Functional safety of safety related electrical, electronic and programmable electronic control systems

Person authorised to complete the technical file:

P Knight

Conformity Engineer

Newtown, Powys, UK

Jonathan Holman-White Vice President, Technology

Date: 02/11/2020

Place: Newtown, Powys, UK

IMPORTANT NOTICE

These electronic drive products are intended to be used with appropriate motors, controllers, electrical protection components and other equipment to form complete end products or systems. Compliance with safety and EMC regulations depends upon installing and configuring drives correctly, including using the specified input filters.

The drives must be installed only by professional installers who are familiar with requirements for safety and EMC. Refer to the Product Documentation. An EMC data sheet is available giving detailed information. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

Pump Drive F600 User Guide

1 Safety information

1.1 Warnings, Cautions and Notes

A Warning contains information which is essential for avoiding a safety hazard.

A Caution contains information which is necessary for avoiding a risk of damage to the product or other equipment.

NOTE

A Note contains information which helps to ensure correct operation of the product.

1.2 Important safety information. Hazards. Competence of designers and installers

This guide applies to products which control electric motors either directly (drives) or indirectly (controllers, option modules and other auxiliary equipment and accessories). In all cases the hazards associated with powerful electrical drives are present, and all safety information relating to drives and associated equipment must be observed

Specific warnings are given at the relevant places in this guide.

Drives and controllers are intended as components for professional incorporation into complete systems. If installed incorrectly they may present a safety hazard. The drive uses high voltages and currents, carries a high level of stored electrical energy, and is used to control equipment which can cause injury. Close attention is required to the electrical installation and the system design to avoid hazards either in normal operation or in the event of equipment malfunction. System design, installation, commissioning/start-up and maintenance must be carried out by personnel who have the necessary training and competence. They must read this safety information and this guide carefully.

1.3 Responsibility

It is the responsibility of the installer to ensure that the equipment is installed correctly with regard to all instructions given in this guide. They must give due consideration to the safety of the complete system, so as to avoid the risk of injury both in normal operation and in the event of a fault or of reasonably foreseeable misuse.

The manufacturer accepts no liability for any consequences resulting from inappropriate, negligent or incorrect installation of the equipment.

1.4 Compliance with regulations

The installer is responsible for complying with all relevant regulations, such as national wiring regulations, accident prevention regulations and electromagnetic compatibility (EMC) regulations. Particular attention must be given to the cross-sectional areas of conductors, the selection of fuses or other protection, and protective ground (earth) connections.

This guide contains instructions for achieving compliance with specific EMC standards.

All machinery to be supplied within the European Union in which this product is used must comply with the following directives:

2006/42/EC Safety of machinery.

2014/30/EU: Electromagnetic Compatibility.

1.5 Electrical hazards

The voltages used in the drive can cause severe electrical shock and/or burns, and could be lethal. Extreme care is necessary at all times when working with or adjacent to the drive. Hazardous voltage may be present in any of the following locations:

- · AC and DC supply cables and connections
- Output cables and connections
- · Many internal parts of the drive, and external option units

Unless otherwise indicated, control terminals are single insulated and must not be touched.

The supply must be disconnected by an approved electrical isolation device before gaining access to the electrical connections.

The STOP and Safe Torque Off functions of the drive do not isolate dangerous voltages from the output of the drive or from any external option unit.

The drive must be installed in accordance with the instructions given in this guide. Failure to observe the instructions could result in a fire hazard

1.6 Stored electrical charge

The drive contains capacitors that remain charged to a potentially lethal voltage after the AC supply has been disconnected. If the drive has been energized, the AC supply must be isolated at least ten minutes before work may continue.

1.7 Mechanical hazards

Careful consideration must be given to the functions of the drive or controller which might result in a hazard, either through their intended behaviour or through incorrect operation due to a fault. In any application where a malfunction of the drive or its control system could lead to or allow damage, loss or injury, a risk analysis must be carried out, and where necessary, further measures taken to reduce the risk - for example, an over-speed protection device in case of failure of the speed control, or a fail-safe mechanical brake in case of loss of motor braking.

With the sole exception of the Safe Torque Off function, none of the drive functions must be used to ensure safety of personnel, i.e. they must not be used for safety-related functions.

The Safe Torque Off function may be used in a safety-related application. The system designer is responsible for ensuring that the complete system is safe and designed correctly according to the relevant safety standards.

The design of safety-related control systems must only be done by personnel with the required training and experience. The Safe Torque Off function will only ensure the safety of a machine if it is correctly incorporated into a complete safety system. The system must be subject to a risk assessment to confirm that the residual risk of an unsafe event is at an acceptable level for the application.

1.8 Access to equipment

Access must be restricted to authorized personnel only. Safety regulations which apply at the place of use must be complied with.

1.9 Environmental limits

Instructions in this guide regarding transport, storage, installation and use of the equipment must be complied with, including the specified environmental limits. This includes temperature, humidity, contamination, shock and vibration. Drives must not be subjected to excessive physical force.

1.10 Hazardous environments

The equipment must not be installed in a hazardous environment (i.e. a potentially explosive environment).

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

1.11 **Motor**

The safety of the motor under variable speed conditions must be ensured.

To avoid the risk of physical injury, do not exceed the maximum specified speed of the motor.

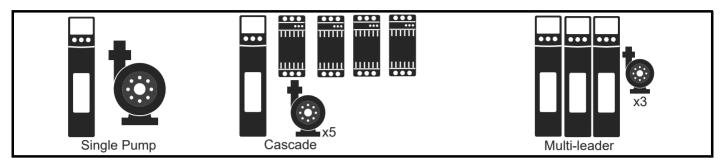
Low speeds may cause the motor to overheat because the cooling fan becomes less effective, causing a fire hazard. The motor should be installed with a protection thermistor. If necessary, an electric forced vent fan should be used.

The values of the motor parameters set in the drive affect the protection of the motor. The default values in the drive must not be relied upon. It is essential that the correct value is entered in the Motor Rated Current parameter.

1.12 Adjusting parameters

Some parameters have a profound effect on the operation of the drive. They must not be altered without careful consideration of the impact on the controlled system. Measures must be taken to prevent unwanted changes due to error or tampering.

1.13 Electromagnetic compatibility (EMC)


Installation instructions for a range of EMC environments are provided in the relevant Power Installation Guide. If the installation is poorly designed or other equipment does not comply with suitable standards for EMC, the product might cause or suffer from disturbance due to electromagnetic interaction with other equipment. It is the responsibility of the installer to ensure that the equipment or system into which the product is incorporated complies with the relevant EMC legislation in the place of use.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		·						

2 Product information

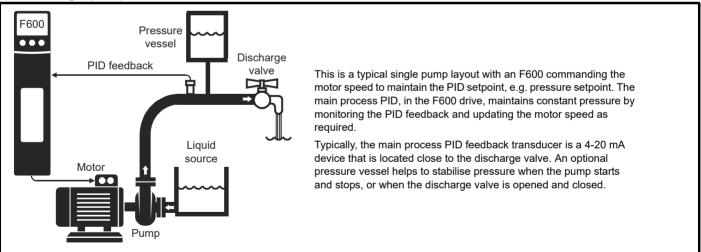
2.1 Pump Drive F600 introduction

The F600 is a dedicated pump drive that supports single pump applications or more efficient parallel pump operation in a Cascade system (one drive + assist soft starters) or Multi-leader system (up to 3 drives with advanced handling). All of the features are user configurable via the keypad interface or by the F600 Guided Setup within Control Techniques' Connect PC software, available from http://controltechniques.com/support.

2.2 Overview

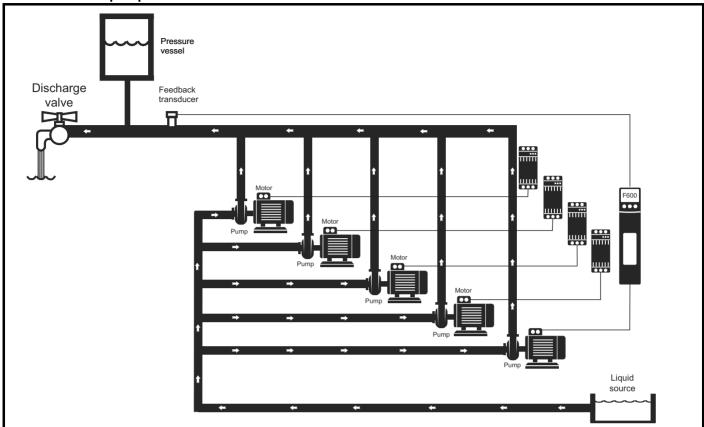
The operating controls for the Pump Drive F600 are Hand, Off or Auto, which may be selected from the keypad interface, digital inputs or HMI/PLC control word.

Hand mode runs the pump at a user defined fixed speed, from either a digital pre-set or an analog reference.


In Auto Mode, the pump starts Automatically with a start delay when the wake condition is detected, for example a pressure transducer signal goes below wake threshold. Initially, a pipe fill operation may be performed to remove air from the pipes. A PID control then regulates the system to the setpoint, e.g. for a constant pressure system, the demand pressure will be regulated by adjusting the motor speed. If the pump detects a stop condition for a defined time period, it will Automatically stop and enter the Sleeping state. There are four main stop conditions - sleep on low motor speed, software no flow detection, no flow from a flow switch and low flow from a pulsed flow meter. All four conditions can be individually enabled to suit the system requirements.

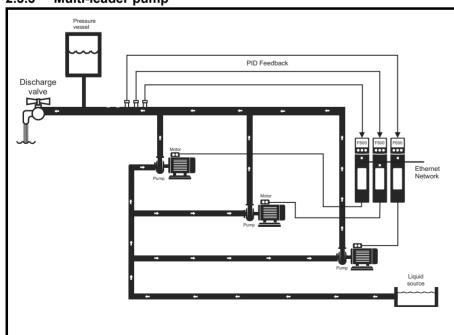
In Off Mode, Hand and or Auto are not selected, the drive will not energise the motor. This is not a safety function; the Safe Torque Off function using T29 may be used as part of a safety system if required.

In Cascade or Multi-leader parallel pumping systems, when the leader drive PID output is at maximum, additional assist F600s or soft starters are commanded to run. If the sleeping threshold is reached, additional assist F600s or soft starters are commanded to stop.


2.3 System configurations

2.3.1 Single pump

Pump Drive F600 User Guide


2.3.2 Cascade pump

This is a typical Cascade pump layout with an F600 leader drive controlling up to 4 assist softstarters, using 24V digital I/O. The leader drive commands the motor speed to maintain the PID setpoint, e.g. pressure setpoint. The main process PID, in the F600 drive, maintains constant pressure by monitoring the PID feedback and updating the motor speed as required. If the PID output reaches its maximum, the soft starter assists will be commanded to run to increase the system output as required.

Typically, the main process PID feedback transducer is a 4-20 mA device that is located close to the discharge valve. An optional pressure vessel helps to stabilise pressure when the pump starts and stops, or when the discharge valve is opened and closed.

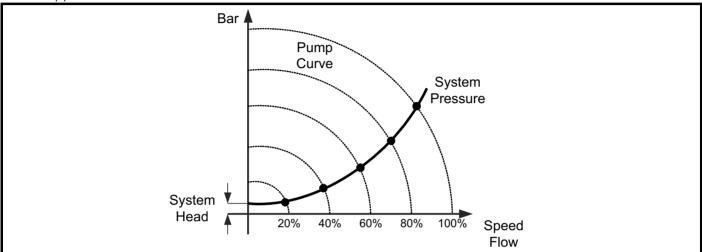
2.3.3 Multi-leader pump

This is a typical Multi-leader pump layout with up to 3 F600 Pump drives coordinating together over an Ethernet network. The leader drive commands the motor speed to maintain the PID setpoint, e.g. pressure setpoint. The main process PID, in the lead F600 drive, maintains constant pressure by monitoring the PID feedback and updating the motor speed as required. If the PID output reaches its maximum, the assist F600 Pump drives will be commanded to run by the system leader to increase the system output as required.

Typically, the main process PID feedback transducer is a 4-20 mA device that is located close to the discharge valve. This system will automatically reassign the leader, if required, or use the PID feedback from another drive to offer redundancy. An optional pressure vessel helps to stabilise pressure when the pump starts and stops, or when the discharge valve is opened and closed.

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional	0-4	NV Media Card	Advanced	Technical	Diamantina	UL listing
information	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information

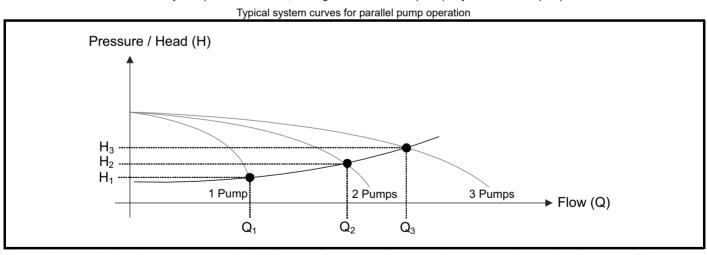
2.4 General pump principles


When controlling a pump with PID control, it is important to remember basic pump laws to understand the operation:

- · Flow is proportional to Speed
- Pressure is proportional to Speed²
- Power is proportional to Speed³

Based on these laws, for a constant pressure system, we can see that pressure will increase by the motor speed squared. With PID control:

- If the actual pressure is less than the required set point, the motor speed will increase.
- · If the actual pressure is greater than the required set point, the motor speed will decrease.
- The response of the PID loop is determined by the PID Proportional, Integral, and Derivative gains.

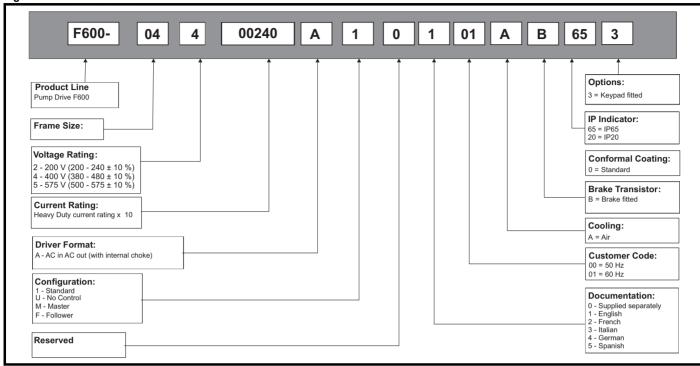

The pump, motor and drive are sized for the demand pressure and flow requirements, and pump working speed range, typically 60-100 % speed, or 30 Hz to 50 Hz with a 50 Hz motor, where the motor speed is relatively high to overcome the pressure drop or resistance to flow in the pump system distribution pipes.

Parallel pump systems, like Cascade or Multi-leader mode, provide sequential control of multiple pumps in parallel in order to maintain a required PID setpoint with varying load demands. Pumps are often used in parallel banks to:

- Avoid motor overload
- · Increased security of supply (system redundancy)
- · Reduce running cost due to system load fluctuations
- Provide a wide range of control and flexibility

Contrary to commonly held beliefs, the flow does not double with the addition of a second similar pump in parallel. In fact, each successive pump adds a smaller amount to the total system pressure and flow, although the total flow is split equally between each pump.

Compared to the equivalent larger pump system, the Multi-leader or Cascade parallel system has more range in control and is a more efficient system as a larger pump will be less efficient at lower speeds/flows.


14 Pump Drive F600 User Guide

					Getting								
	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
1i	nformation	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
					the Motor								

2.5 Model number

The way in which the model numbers for the Pump Drive F600 range are formed is illustrated below:

Figure 2-1 Model number

^{*} Only shown on Frame 9 and above identification label.

NOTE

For simplicity, a Frame 9 drive with no internal choke (i.e. model 09xxxxxxE) is referred to as a Frame 9E and a Frame 9 drive with an internal choke (i.e. model 09xxxxxxA) is referred to as a Frame 9A. Any reference to Frame 9 is applicable to both sizes 9E and 9A. All Frame size 10 and 11 drives are supplied with no internal choke.

^{**} For further information on the D, C or T power format models, please refer to the *Modular Installation Guide*.

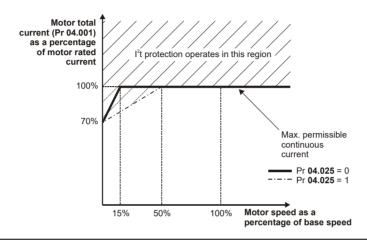
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

2.6 Ratings

Normal Duty

The F600 is optimized for applications which use self ventilated (TENV/TEFC) induction motors and require a low overload capability, and full torque at low speeds is not required (e.g.pumps).

Self ventilated (TENV/TEFC) induction motors require increased protection against overload due to the reduced cooling effect of the fan at low speed. To provide the correct level of protection the I²t software operates at a level which is speed dependent. This is illustrated in the graph below.


NOTE

The speed at which the low speed protection takes effect can be changed by the setting of *Low Speed Thermal Protection Mode* Pr **04.025**. The protection starts when the motor speed is below 15 % of base speed when Pr **04.025** = 0 (default) and below 50 % when Pr **04.025** = 1.

Operation of motor I²t protection

Motor I2t protection is fixed as shown below and is compatible with:

Self ventilated (TENV/TEFC) induction motors

The continuous current ratings given are for maximum $40 \,^{\circ}$ C ($104 \,^{\circ}$ F), $1000 \,^{\circ}$ m altitude and $3 \,^{\circ}$ kHz switching frequency (except where shown). Derating is required for higher switching frequencies, ambient temperature > $40 \,^{\circ}$ C ($104 \,^{\circ}$ F) and high altitude. For further information, refer to Chapter 11 *Technical data* on page 425.

Table 2-1 200 V drive ratings (200 V to 240 V ±10 %)

			Norma	l Duty	
Frame size	Model	Maximum continuous output current	Nominal power at 230 V	Motor power at 230 V	Peak current
		Α	kW	hp	Α
	03200066	6.6	1.1	1.5	7.2
3	03200080	8	1.5	2	8.8
•	03200110	11	2.2	3	12.1
	03200127	12.7	3	3	13.9
4	04200180	18	4	5	19.8
4	04200250	25	5.5	7.5	27.5
5	05200300	30	7.5	10	33
6	06200500	50	11	15	55
•	06200580	58	15	20	63.8
	07200750	75	18.5	25	82.5
7	07200940	94	22	30	103.4
	07201170	117	30	40	128.7
8	08201490	149	37	50	163.9
0	08201800	180	45	60	198
9	09202160	216	55	75	237.6
9	09202660	266	75	100	292.6
10	10203250	325	90	125	357.5
10	10203600	360	110	150	396

16

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Table 2-2 High IP 200 V drive ratings (200 V to 240 V ± 10 %)

			Norma	al Duty	
Frame size	Pump Drive High IP Model	Maximum continuous output current	Nominal power at 230 V	Motor power at 230 V	Peak current
		Α	kW	hp	Α
	F600-03200066A10100AB653	6.6	1.1	1.5	7.2
3	F600-03200080A10100AB653	8	1.5	2	8.8
3	F600-03200110A10100AB653	11	2.2	3	12.1
	F600-03200127A10100AB653	12.7	3	3	13.9
	F600-04200180A10100AB653	18	4	5	19.8
4	F600-04200240A10100AB653	24	5.5	7.5	27.5
	F600-04200250A10100AB653	25	5.5	7.5	27.5
5	F600-0500300A10100AB653	30	7.5	10	33
6	F600-06200500A10100AB653	50	11	15	55

Table 2-3 400 V drive ratings (380 V to 480 V ±10 %)

			Norma	al Duty	
Frame size	Model	Maximum continuous output current	Nominal power at 400 V	Motor power at 460 V	Peak current
		Α	kW	hp	Α
	03400034	3.4	1.1	1.5	3.7
	03400045	4.5	1.5	2.0	4.9
	03400062	6.2	2.2	3.0	6.8
3	03400077	7.7	3.0	5.0	8.4
	03400104	10.4	4.0	5.0	11.4
	03400123	12.3	5.5	7.5	13.5
4	04400185	18.5	7.5	10.0	20.3
4	04400240	24.0	11.0	15.0	26.4
5	05400300	30.0	15.0	20.0	33.0
	06400380	38.0	18.5	25.0	41.8
6	06400480	48.0	22.0	30.0	52.8
	06400630	63.0	30.0	40.0	69.3
	07400790	79	37	50	86.9
7	07400940	94	45	60	103.4
	07401120	112	55	75	123.2
	08401550	155	75	100	170.5
8	08401840	184	90	125	202.4
	09402210	221	110	150	243.1
9	09402660	266*	132	200	292.6
40	10403200	320	160	250	352
10	10403610	361	200	300	397.1
	11404370	437	225	350	480.7
11	11404870	487*	250	400	535.7
	11405070	507*	280	450	557.7

^{*} These ratings are for 2 kHz switching frequency. For ratings at 3 kHz switching frequency refer to section 11.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 425.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
o.		otaa.o	otaation	the Motor	paramotoro	acconp.ion.c		орогилоп	paramotoro	u a a a		

Table 2-4 400 V drive ratings at 40 °C (104 °F) 12 pulse (380 V to 480 V ±10 %)

	I	No overload			Norma	l Duty			Heavy	Duty	
Model	Maximum continuous current	Nominal power at 400 V	Nominal power at 460 V	Maximum continuous current	Peak current	Nominal power at 400 V	Nominal power at 460 V	Maximum continuous output current	Peak current	Nominal power at 400 V	Nominal power at 460 V
	Α	kW	hp	Α	Α	kW	hp	Α	Α	kW	hp
12404800T	635	315	500	608	668	315	500	480	672	250	400
12405660T	689	355	550	660	726	355	550	566	792	315	450
12406600T	788	450	650	755	831	400	650	660	924	355	550
12407200T	903	500	700	865	952	500	700	720	1008	400	600

Table 2-5 400 V drive input current, fuse rating and cable size

	Maximum continuous	F	use (6 p	er drive)		Nomi	nal cable s	ize (Europ	ean) mm²	Nominal cable size (USA)			
Model	input current	IE	EC	UL/USA		Input	Input	Output	Cable type	Input 6	Input 12	Output	
	3 ph	Nom	Class	Nom	Clas	6 pulse	12 pulse		(input & output)	pulse	pulse		
	Α	Α	Class	Α	s	mm²	mm²	mm²		kcmil	kcmil	kcmil	
12404800T	720	550		400		4 x 120	2 x 120	3 x 150		4 x 3/0 AWG (85 mm ²)	2 x 3/0 AWG (85 mm ²)	4 x 1/0 AWG (53.5 mm ²)	
12405660T	777	550	- aR	450	450 gR 500		2 x 150	4 x 120	XLPE/EPR	4 x 3/0 AWG (85 mm ²)	2 x 3/0 AWG (85 mm ²)	4 x 2/0 AWG (67.4 mm ²)	
12406600T	845	550	aix	aR 500				3 x 185		4 x 4/0 AWG (107.2 mm ²)	2 x 4/0 AWG (107.2 mm ²)	4 x 3/0 AWG (85 mm ²)	
12407200T	995	550		550			2 x 185	4 x 185		4 x 250 Kcmil (127.2 mm ²)	2 x 250 Kcmil (127.2 mm ²)	4 x 4/0 AWG 107.2 mm ²)	

Table 2-6 High IP 400 V drive ratings (380 V to 480 V ±10 %)

			Norma	I Duty	
Frame size	Pump Drive High IP Model	Maximum continuous output current	Nominal power at 400 V	Motor power at 460 V	Peak current
		Α	kW	hp	Α
	F600-03400034A10100AB653	3.4	1.1	1.5	3.7
	F600-03400045A10100AB653	4.5	1.5	2.0	4.9
,	F600-03400062A10100AB653	6.2	2.2	3.0	6.8
3	F600-03400077A10100AB653	7.7	3.0	5.0	8.4
	F600-03400104A10100AB653	10.4	4.0	5.0	11.4
	F600-03400123A10100AB653	12.3	5.5	7.5	13.5
	F600-04400185A10100AB653	18.5	7.5	10.0	20.3
4	F600-04400240A10100AB653	24.0	11.0	15.0	26.4
5	F600-05400300A10100AB653	30.0	15.0	20.0	33.0
5	F600-05400310A10100AB653	31.0	15.0	20.0	33.0
6	F600-06400380A10100AB653	38.0	18.5	25.0	41.8
0	F600-06400480A10100AB653	48.0	22	30.0	52.8

Pump Drive F600 User Guide

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Table 2-7 575 V drive ratings (500 V to 575 V ±10 %)

			Norma	l Duty	
Frame size	Model	Maximum continuous output current	Nominal power at 575 V	Motor power at 575 V	Peak current
		Α	kW	hp	Α
	05500039	3.9	2.2	3	4.3
5	05500061	6.1	4	5	6.7
	05500100	10	5.5	7.5	11
	06500120	12	7.5	10	13.2
	06500170	17	11	15	18.7
6	06500220	22	15	20	24.2
٥	06500270	27	18.5	25	29.7
	06500340	34	22	30	37.4
	06500430	43	30	40	47.3
7	07500530	53	45	50	58.3
,	07500730	73	55	60	80.3
8	08500860	86	75	75	94.6
°	08501080	108	90	100	118.8
9	09501250	125	110	125	137.5
9	09501500	150	110	150	165
10	10502000	200	150	200	220
	11502480	248	185	250	272.8
11	11502880	288*	225	300	316.8
	11503150	315*	250	350	346.5

^{*} These ratings are for 2 kHz switching frequency. For ratings at 3 kHz switching frequency refer to section 11.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 425.

Table 2-8 High IP 575 V drive ratings (500 V to 575 V $\pm 10~\%$)

			Normal Duty										
Frame size	Pump Drive High IP Model	Maximum continuous output current	Nominal power at 575 V	Motor power at 575 V	Peak current								
		Α	kW	hp	Α								
	F600-05500039A10100AB653	3.9	2.2	3	4.3								
5	F600-05500061A10100AB653	6.1	4	5	6.7								
	F600-05500100A10100AB653	10	5.5	7.5	11								
	F600-06500120A10100AB653	12	7.5	10	13.2								
	F600-06500170A10100AB653	17	11	15	18.7								
6	F600-06500220A10100AB653	22	15	20	24.2								
	F600-06500270A10100AB653	27	18.5	25	29.7								
	F600-06500340A10100AB653	34	22	30	37.4								

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor	F				,			

Table 2-9 690 V drive ratings (500 V to 690 V ±10 %)

			Norm	al Duty	
Frame size	Model	Maximum continuous output current	Nominal power at 690 V	Motor power at 690 V	Peak current
		Α	kW	hp	Α
	07600230	23	18.5	25	25.3
	07600300	30	22	30	33
7	07600360	36	30	40	39.6
'	07600460	46	37	50	50.6
	07600520	52	45	60	57.2
	07600730	73	55	75	80.3
8	08600860	86	75	100	94.6
l °	08601080	108	90	125	118.8
9	09601250	125	110	150	137.5
l ⁹	09601550	155	132	175	170.5
10	10601720	172	160	200	189.2
10	10601970	197	185	250	216.7
	11602250	225	200	250	247.5
11	11602750	275*	250	300	302.5
	11603050	305*	280	400	335.5

^{*} These ratings are for 2 kHz switching frequency. For ratings at 3 kHz switching frequency refer to section 11.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 425.

2.6.1 Typical short term overload limits

The maximum percentage overload limit changes depending on the selected motor. Variations in motor rated current, motor power factor and motor leakage inductance all result in changes in the maximum possible overload. The exact value for a specific motor can be calculated using the equations detailed in Menu 4 in the *Parameter Reference Guide*.

Typical values are shown in the table below for RFC (RFC-A or RFC-S) and open loop (OL) modes:

Table 2-10 Typical overload limits

Operating mode	RFC from cold	RFC from 100 %	Open loop from cold	Open loop from 100 %
Overload with motor rated current = drive rated current	110 % for 165 s	110 % for 9 s	110 % for 165 s	110 % for 9 s

Generally the drive rated current is higher than the matching motor rated current allowing a higher level of overload than the default setting. The time allowed in the overload region is proportionally reduced at very low output frequency on some drive ratings.

NOTE

The maximum overload level which can be attained is independent of the speed.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

2.7 Operating modes

Drive Operating modes

The drive operating mode is set using Pr **0.004**, by selecting either "Induction" or "Permanent magnet" and pressing the red OFF / Reset button. Selecting "Induction" sets the drive into Open-loop (OL) and RFC mode and selecting "Permanent-magnet" sets the drive into RFC-S sensorless mode, which are the most common operating modes used.

The drive supports the following operating modes:

Open-loop (OL) mode for use with an induction motor

The drive applies power to the motor at frequencies varied by the user. The motor speed is a result of the output frequency of the drive and slip due to the mechanical load.

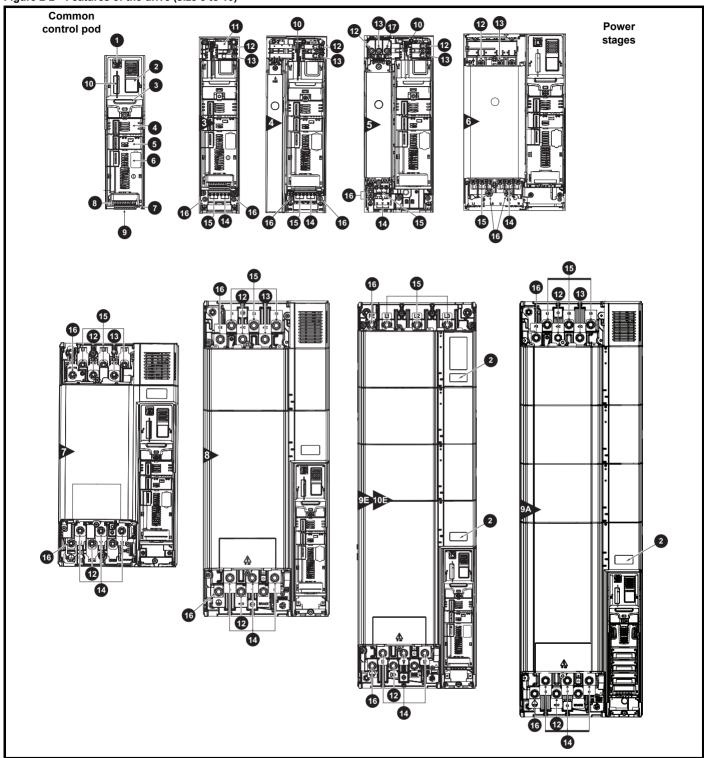
RFC-A mode for use with an induction motor with feedback device

The drive directly controls the speed of the motor using the feedback device. The motor flux is accurately controlled to provide full torque down to zero speed.

Synchronous permanent magnet brushless motor without feedback (RFC-S sensorless mode)

Flux control is not required because the motor is self-excited by the permanent magnets which form part of the rotor. Full torque is available down to zero speed, with salient motors. Position information from the sensorless algorithm is used to ensure the output voltage is matched to the back EMF of the motor.

Synchronous permanent magnet brushless motor with feedback device (RFC-S feedback mode)

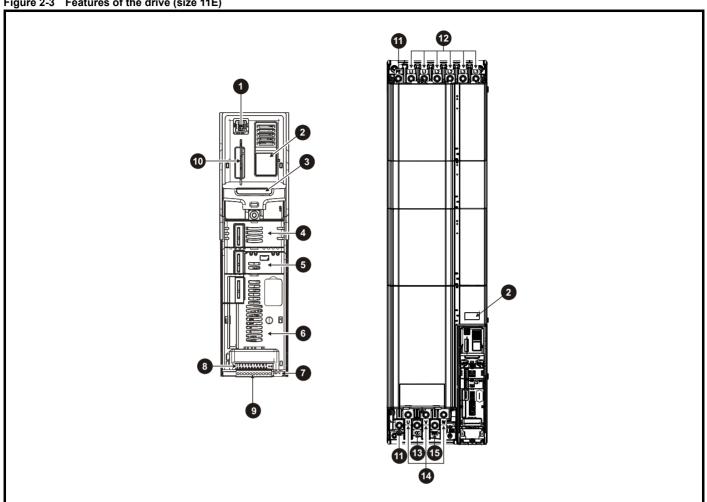

The drive directly controls the speed of the motor using the feedback device. Flux control is not required because the motor is self-excited by the permanent magnets which form part of the rotor.

Position information is required from the feedback device to ensure the output voltage is accurately matched to the back EMF of the motor. Full torque is available down to zero speed.

Getting started / Functional descriptions Safety Mechanical installation Electrical installation NV Media Card Technical UL listing Product Basic Advanced Optimization Diagnostics parameters information information Running the Motor parameters information Operation data

2.8 Drive features

Figure 2-2 Features of the drive (size 3 to 10)


Key

- 1. Keypad connection
- 2. Rating label
- 3. Identification label
- 4. Option module slot 1
- 5. Option module slot 2
- 6. Option module slot 3
- 7. Relay connections
- 8. Control connections
- 9. Communications port
- 10. NV media card slot

- 11. Internal EMC filter
- 12. DC bus +
- 13. DC bus -
- 14. Motor connections
- 15. AC supply connections
- 16. Ground connections
- 17. Brake terminal

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
informatio	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

Figure 2-3 Features of the drive (size 11E)

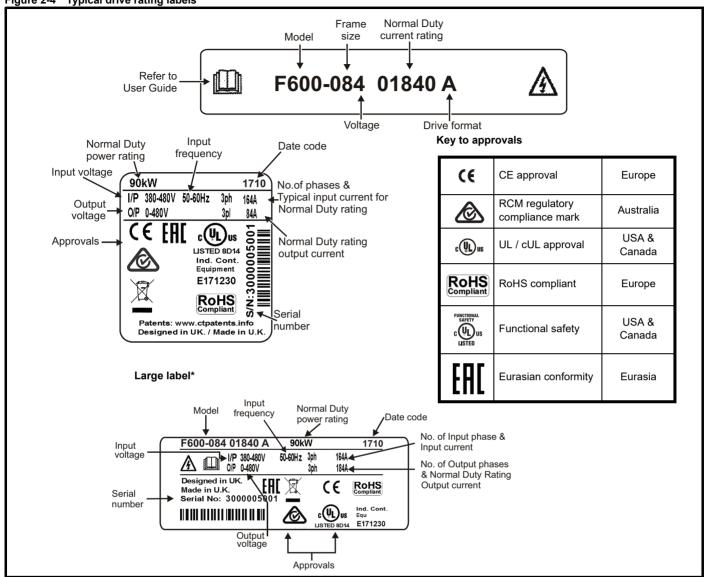
Key

- 1. Keypad connection
- 2. Rating label
- 3. Identification label
- 4. Option module slot 1
- 5. Option module slot 2
- 6. Option module slot 3
- 7. Relay connections
- 8. Control connections

- 9. Communications port
- 10. NV media card slot
- 11. Ground connections 12. AC supply connections*
- 13. DC bus +
- 14. Motor connections 15. Brake terminal

NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.


^{*} Common AC supply connections are internally linked on the 11E 6 pulse drive.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

2.9 Nameplate description

See Figure 2-2 and Figure 2-3 for location of rating labels.

Figure 2-4 Typical drive rating labels

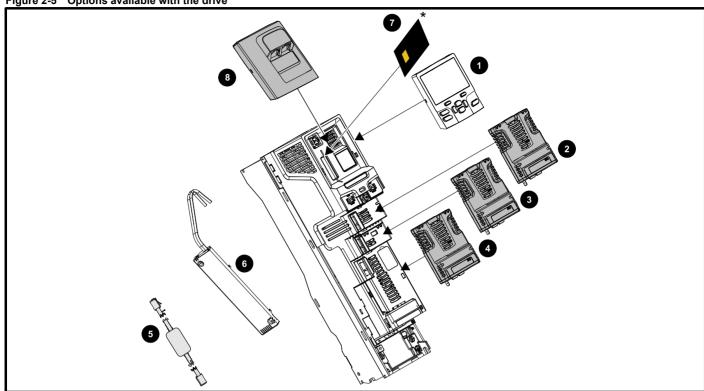
^{*} This label is only applicable to Size 7 and above.

Refer to Figure 2-1 Model number on page 15 for further information relating to the labels.

NOTE

Date code format

The date code is four numbers. The first two numbers indicate the year and the remaining numbers indicate the week of the year in which the drive was built.


Example:

A date code of 1710 would correspond to week 10 of year 2017.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•	•			·			

2.10 Options

Figure 2-5 Options available with the drive

- 1. Keypad
- 2. Option module slot 1
- 3. Option module slot 2
- 4. Option module slot 3

- 5. CT Comms cable
- 6. Heatsink mounted braking resistor (size 3, 4 and 5 only)
 - 7. NV media card
- 8. KI-485 comms adaptor

^{*} For further information refer to section 9 NV Media Card Operation on page 347

Be aware of possible live terminals when inserting or removing the NV media card.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

All standard option modules are color-coded in order to make identification easy. All modules have an identification label on top of the module. Standard option modules can be installed to any of the available option slots on the drive. The following tables shows the color-code key and gives further details on their function.

Table 2-11 Option module identification

Туре	Option module	Color	Name	Further Details
		N/A	KI-485 Adaptor	EIA 485 Comms Adaptor EIA 485 Comms adaptor provides EIA 485 communication interface. This adaptor supports 115 k Baud, node addresses between 1 to 16 and 8 1 NP M serial mode.
		Purple	SI-PROFIBUS	Profibus option PROFIBUS adapter for communications with the drive
		Medium Grey	SI-DeviceNet	DeviceNet option DeviceNet adapter for communications with the drive
Fieldbus		Light Grey	SI-CANopen	CANopen option CANopen adapter for communications with the drive
		Beige	SI-Ethernet	External Ethernet module that supports EtherNet/IP, Modbus TCP/IP and RTMoE. The module can be used to provide high speed drive access, global connectivity and integration with IT network technologies, such as wireless networking
		Yellow Green	SI-PROFINET V2	PROFINET option PROFINET adapter for communications with the drive Note: PROFINET V2 replaces PROFINET RT
		Brown Red	SI-EtherCAT	EtherCAT option EtherCAT adapter for communications with the drive
Automation (I/O expansion)	minundin	Orange	SI-I/O	Extended I/O Increases the I/O capability by adding the following combinations: Digital I/O Digital Inputs Analog Inputs (differential or single ended) Analog Output Relays
Fandhaali		Light Brown	SI-Encoder	Incremental encoder input interface module.
Feedback		Dark Brown	SI-Universal Encoder	Additional combined encoder input and output interface supporting Incremental, SinCos, HIPERFACE, EnDAT and SSI encoders.
Automation		Moss Green	MCi200	Machine Control Studio Compatible Applications Processor 2nd processor for running pre-defined and/or customer created application software.
(Applications)		Moss Green	MCi210	Machine Control Studio Compatible Applications Processor (with Ethernet communications) 2nd processor for running pre-defined and/or customer created application software with Ethernet communications and high speed digital I/O.

NOTE

With the F600, high IP units there is maximum of 46 mA (24 V) available for user option modules.

This will not affect the use of most of the option modules, however, when using the digital outputs of SI-IO modules or when supplying the power to an encoder connected to an SI-Encoder or SI-Universal Encoder will require an external 24 V power supply to be used if the total current required exceeds 46 mA.

26

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Table 2-12 Keypad identification

Type	Keypad	Name	Further Details
Keypad		KI-HOA Keypad RTC	LCD keypad option Keypad with an LCD display, Hand / Off / Auto buttons and real time clock
Keypad		HOA Keypad RTC	Remote LCD keypad option Remotely mounted keypad with an LCD display, Hand / Off / Auto buttons and real time clock

Table 2-13 Additional options

Type	Option	Name	Further Details
Dooleys		SD Card Adaptor	SD Card Adaptor Allows the drive to use an SD card for drive back-up
Back-up	Aside C	SMARTCARD	SMARTCARD Used for parameter back-up with the drive

2.11 HMI

There is a dedicated 7 HMI available for the Pump Drive F600. For more details contact your local centre.

2.12 Items supplied with the drive

The drive is supplied with a copy of the *Getting Started Guide*, a safety information booklet, the Certificate of Quality and an accessory kit box including the items shown in Table 2-14.

Table 2-14 Parts supplied with the drive

Description	Size 3	Size 4	Size 5	Size 6	Size 7		Size 8			
Control connectors 1 to 9 and 21 to 29			x 1	x 1						
Relay connector			×1	x1						
24 V power supply connector					x 1					
Grounding bracket			•	x 1						
Surface mounting brackets	© ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○	<u>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</u>	x 2	х 2	x 2	2	x 2			
Grounding clamp		x 1	x 1	x 1						
DC terminal cover grommets		x 2								
Terminal nuts				M6 x 11						
Supply and motor connector	E	x 1	x1 x1							
Finger guard grommets			×3	x 2						

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Table 2-15 Parts supplied with the drive (size 9A, 9E, 10E and 11E)

Description	Size 9A/9E	Size 10E	Size 11E
Control connectors 1 to 9 and 21 to 29			
		x1 x1	
Relay connector			
		x1 x1	
24 V power supply connectors			
		x1 x1	
Grounding bracket			
		x 1	
Surface mounting brackets		<u> </u>	x 2
	,	12	x 1

Table 2-16 Parts supplied with the High IP Drive

Description	Size 3	Size 4	Size 5	Size 6
Kit bag	3470-0201	3470-0200	3470-0203	3470-0205
Nit bag	3470-0202	3470-0199	3470-0204	3470-0198

Safety information in the formation in t

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-	-		·				

3 Mechanical installation

This chapter describes all mechanical details to install the drive. The drive is intended to be installed in an enclosure. Key features of this chapter include:

- Through-hole mounting
- · High IP as standard or through-panel mounting
- · Enclosure sizing and layout
- Option module installing
- Terminal location and torque settings

3.1 Safety information

Follow the instructions

The mechanical and electrical installation instructions must be adhered to. Any questions or doubt should be referred to the supplier of the equipment. It is the responsibility of the owner or user to ensure that the installation of the drive and any external option unit, and the way in which they are operated and maintained, comply with the requirements of the Health and Safety at Work Act in the United Kingdom or applicable legislation and regulations and codes of practice in the country in which the equipment is used.

Competence of the installer

The drive must be installed by professional assemblers who are familiar with the requirements for safety and EMC. The assembler is responsible for ensuring that the end product or system complies with all the relevant laws in the country where it is to be used.

Enclosure

The drive is intended to be mounted in an enclosure which prevents access except by trained and authorized personnel, and which prevents the ingress of contamination. It is designed for use in an environment classified as pollution degree 2 in accordance with IEC 60664-1. This means that only dry, non-conducting contamination is acceptable.

3.2 Planning the installation

The following considerations must be made when planning the installation:

3.2.1 Access

Access must be restricted to authorized personnel only. Safety regulations which apply at the place of use must be complied with.

The IP (Ingress Protection) rating of the drive is installation dependent. For further information, refer to section 3.9 *Enclosing standard drive for high environmental protection* on page 66.

3.2.2 Environmental protection

The drive must be protected from:

- Moisture, including dripping water or spraying water and condensation. An anti-condensation heater may be required, which must be switched off when the drive is running.
- · Contamination with electrically conductive material
- · Contamination with any form of dust which may restrict the fan, or impair airflow over various components
- · Temperature beyond the specified operating and storage ranges
- · Corrosive gasses

NOTE

During installation it is recommended that the vents on the drive are covered to prevent debris (e.g. wire off-cuts) from entering the drive.

Safety Product information Product information Product information Safety information Product information Product information Safety information Product information Safety information Safety information Safety information Safety Product information Safety information Safet	Diagnostics	UL listing information	
--	-------------	------------------------	--

3.2.3 Cooling

The heat produced by the drive must be removed without its specified operating temperature being exceeded. Note that a sealed enclosure gives much reduced cooling compared with a ventilated one, and may need to be larger and/or use internal air circulating fans.

For further information, refer to section 3.6 Enclosure for standard drives on page 61.

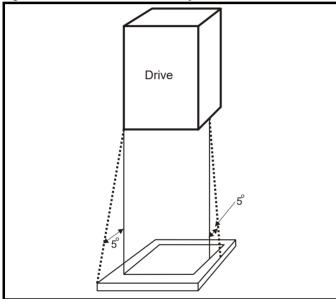
3.2.4 Electrical safety

The installation must be safe under normal and fault conditions. Electrical installation instructions are given in Chapter 4 *Electrical installation on page 95*.

3.2.5 Fire protection

The drive enclosure is not classified as a fire enclosure. A separate fire enclosure must be provided.

For installation in the USA, a NEMA 12 enclosure is suitable.


For installation outside the USA, the following (based on IEC 62109-1, standard for PV inverters) is recommended.

Enclosure can be metal and/or polymeric, polymer must meet requirements which can be summarized for larger enclosures as using materials meeting at least UL 94 class 5VB at the point of minimum thickness.

Air filter assemblies to be at least class V-2.

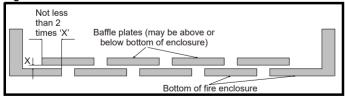

The location and size of the bottom shall cover the area shown in Figure 3-1. Any part of the side which is within the area traced out by the 5° angle is also considered to be part of the bottom of the fire enclosure.

Figure 3-1 Fire enclosure bottom layout

The bottom, including the part of the side considered to be part of the bottom, must be designed to prevent escape of burning material - either by having no openings or by having a baffle construction. This means that openings for cables etc. must be sealed with materials meeting the 5VB requirement, or else have a baffle above. See Figure 3-2 for acceptable baffle construction. This does not apply for mounting in an enclosed electrical operating area (restricted access) with concrete floor.

Figure 3-2 Fire enclosure baffle construction

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

3.2.6 Electromagnetic compatibility

Variable speed drives are powerful electronic circuits which can cause electromagnetic interference if not installed correctly with careful attention to the layout of the wiring.

Some simple routine precautions can prevent disturbance to typical industrial control equipment.

If it is necessary to meet strict emission limits, or if it is known that electromagnetically sensitive equipment is located nearby, then full precautions must be observed. In-built into the drive, is an internal EMC filter, which reduces emissions under certain conditions. If these conditions are exceeded, then the use of an external EMC filter may be required at the drive inputs, which must be located very close to the drives. Space must be made available for the filters and allowance made for carefully segregated wiring. Both levels of precautions are covered in section 4.11 *Braking on page 121*.

3.2.7 Hazardous areas

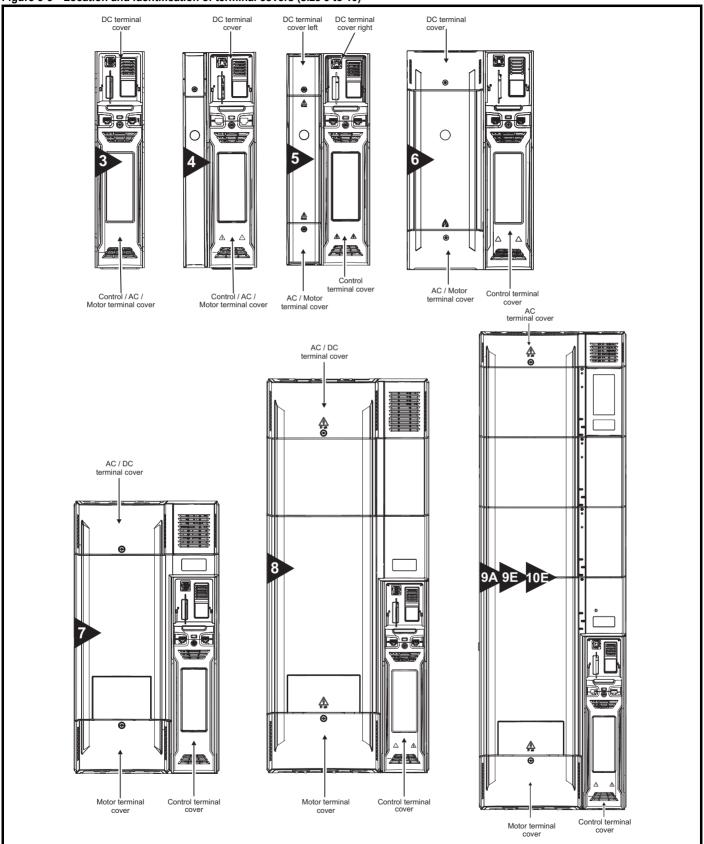
The drive must not be located in a classified hazardous area unless it is installed in an approved enclosure and the installation is certified.

3.3 Terminal cover removal

Isolation device

The AC and / or DC power supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

Stored charge


The drive contains capacitors that remain charged to a potentially lethal voltage after the AC and / or DC power supply has been disconnected. If the drive has been energized, the power supply must be isolated at least ten minutes before work may continue.

Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

0.64			F	Getting				ND/14 II O I				
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	- 1	Operation	parameters	data	3	information
	1			the Motor						ĺ		I

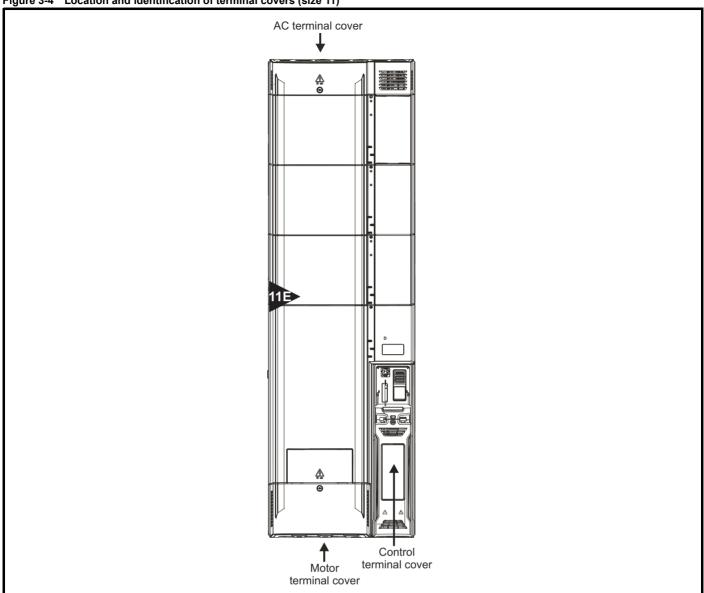
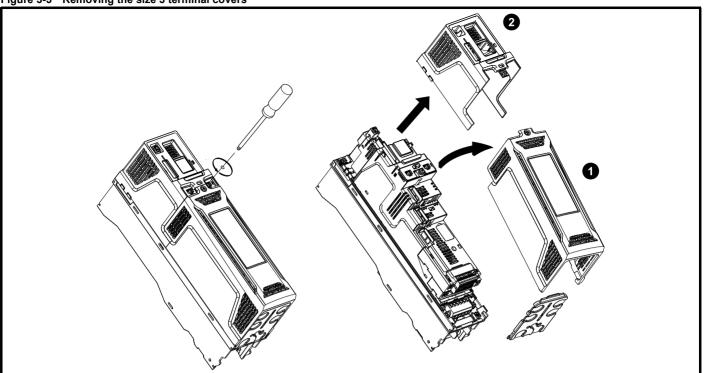

3.3.1 Removing the terminal covers

Figure 3-3 Location and identification of terminal covers (size 3 to 10)

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnootico	information
				the Motor	I	l					ĺ	

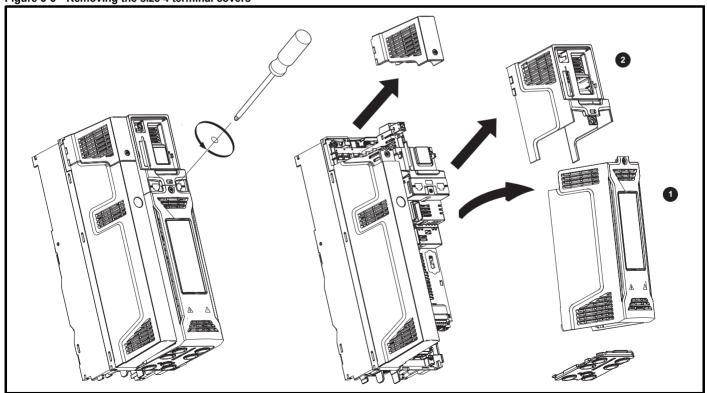
Figure 3-4 Location and identification of terminal covers (size 11)



NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

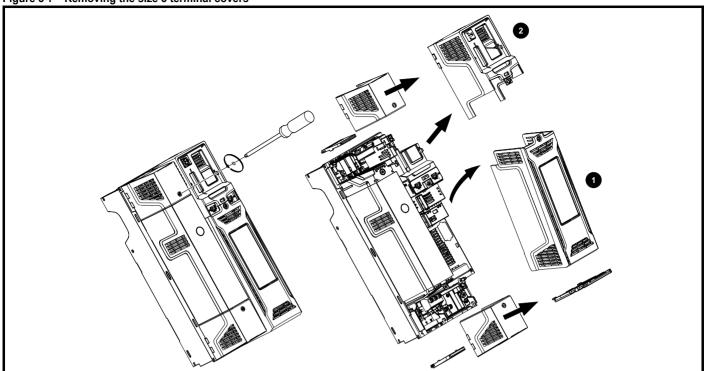
•			•	Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								


Figure 3-5 Removing the size 3 terminal covers

- 1. Control / AC / Motor terminal cover
- 2. DC cover

On size 3 drives, the Control / AC / Motor terminal cover must be removed before removal of the DC / Terminal cover. When replacing the terminal covers, the screws should be tightened to a maximum torque of 1 Nm (8.9 lb in).

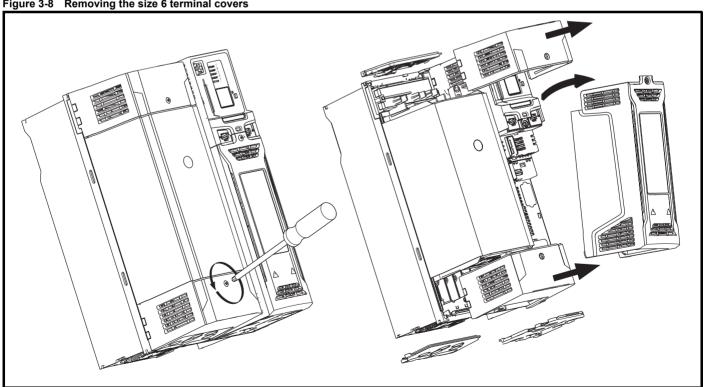
Figure 3-6 Removing the size 4 terminal covers



- 1. Control / AC / Motor terminal cover
- DC cover

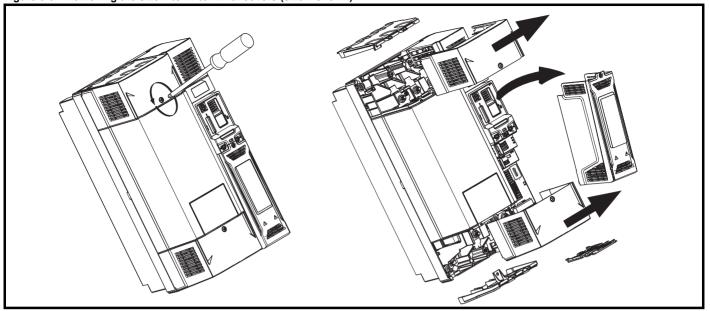
On size 4 drives, the Control / AC / Motor terminal cover must be removed before removal of the DC / Terminal cover. When replacing the terminal covers, the screws should be tightened to a maximum torque of 1 Nm (8.9 lb in).

					Getting								
	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
ı	information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
					the Motor								


Figure 3-7 Removing the size 5 terminal covers

- 1. Control terminal cover
- 2. DC cover

On size 5 drives, the Control terminal cover must be removed before removal of the DC / Terminal cover right. When replacing the terminal covers, the screws should be tightened to a maximum torque of 1 Nm (8.9 lb in).


Figure 3-8 Removing the size 6 terminal covers

When replacing the terminal covers, the screws should be tightened to a maximum torque of 1 Nm (8.9 lb in).

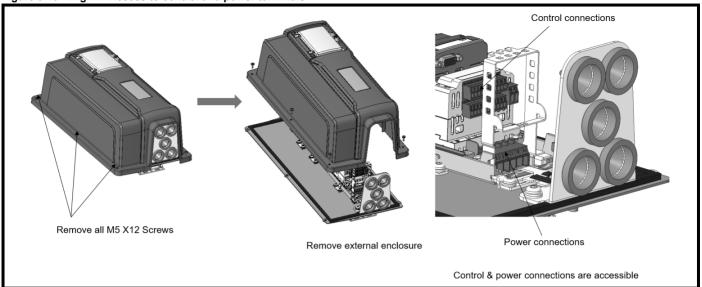

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
mormation	Internation	motanation	motanation	the Motor	paramotoro	doconpuono		Орогалогі	paramotoro	data		mormation

Figure 3-9 Removing the size 7 to 11 terminal covers (size 7 shown)

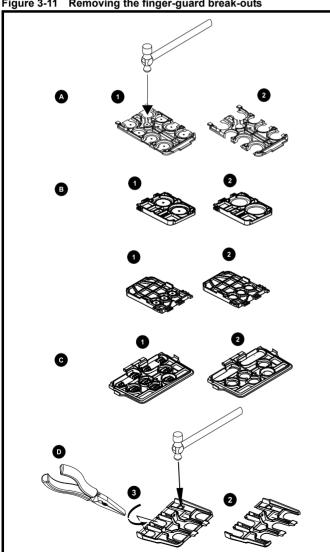

When replacing the terminal covers, the screws should be tightened to a maximum torque of 1 Nm (8.9 lb in).

Figure 3-10 High IP Access to control and power terminals

3.3.2 Removing the finger-guard and DC terminal cover break-outs

Figure 3-11 Removing the finger-guard break-outs

A: All sizes. B: Size 5 only. C: Size 6 only. D: Size 7 to 10.

Place finger-guard on a flat solid surface and hit relevant break-outs with hammer as shown (1). Continue until all required break-outs are removed (2). Remove any flash / sharp edges once the break-outs are

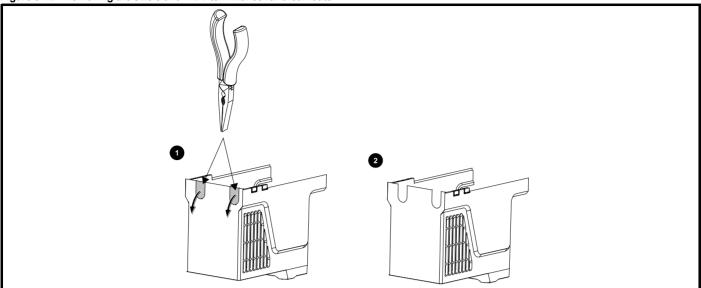

Grommet kits are available for size 7 to 10 finger guards. For size 8 to 10, two versions are available allowing for either single or double cable

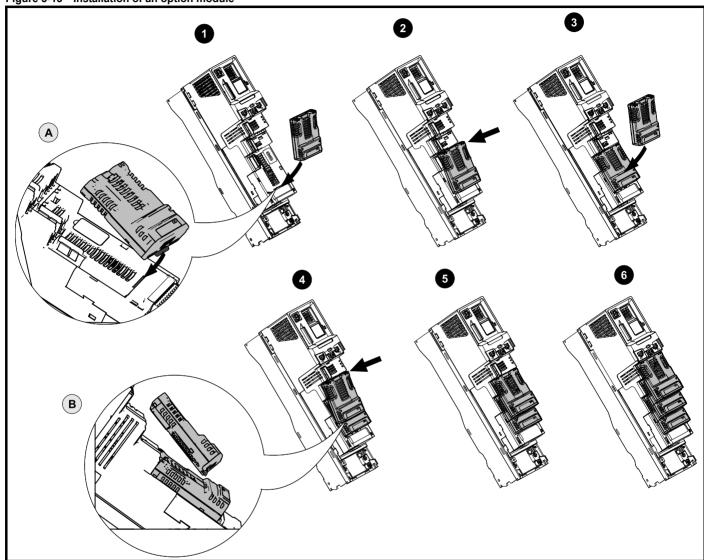
Table 3-1 Grommet kits

Drive size	Quantity of kits	Part number	Picture
Size 7 - Kit of 8 x single entry grommets	1	3470-0086	
Size 8 - Kit of 8 x single entry grommets	1	3470-0089	
Size 8 - Kit of 8 x double entry grommets	1	3470-0090	
Size 9E and 10E - Kit of 8 x double entry grommets	1	3470-0107	
Size 11E- Kit of 8 x double entry grommets	2	3470-010 <i>1</i>	,

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	·	•			-			ŀ

Figure 3-12 Removing the size 3 and 4 DC terminal cover break-outs

Grasp the DC terminal cover break-outs with pliers as shown (1) and pull down in the direction shown to remove. Continue until all required break-outs are removed (2). Remove any flash / sharp edges once the break-outs are removed. Use the DC terminal cover grommets supplied in the accessory box (Table 2-14 on page 28) to maintain the seal at the top of the drive.


NV Media Card Functional UL listing Safety Product Electrical Basic Technical Mechanical started / Advanced Optimization Diagnostics information descriptions information information installation installation Running the Motor parameters Operation parameters data

3.4 Installing / removing option modules and keypads

Power down the drive before installing / removing the option module. Failure to do so may result in damage to the product.

Figure 3-13 Installation of an option module

Installing the first option module

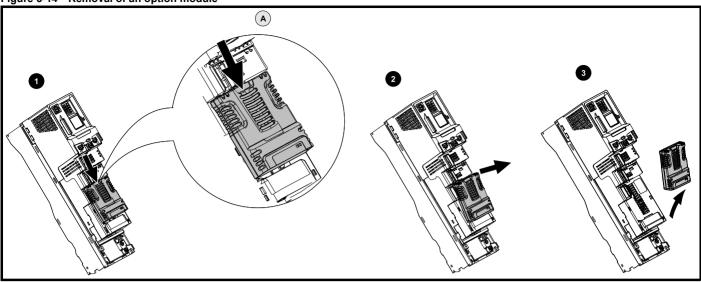
NOTE

Option module slots must be used in the following order: slot 3, slot 2 and slot 1 (refer to Figure 2-2 Features of the drive (size 3 to 10) on page 22 for slot numbers).

- · Move the option module in direction shown (1).
- · Align and insert the option module tab in to the slot provided (2), this is highlighted in the detailed view (A).
- Press down on the option module until it clicks into place.

Installing the second option module

- Move the option module in direction shown (3).
- Align and insert the option module tab in to the slot provided on the already installed option module (4), this is highlighted in the detailed view (B).
- Press down on the option module until it clicks into place. Image (5) shows two option modules fully installed.


Installing the third option module

Repeat the above process.

The drive has the facility for all three option module slots to be used at the same time, image (6) shows the three option modules installed.

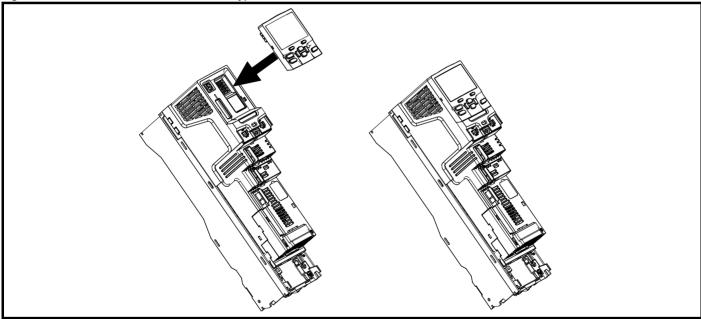

Safety	Product	Mechanical		Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Figure 3-14 Removal of an option module

- · Press down on the tab (1) to release the option module from the drive housing, the tab is highlighted in the detailed view (A).
- Tilt the option module towards you as shown (2).
- Totally remove the option module in direction shown (3).

Figure 3-15 Installation and removal of the keypad

To install, align the keypad and press gently in the direction shown until it clicks into position.

To remove, reverse the installation instructions.

NOTE

The keypad can be installed / removed while the drive is powered up and running a motor, providing that the drive is not operating in keypad mode.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

3.5 Dimensions and mounting methods

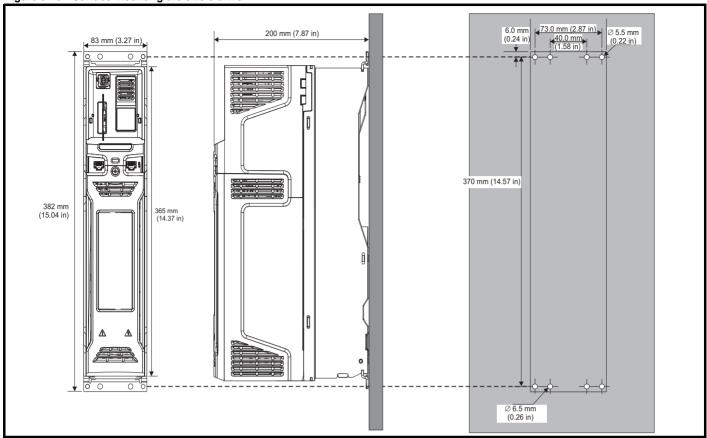
The drive can be either surface or through-panel mounted using the appropriate brackets. The following drawings show the dimensions of the drive and mounting holes for each method to allow a back plate to be prepared.

The Through-panel mounting kit is not supplied with the drive and can be purchased separately, below are the relevant part numbers:

Size	CT part number
3	3470-0053
4	3470-0056
5	3470-0067
6	3470-0055
7	3470-0079
8	3470-0083
9A	3470-0119
9E/10E	3470-0105
11E	3470-0126

If the drive has been used at high load levels for a period of time, the heatsink can reach temperatures in excess of 70 °C (158 °F). Human contact with the heatsink should be prevented.

Many of the drives in this product range weigh in excess of 15 kg (33 lb). Use appropriate safeguards when lifting these models. A full list of drive weights can be found in section 11.1.19 *Weights* on page 441.


NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

ı					Getting								
	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
	information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
					the Motor								

3.5.1 Surface mounting

Figure 3-16 Surface mounting the size 3 drive

NOTE

Each mounting bracket contains 4 mounting holes, the outer holes (5.5 mm) x 2 should be used for mounting the drive to the backplate as this allows the heatsink fan to be replaced without removing the drive from the backplate. The inner holes (6.5 mm) x 2 are used for Unidrive SP size 1 retrofit applications. See Table 3-2 for further information.

44

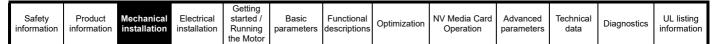
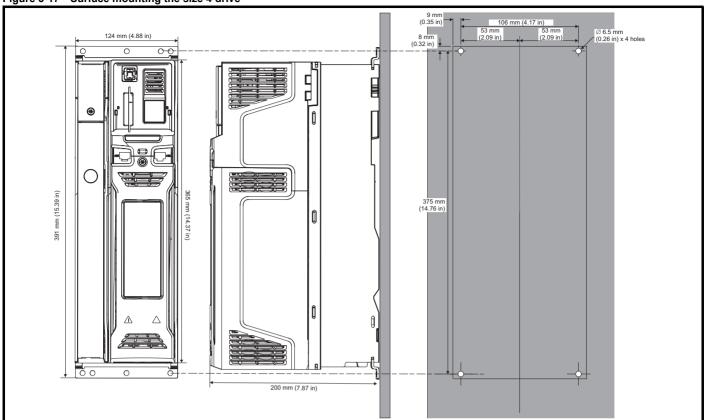
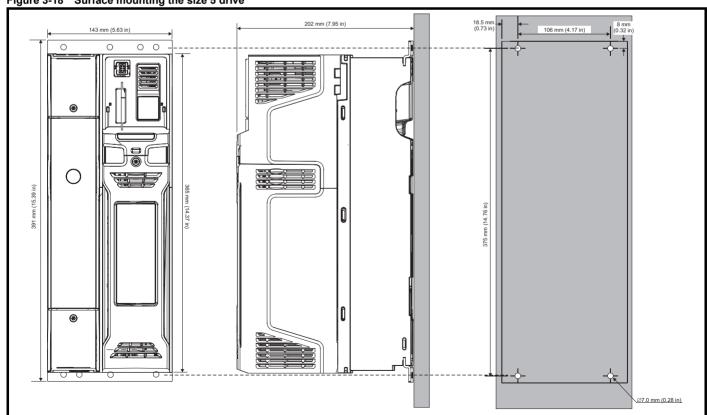
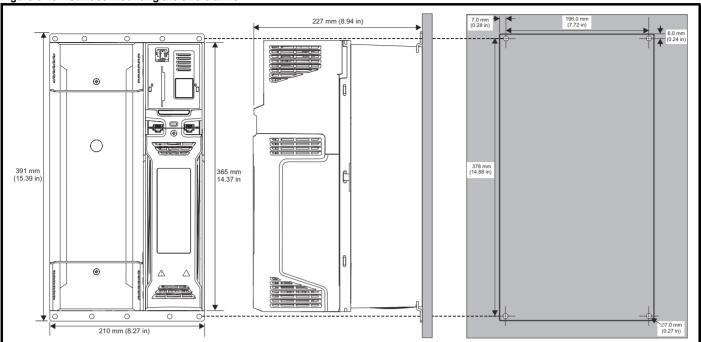




Figure 3-17 Surface mounting the size 4 drive

The outer holes in the mounting bracket are to be used for surface mounting. See Table 3-2 for further information.


Figure 3-18 Surface mounting the size 5 drive

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

The outer holes in the mounting bracket are to be used for surface mounting. See Table 3-2 for further information.

Figure 3-19 Surface mounting the size 6 drive

NOTE

The outer holes in the mounting bracket are to be used for surface mounting. See Table 3-2 for further information.

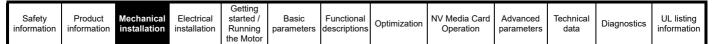
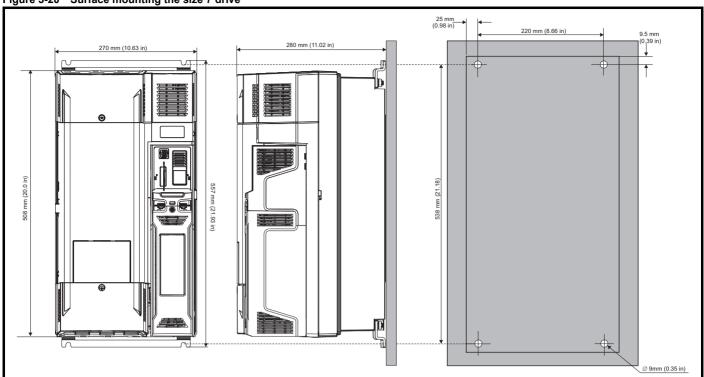



Figure 3-20 Surface mounting the size 7 drive

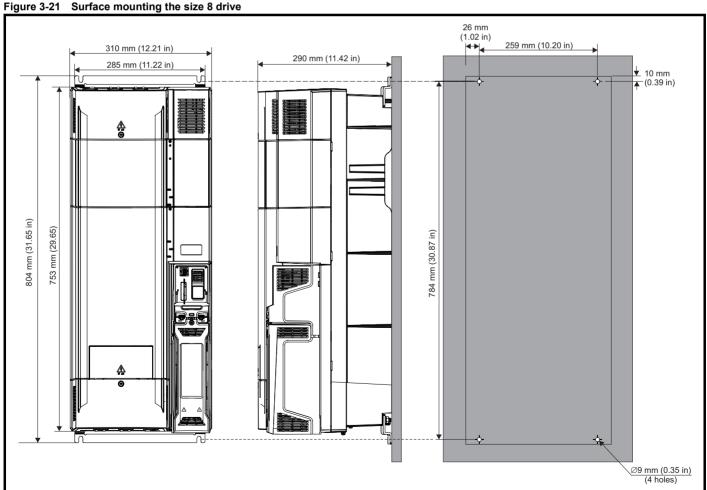


Figure 3-22 Surface mounting the size 9A drive

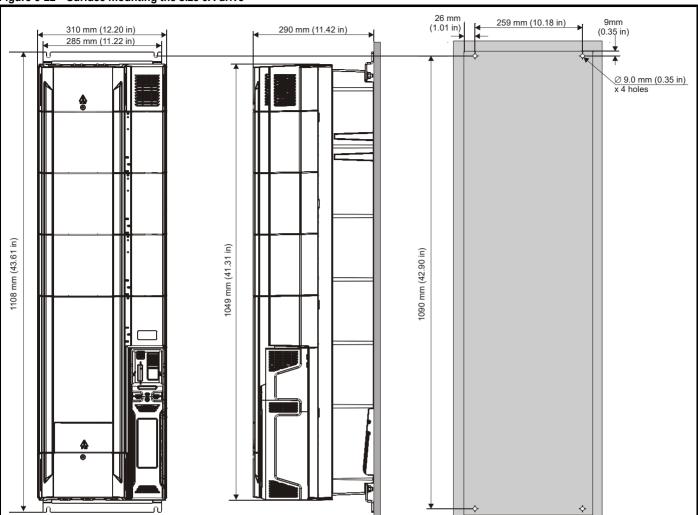
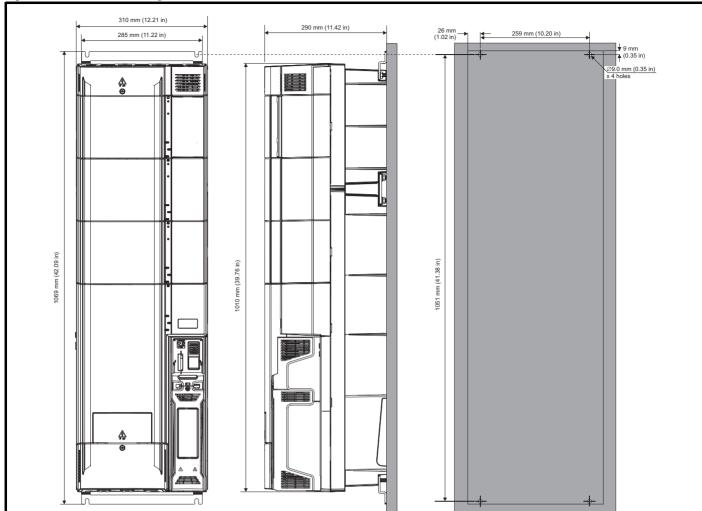



Figure 3-23 Surface mounting the size 9E and 10E

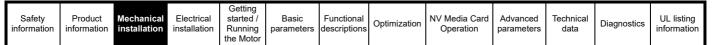
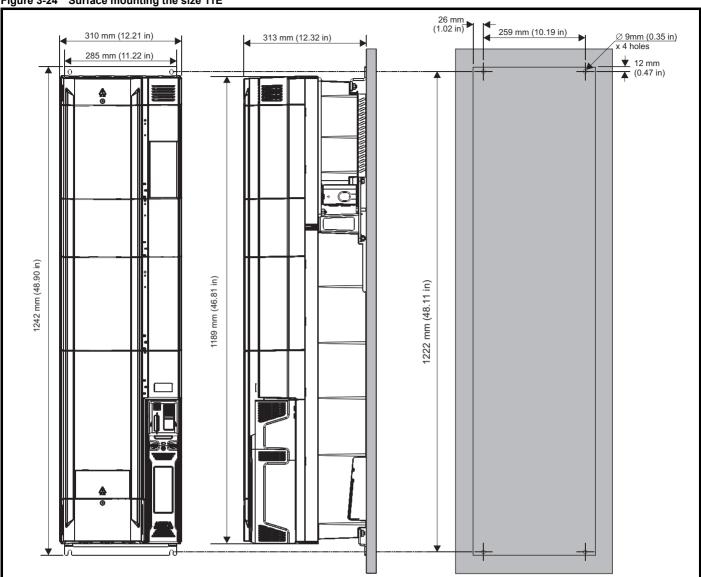



Figure 3-24 Surface mounting the size 11E

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

				Getting								
Safet	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
informat	on information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-			•			

3.5.2 Through-panel mounting

Figure 3-25 Through-panel mounting the size 3 drive

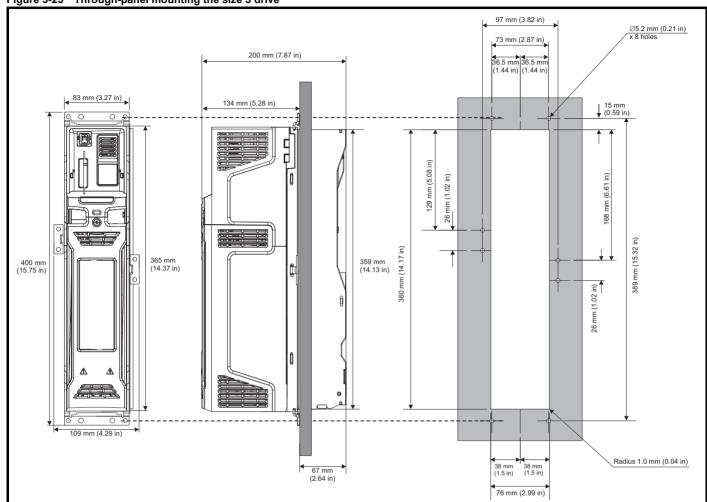


Figure 3-26 Through panel mounting the size 4 drive

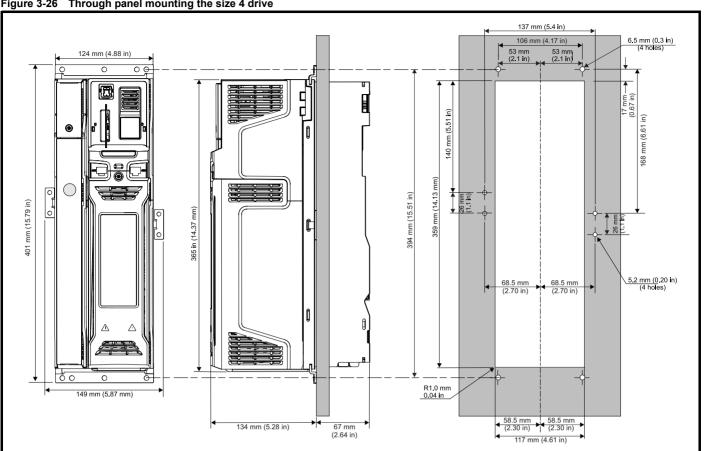
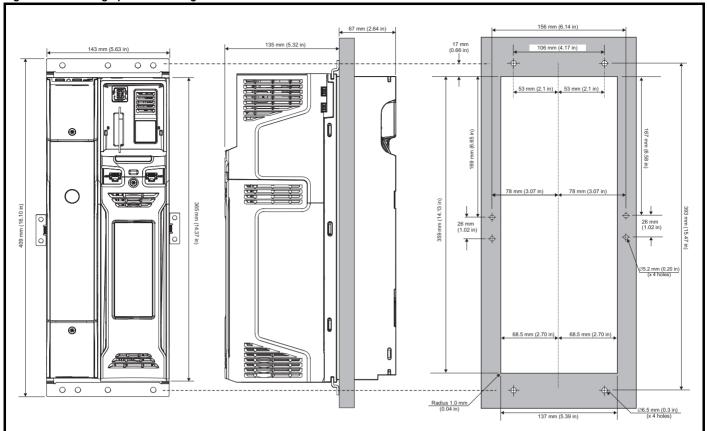



Figure 3-27 Through panel mounting the size 5 drive

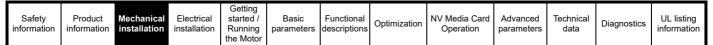


Figure 3-28 Through panel mounting the size 6 drive

The outer holes plus the hole located in the center of the bracket are to be used for through panel mounting.

Figure 3-29 Through panel mounting the size 7 drive

Figure 3-30 Through panel mounting the size 8 drive

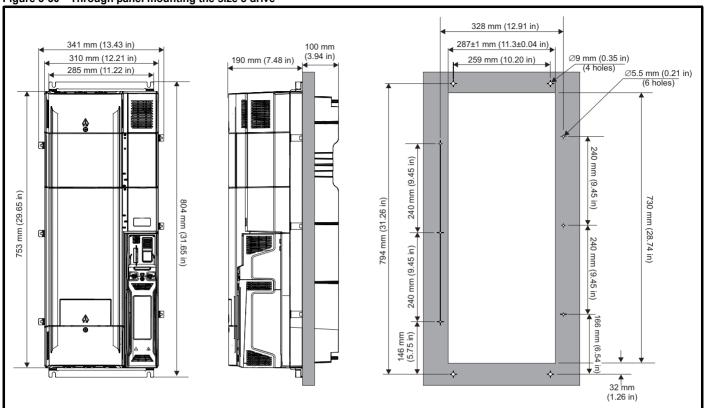


Figure 3-31 Through-panel mounting the size 9A

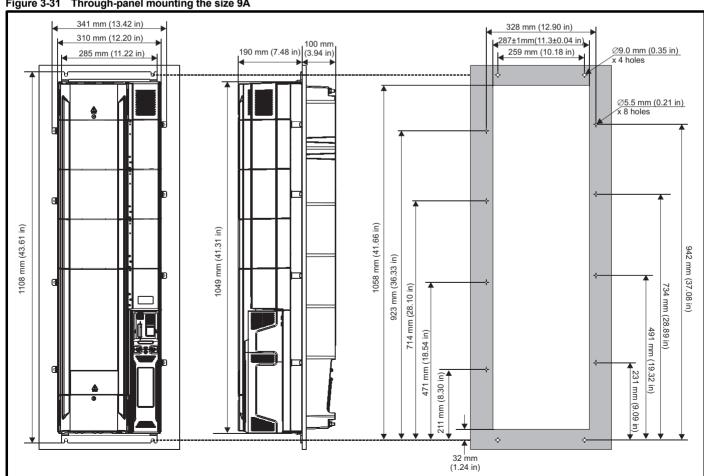
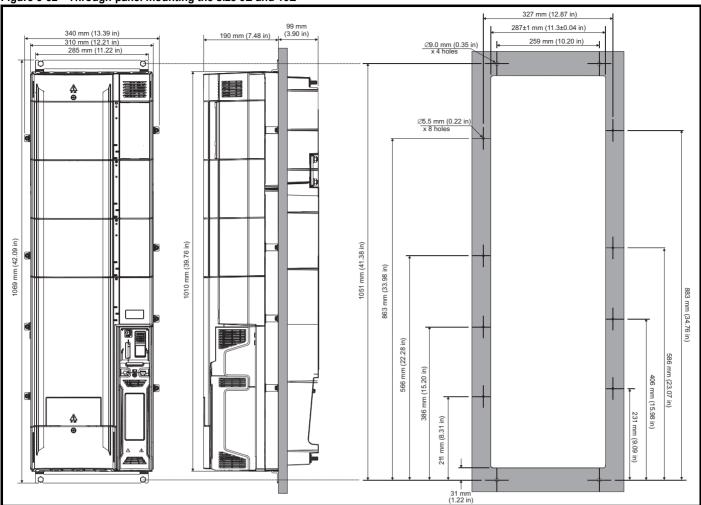



Figure 3-32 Through-panel mounting the size 9E and 10E

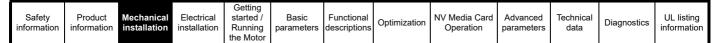


Figure 3-33 Through-panel mounting the size 11E

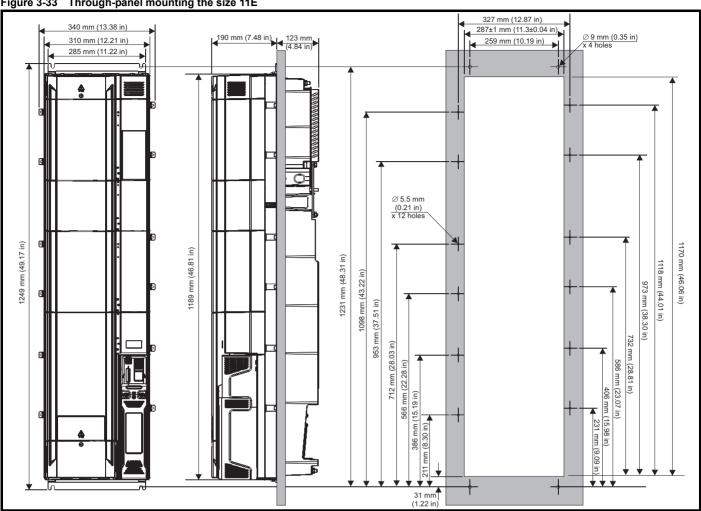


Figure 3-34 Size 3 High IP Drive and Mounting Hole Dimensions

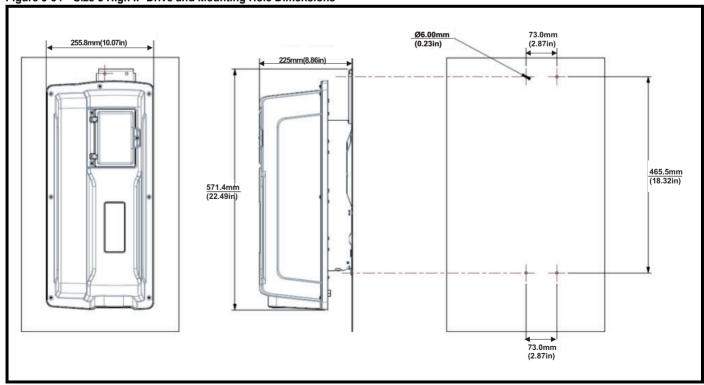


Figure 3-35 Size 4 High IP Drive and Mounting Hole Dimensions

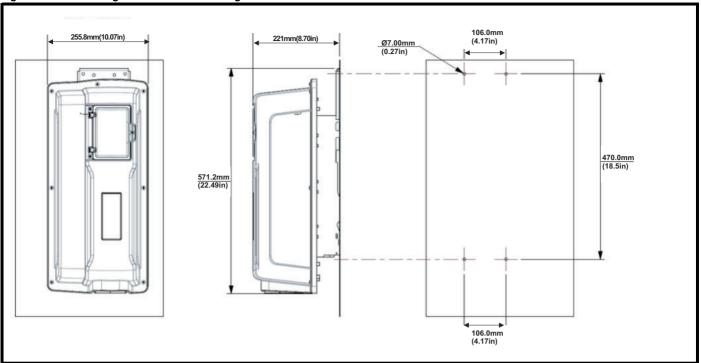
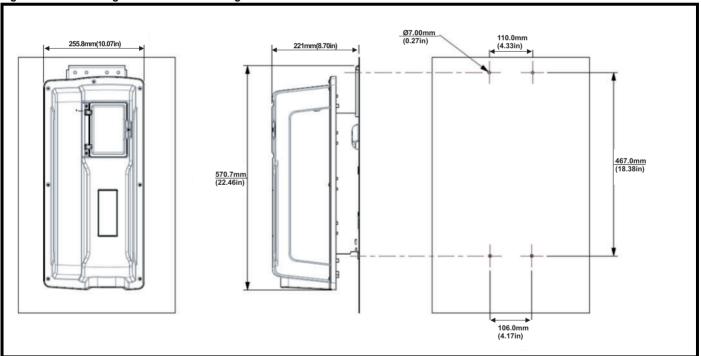
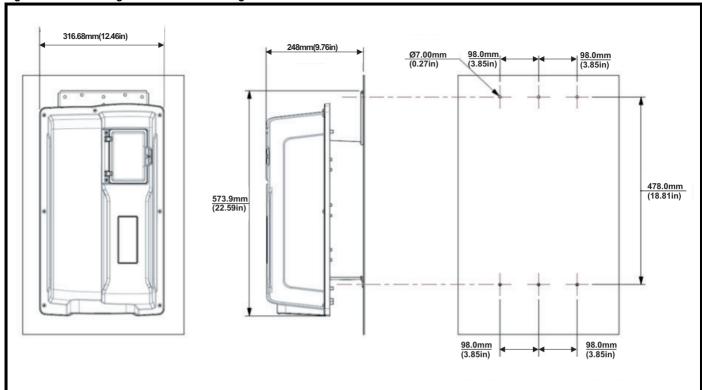




Figure 3-36 Size 5 High IP Drive and Mounting Hole Dimensions

Getting started / Functional descriptions Technical data UL listing information Mechanical installation Electrical installation NV Media Card Safety Product Basic Advanced Optimization Diagnostics Running the Motor information information parameters Operation parameters

Figure 3-37 Size 6 High IP Drive and Mounting Hole Dimensions

Safety	Product	Mechanical		Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	opumzauon	Operation	parameters	data	Diagnoone	information
				the Motor								

3.5.3 Mounting brackets

Table 3-2 Mounting brackets (size 3 to 10)

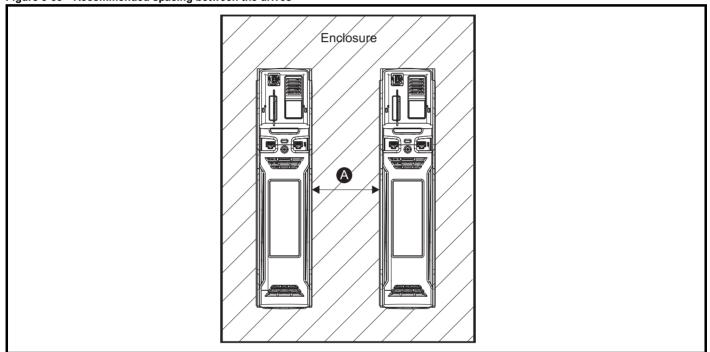
Frame size	Surface mounting kit (supplied with drive)	Qty	Through-panel mounting kit (option)	Qty
3		x 2*	Hole size: 5.2 mm (0.21 in)	x 2
	Outer hole size: 5.2 mm (0.20 in) Centre hole / slot size: 6.2 mm (0.24 in)			x 1
4		x 2*	Hole size: 5.2 mm (0.21 in)	x 2
	Hole size: 6.5 mm (0.26 in)			x 1
5		x 2*		x 2
	Hole size: 6.5 mm (0.26 in)		Hole size: 5.2 mm (0.21 in)	x 1
6		x 2*	Hole size: 5.2 mm (0.21 in)	x 3
	Hole size: 6.5 mm (0.26 in)			x 1
7	5 5	x 2*	Hole size: 9 mm (0.35 in)	x 2
	Hole size: 9 mm (0.35 in)			x 1
8		x 2*	Hole size: 5.5 mm (0.22 in)	x 6
	Hole size: 9 mm (0.35 in)			x 1
9A, 9E and 10E		x 2*	Hole size: 5.5 mm (0.22 in)	x 8
	Hole size: 9 mm (0.35 in)			x 1

^{*} Surface mounting brackets are also used when through-panel mounting.

60

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	·			,	·			

Table 3-3 Mounting brackets (size 11)


Frame size	Surface mounting kit (supplied with drive)	Qty	Through-panel mounting kit (option)	Qty
115	Hole size: 9 mm (0.35 in)	x 2*	Hole size: 5.5 mm (0.22 in)	x 12
11E .	Hole size: 9 mm (0.35 in)	x 1		x 1

^{*} Surface mounting brackets are also used when through-panel mounting.

3.6 Enclosure for standard drives

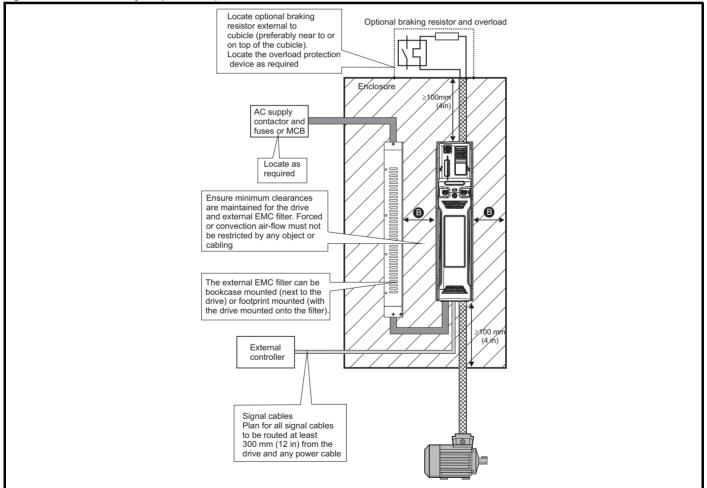
3.6.1 Recommended spacing between the drives

Figure 3-38 Recommended spacing between the drives

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 3-4 Spacing required between the drives (without high IP insert)

Drive Size	Spaci	ing (A)					
Drive Size	40 °C	50 °C*					
3	0 mm (0.00 in)						
4	0 mm ((0.00 in)					
5	0 mm (0.00 in)	30 mm (1.18 in)					
6	0 mm ((0.00 in)					
7	30 mm	(1.18 in)					
8	30 mm (1.18 in)						
9A/9E	60 mm (2 37 in)						
10E/11E	60 mm (2.37 in)						


^{* 50 °}C derating applies, refer to Table 11-3 Maximum permissible continuous output current @ 50 °C (122 °F) on page 429.

When through-panel mounted, ideally drives should be spaced 45 mm (1.77 in) to maximize panel stiffness.

3.6.2 Enclosure layout

Please observe the clearances in the diagram below taking into account any appropriate notes for other devices / auxiliary equipment when planning the installation.

Figure 3-39 Enclosure layout (size 3 to 8)

NOTE

For EMC compliance:

- 1. When using an external EMC filter, one filter is required for each drive.
- 2. Power cabling must be at least 100 mm (4 in) from the drive in all directions

Safetv	Product	Mechanical	Electrical	Getting started /	Basic	Functional		NV Media Card	Advanced	Technical		UL listina
information	information	installation	installation	Running		descriptions	()ntimization	Operation	parameters	data	Diagnostics	information
				the Motor	·			,				

Table 3-5 Spacing required between drive / enclosure and drive / EMC filter (size 3 to 8)

Drive Size	Spacing (B)
3	0 mm (0.00 in)
4	
5	
6	30 mm (1.18 in)
7	
8	

NOTE

Drive sizes 3 to 5 can be tile mounted where limited mounting space is available. The tile mounting kit is not supplied with the drive, it can be purchased separately.

Figure 3-40 Enclosure layout (size 9 to 11)

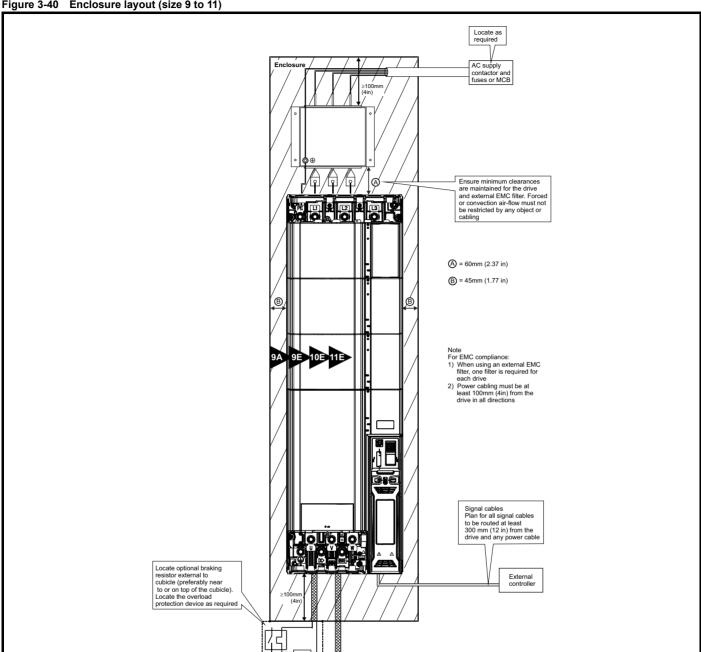


Table 3-6 Spacing required between drive / enclosure and drive (size 9 to 11)

Drive Size	Spacing (B)
9A/9E	45 mm (1.77 in)
10E/11E	45 11111 (1.77 111)

3.6.3 Enclosure sizing

- 1. Add the dissipation figures from section 11.1.2 *Power dissipation* on page 431 for each drive that is to be installed in the enclosure.
- If an external EMC filter is to be used with each drive, add the dissipation figures from section 11.2.1 EMC filter ratings on page 457 for each external EMC filter that is to be installed in the enclosure.
- If the braking resistor is to be mounted inside the enclosure, add the average power figures from for each braking resistor that is to be installed in the enclosure.
- 4. Calculate the total heat dissipation (in Watts) of any other equipment to be installed in the enclosure.
- Add the heat dissipation figures obtained above. This gives a figure in Watts for the total heat that will be dissipated inside the enclosure.

Calculating the size of a sealed enclosure

The enclosure transfers internally generated heat into the surrounding air by natural convection (or external forced air flow); the greater the surface area of the enclosure walls, the better is the dissipation capability. Only the surfaces of the enclosure that are unobstructed (not in contact with a wall or floor) can dissipate heat.

Calculate the minimum required unobstructed surface area $\mathbf{A}_{\mathbf{e}}$ for the enclosure from:

$$\mathbf{A_e} = \frac{\mathbf{P}}{\mathbf{k}(\mathbf{T_{int}} - \mathbf{T_{ext}})}$$

Where:

 A_n Unobstructed surface area in m² (1 m² = 10.9 ft²)

T_{ext} Maximum expected temperature in °C *outside* the enclosure

T_{int} Maximum permissible temperature in °C *inside* the enclosure

P Power in Watts dissipated by all heat sources in the enclosure

k Heat transmission coefficient of the enclosure material in W/mm²/°C

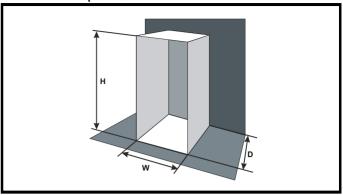
Example

To calculate the size of an enclosure for the following:

- · Two drives operating at the Normal Duty rating
- · External EMC filter for each drive
- · Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40 °C
- Maximum ambient temperature outside the enclosure: 30 °C

For example, if the power dissipation from each drive is 187 W and the power dissipation from each external EMC filter is 9.2 W.

Total dissipation: 2 x (187 + 9.2) =392.4 W


NOTE

Power dissipation for the drives and the external EMC filters can be obtained from Chapter 11 *Technical data* on page 425.

The enclosure is to be made from painted 2 mm (0.079 in) sheet steel having a heat transmission coefficient of 5.5 W/m²/°C. Only the top, front, and two sides of the enclosure are free to dissipate heat.

The value of 5.5 W/m²/°C can generally be used with a sheet steel enclosure (exact values can be obtained by the supplier of the material). If in any doubt, allow for a greater margin in the temperature rise.

Figure 3-41 Enclosure having front, sides and top panels free to dissipate heat

Insert the following values:

T_{int} 40 °C T_{ext} 30 °C k 5.5 P 392.4 W

The minimum required heat conducting area is then:

$$\mathbf{A_e} = \frac{392.4}{5.5(40-30)}$$

Estimate two of the enclosure dimensions - the height (H) and depth (D), for instance. Calculate the width (W) from:

$$W\,=\,\frac{A_e^{}-2HD}{H^{}+D}$$

Inserting $\mathbf{H} = 2 \text{ m}$ and $\mathbf{D} = 0.6 \text{ m}$, obtain the minimum width:

$$W = \frac{7.135 - (2 \times 2 \times 0.6)}{2 + 0.6}$$

If the enclosure is too large for the space available, it can be made smaller only by attending to one or all of the following:

- Using a lower PWM switching frequency to reduce the dissipation in the drives
- Reducing the ambient temperature outside the enclosure, and/or applying forced-air cooling to the outside of the enclosure
- · Reducing the number of drives in the enclosure
- · Removing other heat-generating equipment

Calculating the air-flow in a ventilated enclosure

The dimensions of the enclosure are required only for accommodating the equipment. The equipment is cooled by the forced air flow.

Calculate the minimum required volume of ventilating air from:

$$V = \frac{3kP}{T_{int} - T_{ext}}$$

Where:

V Air-flow in m³ per hour $(1 \text{ m}^3/\text{hr} = 0.59 \text{ ft}^3/\text{min})$

T_{ext} Maximum expected temperature in °C *outside* the enclosure

T_{int} Maximum permissible temperature in °C *inside* the

P Power in Watts dissipated by *all* heat sources in the enclosure

k Ratio of
$$\frac{P_o}{P_i}$$

Where:

P₀ is the air pressure at sea level

PI is the air pressure at the installation

Typically use a factor of 1.2 to 1.3, to allow also for pressure-drops in dirty air-filters.

Safety UL listing Functional Product Mechanical Flectrical started / Basic NV Media Card Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Moto

Example

To calculate the size of an enclosure for the following:

- · Three drives operating at the Normal Duty rating
- External EMC filter for each drive
- Braking resistors are to be mounted outside the enclosure
- Maximum ambient temperature inside the enclosure: 40 °C
- Maximum ambient temperature outside the enclosure: 30 °C

For example, dissipation of each drive: 101 W and dissipation of each external EMC filter: 6.9 W (max).

Total dissipation: 3 x (101 + 6.9) = 323.7 W

Insert the following values:

T_{int} 40 °C T_{ext} 30 °C k 1.3 P 323.7 W

Then:

$$V = \frac{3 \times 1.3 \times 323.7}{40 - 30}$$

= 126.2 m^3/hr (74.5 ft^3/min) (1 m^3/hr = 0.59 ft^3/min)

3.7 Enclosure design and drive ambient temperature

Drive derating is required for operation in high ambient temperatures

Totally enclosing or through panel mounting the drive in either a sealed
cabinet (no airflow) or in a well ventilated cabinet makes a significant
difference on drive cooling.

The chosen method affects the ambient temperature value (T_{rate}) which should be used for any necessary derating to ensure sufficient cooling for the whole of the drive.

The ambient temperature for the four different combinations is defined below:

- Totally enclosed with no air flow (<2 m/s) over the drive T_{rate} = T_{int} + 5 °C
- Totally enclosed with air flow (>2 m/s) over the drive T_{rate} = T_{int}
- 3. Through panel mounted with no airflow (<2 m/s) over the drive T_{rate} = the greater of T_{ext} +5 °C, or T_{int}
- Through panel mounted with air flow (>2 m/s) over the drive T_{rate} = the greater of T_{ext} or T_{int}

Where:

T_{ext} = Temperature outside the cabinet

T_{int} = Temperature inside the cabinet

T_{rate} = Temperature used to select current rating from tables in Chapter 11 *Technical data* on page 425.

3.8 Heatsink fan operation

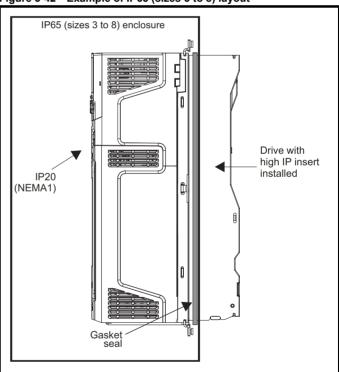
The drive is ventilated by an internal heatsink mounted fan. The fan housing forms a baffle plate, channelling the air through the heatsink chamber. Thus, regardless of mounting method (surface mounting or through-panel mounting), the installing of additional baffle plates is not required.

Ensure the minimum clearances around the drive are maintained to allow air to flow freely.

The heatsink fan on all sizes is a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system. The maximum speed at which the fan operates can be limited in Pr **06.045**. This could incur an output current derating. Refer to section 3.14.2 Size 3 to 5 heatsink fan removal procedure on page 87 for information on fan removal. Size 6 to

11 are also installed with a variable speed fan to ventilate the capacitor bank

3.9 Enclosing standard drive for high environmental protection

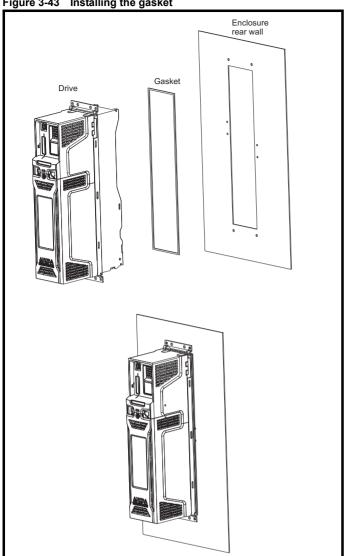

An explanation of environmental protection rating is provided in section 11.1.9 *IP / UL Rating*.

The standard drive is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (NEMA 1). The high IP drive is rated at IP65. However, it is possible to configure the standard drive to achieve IP65 rating (sizes 3 to 8) or IP55 (size 9, 10 and 11) (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required). Refer to section 11.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 425.

This allows the front of the drive, along with various switchgear, to be housed in a high IP enclosure with the heatsink protruding through the panel to the external environment. Thus, the majority of the heat generated by the drive is dissipated outside the enclosure maintaining a reduced temperature inside the enclosure. This also relies on a good seal being made between the heatsink and the rear of the enclosure using the gaskets provided.

There is also an alternative solution to provide IP65 rating for frame sizes 3 to 6 using a sealed cover when through panel mounting is not appropriate or if the drive is to be used outside of a control panel as shown on page 54.

Figure 3-42 Example of IP65 (sizes 3 to 8) layout



The main gasket should be installed as shown in Figure 3-43.

On drive sizes 3, 4 and 5, in order to achieve the high IP rating at the rear of the heatsink it is necessary to seal a heatsink vent by installing the high IP insert as shown in Figure 3-45, Figure 3-46 and Figure 3-47.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-	-		·				

Figure 3-43 Installing the gasket

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	1
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	---

Figure 3-44 Through panel mounting

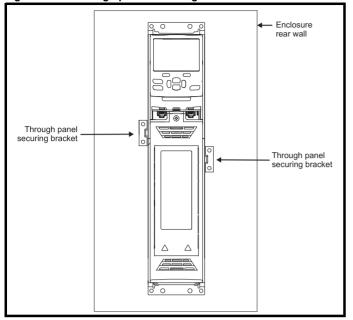
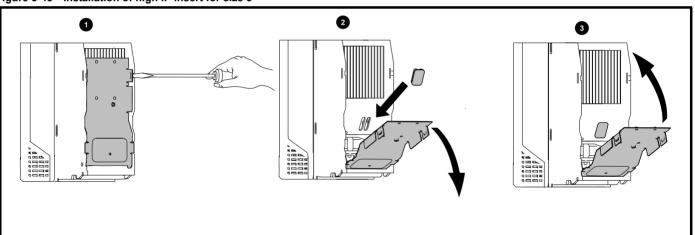
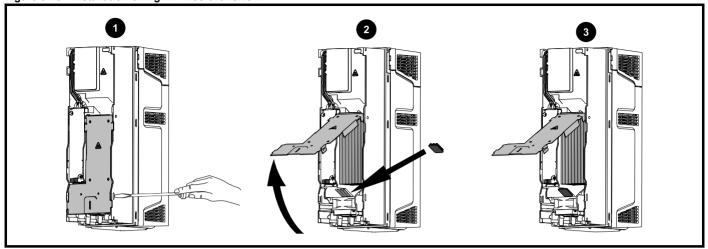



Figure 3-45 Installation of high IP insert for size 3

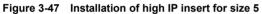
- 1. To install the high IP insert, firstly place a flat head screwdriver into the slot highlighted (1).
- 2. Pull the hinged baffle down to expose the ventilation hole, install the high IP insert into the ventilation hole in the heatsink (2). Ensure the high IP insert is securely installed by firmly pressing it into place (3).
- 3. Close the hinged baffle as shown (1).

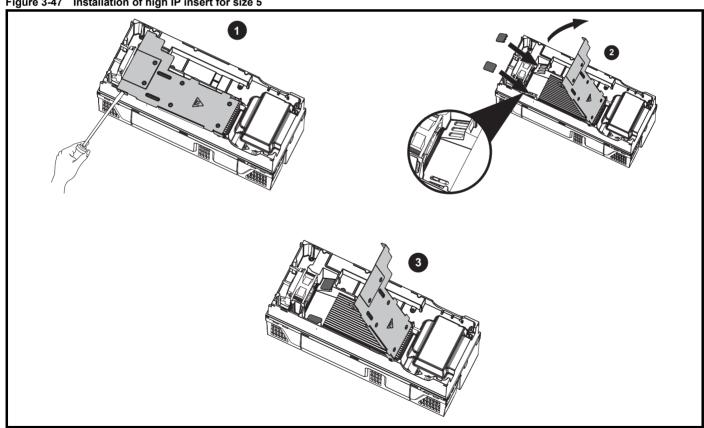

To remove the high IP insert, reverse the above instructions.

The guidelines in Table 3-7 should be followed.

68

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								


Figure 3-46 Installation of high IP insert for size 4



- 1. To install the high IP insert, firstly place a flat head screwdriver into the slot highlighted (1).
- 2. Pull the hinged baffle up to expose the ventilation hole, install the high IP insert into the ventilation hole in the heatsink (2).
- Ensure the high IP insert is securely installed by firmly pressing it into place (3).
- 4. Close the hinged baffle as shown (1).

To remove the high IP insert, reverse the above instructions.

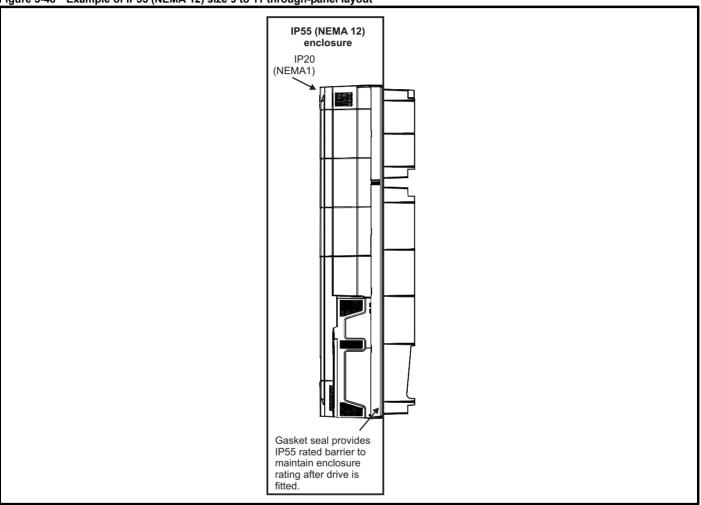
The guidelines in Table 3-7 should be followed.

- To install the high IP insert, firstly place a flat head screwdriver into the slot highlighted (1).
- 2. Pull the hinged baffle up to expose the ventilation holes, install the high IP inserts into the ventilation holes in the heatsink (2).
- Ensure the high IP inserts are securely installed by firmly pressing them into place (3). 3.
- 4. Close the hinged baffle as shown (1).

To remove the high IP insert, reverse the above instructions.

The guidelines in Table 3-7 should be followed.

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional		NV Media Card	Advanced	Technical		UL listina
information		installation		Running	parameters		()ntimization	Operation	parameters	data	Diagnostics	information
				the Motor				· ·	·			


Table 3-7 Environment considerations

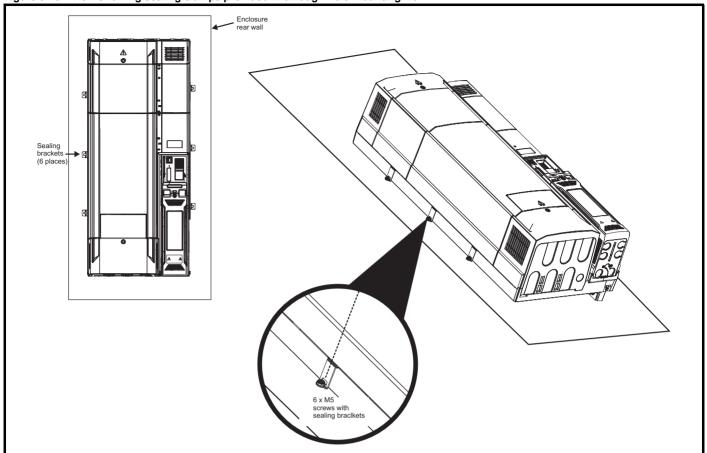
Environment	High IP insert	Comments
Clean	Not installed	
Dry, dusty (non-conductive)	Installed	De male melección m
Dry, dusty (conductive)	Installed	Regular cleaning recommended
IP65 compliance	Installed	

A current derating must be applied to the drive if the high IP insert is installed. Derating information is provided in section 11.1.1 *Power and current ratings (Derating for switching frequency and temperature)* on page 425.

Failure to do so may result in nuisance tripping.

Figure 3-48 Example of IP55 (NEMA 12) size 9 to 11 through-panel layout

The main gasket should be installed as shown in Figure 3-43. Any screws / bolts that are used for mounting should be installed with M8 flat nylon washers to maintain a seal around the screw hole.


See Figure 3-49 on page 71, sealing clamps are supplied in the through panel mounting kit to aid compression of the gasket.

NOTE

The heatsink fans have conformal coated PCBs and have sealant at cable entry points. Dripping, splashing or sprayed water can impede the operation of the fan, therefore if the environment is such that the fan may be subjected to more than occasional dripping or sprayed water while operational, then suitable drip protection covers should be employed.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-	-			-			

Figure 3-49 View showing sealing clamps provided in through hole mounting kit

For detailed information regarding IP55 (NEMA 12) Through Panel Mounting see Figure 3-31 *Through-panel mounting the size 9A* on page 55, Figure 3-32 *Through-panel mounting the size 9E and 10E* on page 56 and Figure 3-36 *Size 5 High IP Drive and Mounting Hole Dimensions* on page 58.

NOTE

When designing an IP65 or IP55 enclosure (Figure 3-42 Example of IP65 (sizes 3 to 8) layout on page 66), consideration should be made to the dissipation from the front of the drive.

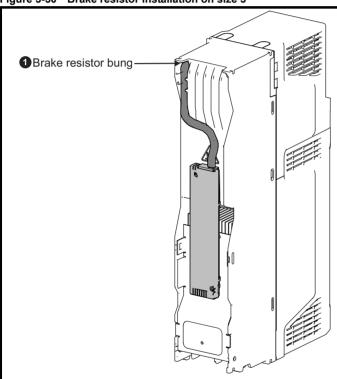
Table 3-8 Power losses from the front of the drive when through-panel mounted

Frame size	Power loss
3	≤ 50 W
4	≤75 W
5	≤ 100 W
6	≤ 100 W
7	≤ 204 W
8	≤ 347 W
9A/9E/10E/11E	≤ 480 W

Safety Functional Product Mechanical **Flectrical** started / Basic NV Media Card Advanced Technical **UL** listing Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Moto

3.10 Heatsink mounted brake resistor

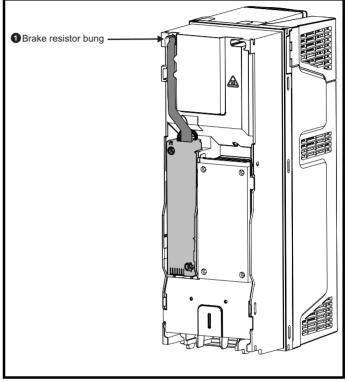
The internal / heatsink mounted braking resistors must only be used with the following drives.


Brake resistor 1220-2752 must only be used with size 3 drives. Brake resistor 1299-0003 must only be used with size 4 and 5 drives.

3.10.1 Size 3, 4 and 5 internal braking resistor

Size 3, 4 and 5 have been designed with an optional space-saving heatsink mounted resistor. The resistor can be installed within the heatsink fins of the drive. When the heatsink resistor is used, an external thermal protection device is not required as the resistor is designed such that it will fail safely under any fault conditions. The in-built software overload protection is set-up at default to protect the resistor. The resistor is rated to IP54 (NEMA 12).

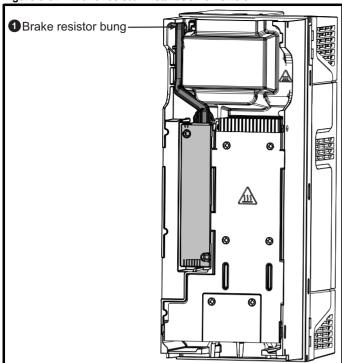
3.10.2 Internal braking resistor installation instructions


Figure 3-50 Brake resistor installation on size 3

- Remove the terminal covers as detailed in section 3.3.1 Removing the terminal covers on page 34.
- Remove the internal EMC filter as shown in Figure 4-30 Removal of the size 3 internal EMC filter on page 128.
- Remove the brake resistor bung (1) from the hole in the chassis, the closed end of the bung will need to be pierced so that the cable has access to be routed through.
- Feed brake resistor bung onto outer insulation of brake resistor cable. The wider end of the bung should be inserted first.
 The Narrow end should align with end of insulation.
- Install the braking resistor to the heatsink using the captive screws.
 The screws should be tighten to a maximum torque of 2 Nm (17.7 lb in).

- 6. Route the cables through the provided hole at the rear of the heatsink as shown in Figure 3-50 and take the cable out from the front side of the drive. Ensure the cables are routed between the fins of the heatsink, and the cables are not trapped between the heatsink fins and the resistor.
- Crimp the cable ends and make appropriate connections. The brake terminals must be tightened to a maximum torque of 2 Nm (17.7 lb in).
- 8. Replace the terminal covers on the drive, tighten to a maximum torque of 1 Nm (8.9 lb in).

Figure 3-51 Brake resistor installation on size 4

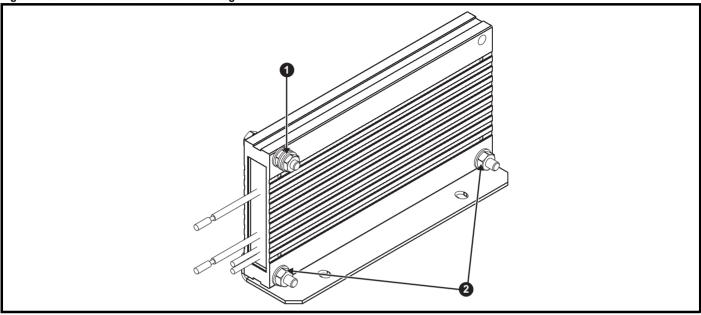


- 1. Remove the terminal covers as detailed in section 3.3.1 Removing the terminal covers on page 34.
- Remove the brake resistor bung (1) from the hole in the chassis, the closed end of the bung will need to be pierced so that the cable has access to be routed through.
- Feed brake resistor bung onto outer insulation of brake resistor cable. The wider end of the bung should be inserted first. The Narrow end should align with end of insulation.
- Install the braking resistor to the heatsink using the captive screws.
 The screws should be tighten to a maximum torque of 2 Nm (17.7 lb in).
- 5. Route the cables through the provided hole at the rear of the heatsink as shown in Figure 3-51 and take the cable out from the front side of the drive. Ensure the cables are routed between the fins of the heatsink, and the cables are not trapped between the heatsink fins and the resistor.
- Crimp the cable ends and make appropriate connections. The brake terminals must be tightened to a maximum torque of 2 Nm (17.7 lb in).
- Replace the terminal covers on the drive, tighten to a maximum torque of 1 Nm (8.9 lb in).

72 Pump Drive F600 User Guide

Safety		Mechanical		Getting started /	Basic	Functional	()ntimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	opza.io	Operation	parameters	data	Diagnoone	information
				the Motor								

Figure 3-52 Brake resistor installation on size 5


- Remove the terminal covers as detailed in section 3.3.1 Removing the terminal covers on page 34.
- Remove the brake resistor bung (1) from the hole in the chassis, the closed end of the bung will need to be pierced so that the cable has access to be routed through.
- Feed brake resistor bung onto outer insulation of brake resistor cable. The wider end of the bung should be inserted first.
 The Narrow end should align with end of insulation.
- Install the braking resistor to the heatsink using the captive screws.
 The screws should be tighten to a maximum torque of 2 Nm (17.7 lb in).
- 5. Route the cables through the provided hole at the rear of the heatsink as shown in Figure 3-51 and take the cable out from the front side of the drive. Ensure the cables are routed between the fins of the heatsink, and the cables are not trapped between the heatsink fins and the resistor.
- Crimp the cable ends and make appropriate connections. The brake terminals must be tightened to a maximum torque of 2 Nm (17.7 lb in).
- 7. Replace the terminal covers on the drive, tighten to a maximum torque of 1 Nm (8.9 lb in).

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Opumization	Operation	parameters	data	Diagnostics	information
				the Motor	·	·		,	·			

3.10.3 External brake resistor


External brake resistors are available from Control Techniques for drive sizes 3 to 6. They can be mounted in the enclosure as per mounting recommendation in Figure 3-39 *Enclosure layout (size 3 to 8)* on page 62 using mounting brackets part number 6541-0187-00. Figure 3-53 below shows the brake resistor mounted on the mounting bracket. Two M4 screws and nuts (2) can be used to fix the brake resistor to the mounting bracket. One M4 nut with washer (1) is provided to use for the ground connection. The brake resistor is equipped with a thermal switch, the thermal switch should be integrated in the control circuit by the user.

Figure 3-53 Brake resistor with the mounting bracket

- 1. Ground connection (1 x M4 nut and washer).
- 2. Attaching the brake resistor to the mounting bracket (using 2 x M4 screws and nuts).

Figure 3-54 Mounting bracket dimensions

74 Pump Drive F600 User Guide

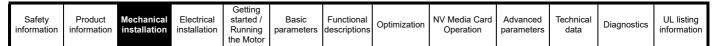
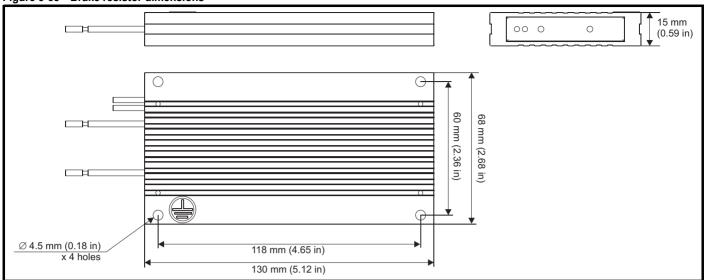



Figure 3-55 Brake resistor dimensions

NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

Safety	Product	Mechanical		Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	opumzauon	Operation	parameters	data	Diagnoone	information
				the Motor								

3.11 External EMC filter

The external EMC filter details for each drive rating are provided in the table below.

Table 3-9 External EMC filter data

Model	CT part number	We	ight
	OT part number	kg	lb
0 V			
03200066 to 03200127	4200-3230	1.9	4.20
04200180 to 04200250	4200-0272	4.0	8.82
05200300	4200-0312	5.5	12.13
06200500 to 06200580	4200-2300	6.5	14.3
07200750 to 07201170	4200-1132	6	13.2
08201490 to 08201800	4200-1972	9.6	21.1
09202160 to 09202660 (9A)	4200-3021	11	24.3
09202160 to 09202660 (9E)	4200-4460	12	26.5
10203250 to 10203600	4200-4460	12	26.5
0 V			
03400034 to 03400123	4200-3480	2.0	4.40
04400185 to 04400240	4200-0252	4.1	9.04
05400300	4200-0402	5.5	12.13
06400380 to 06400630	4200-4800	6.7	14.8
07400790 to 07401120	4200-1132	6	13.2
08401550 to 08401840	4200-1972	9.6	21.1
09402210 to 09402660 (9A)	4200-3021	11	24.25
09402210 to 09402660 (9E)	4200-4460	12	26.5
10403200 to 10403610	4200-4460	12	26.5
11404370 to 11405070	4200-0400	14.7	32.41
5 V			
05500039 to 05500100	4200-0122	5.5	12.13
06500120 to 06500430	4200-3690	7.0	15.4
07500530 to 07500730	4200-0672	6.2	13.7
08500860 to 08501080	4200-1662	9.4	20.7
09501250 to 09501500 (9A)	4200-1660	5.2	11.46
09501250 to 09501500 (9E)	4200-2210	10.3	22.7
10502000	4200-2210	10.3	22.7
11502480 to 11503150	4200-0690	16.75	36.9
0 V			
07600230 to 07600730	4200-0672	6	13.2
08600860 to 08601080	4200-1662	9.4	20.7
09601250 to 09601550 (9A)	4200-1660	5.2	11.5
09601250 to 09601550 (9E)	4200-2210	10.3	22.7
10601720 to 10601970	4200-2210	10.3	22.7
11602250 to 11603050	4200-0690	16.75	36.9

NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

76

The external EMC filters for sizes 3 to 6 can be footprint mounted or bookcase mounted as shown in Figure 3-56 and Figure 3-57. The external EMC filters for sizes 7 to 11, are designed to be mounted above the drive as shown in Figure 3-58.

Mount the external EMC filter following the guidelines in section 4.12.6 Compliance with generic emission standards on page 132.

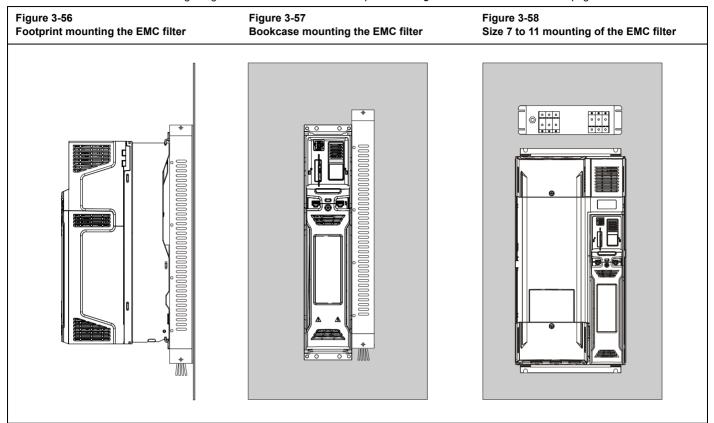
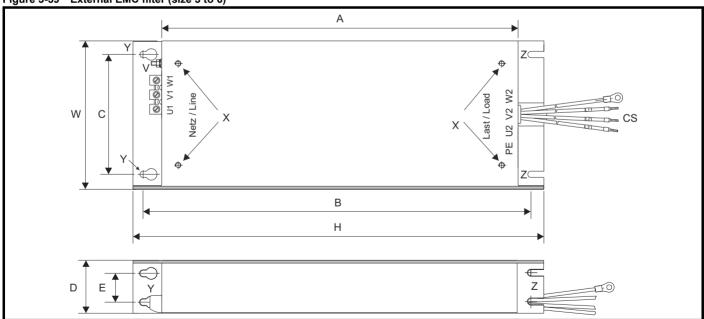



Figure 3-59 External EMC filter (size 3 to 6)

- V: Ground stud
- Z: Bookcase mounting slot diameter.
- X: Threaded holes for footprint mounting of the drive
- CS: Cable size

Y: Footprint mounting hole diameter

		hanical Elect allation install		Basic parameter	Functiona description		n NV Media Operation		Advance paramete		Diagnostics	UL listing information
able 3-10 S	ize 3 extern	al EMC filter	dimensions	\$								
CT part number	Α	В	С	D	E	н	W	٧	х	Υ	Z	cs
4200-3230	384 mm	414 mm	56 mm	41 mm		426 mm	83 mm	M5	M5	5.5 mm	5.5 mm	2.5 mm²
4200-3480	(15.12 in)	(16.30 in)	(2.21 in)	(1.61 in)		(16.77 in)	(3.27 in)	0	0	(0.22 in)	(0.22 in)	(14 AWG)
able 3-11 S	ize 4 extern	al EMC filter	dimensions	3								
CT part number	Α	В	С	D	E	н	w	٧	х	Υ	Z	cs
4200-0272	395 mm	425 mm	100 mm (3.94 in)	60 mm (2.36 in)	33 mm	437 mm (17.2 in)	123 mm (4.84 in)	M6	M6	6.5 mm (0.26 in)	6.5 mm (0.26 in)	6 mm²
4200-0252	(15.55 in)	(16.73 in)	(3.94 III)	(2.30 III)	(1.30 in)	(17.2 III)	(4.04 III)			(0.26 III)	(0.26 III)	(10 AWG)
able 3-12 S	ize 5 extern	al EMC filter	dimensions	5								
CT part number	Α	В	С	D	E	Н	w	٧	х	Υ	Z	cs
4200-0312												10 mm²
4200-0402	395 mm	425 mm	106 mm	60 mm	33 mm	437 mm	143 mm	M6	M6	6.5 mm	6.5 mm	(8 AWG)
1000 0105	(15.55 in)	(16.73 in)	(4.17 in)	(2.36 in)	(1.30 in)	(17.2 in)	(5.63 in)			(0.26 in)	(0.26 in)	2.5 mm ² (14 AWG)
4200-0122												
	ize 6 extern	al EMC filter	dimensions	5								
	size 6 extern	al EMC filter	dimensions	D D	E	н	w	v	х	Y	Z	cs
able 3-13 S CT part number 4200-2300	Α	В	С	D								_
able 3-13 S CT part number					E 33 mm (1.30 in)	H 434 mm (17.09 in)	W 210 mm (8.27 in)	V		Y 6.5 mm (0.26 in)	Z 6.5 mm (0.26 in)	CS 16 mm² (6 AWG)
CT part number 4200-2300 4200-4800 4200-3690	A - 392 mm (15.43 in)	420 mm (16.54 in)	C 180 mm (7.09 in)	D 60 mm	33 mm	434 mm	210 mm			6.5 mm	6.5 mm	16 mm²
CT part number 4200-2300 4200-4800 4200-3690	A - 392 mm (15.43 in)	B 420 mm	C 180 mm (7.09 in)	D 60 mm	33 mm	434 mm	210 mm			6.5 mm	6.5 mm	16 mm²
CT part number 4200-2300 4200-4800 4200-3690	A - 392 mm (15.43 in)	420 mm (16.54 in)	C 180 mm (7.09 in)	60 mm (2.36 in)	33 mm (1.30 in)	434 mm (17.09 in)	210 mm			6.5 mm	6.5 mm	16 mm²
CT part number 4200-2300 4200-4800 4200-3690	A - 392 mm (15.43 in)	420 mm (16.54 in)	C 180 mm (7.09 in) 7 to 8)	60 mm (2.36 in)	33 mm (1.30 in)	434 mm (17.09 in)	210 mm (8.27 in)			6.5 mm	6.5 mm	16 mm²
Table 3-13 S CT part number 4200-2300 4200-4800 4200-3690	A - 392 mm (15.43 in)	420 mm (16.54 in)	C 180 mm (7.09 in) 7 to 8)	60 mm (2.36 in)	33 mm (1.30 in)	434 mm (17.09 in)	210 mm (8.27 in)			6.5 mm	6.5 mm	

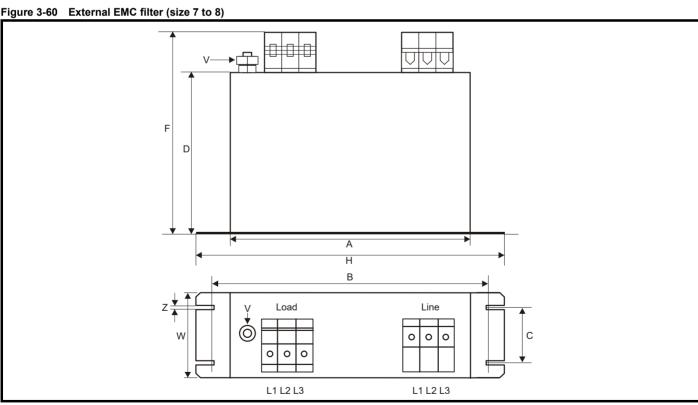


Table 3-14 Size 7 external EMC filter dimensions

CT part number	Α	В	С	D	E	F	Н	W	V	Х	Y	Z
4200-1132	240 mm	255 mm	55 mm	150 mm		205 mm	270 mm	90 mm	M10			6.5 mm
4200-0672	(9.45 in)	(10.04 in)	(2.17 in)	(5.90 in)		(8.07 in)	(10.63 in)	(3.54 in)	IVITO			(0.26 in)

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	·			,	·			

Table 3-15 Size 8 external EMC filter dimensions

CT part number	A	В	С	D	E	F	Н	w	V	х	Υ	Z
4200-1972	260 mm	275 mm	85 mm	170 mm		249 mm	300 mm	120 mm	M10			6.5 mm
4200-1662	(10.24 in)	(10.83 in)	(3.35 in)	(6.69 in)		(9.79 in)	(11.81 in)	(4.72 in)	14110			(0.26 in)

Figure 3-61 External EMC filter (size 9A)

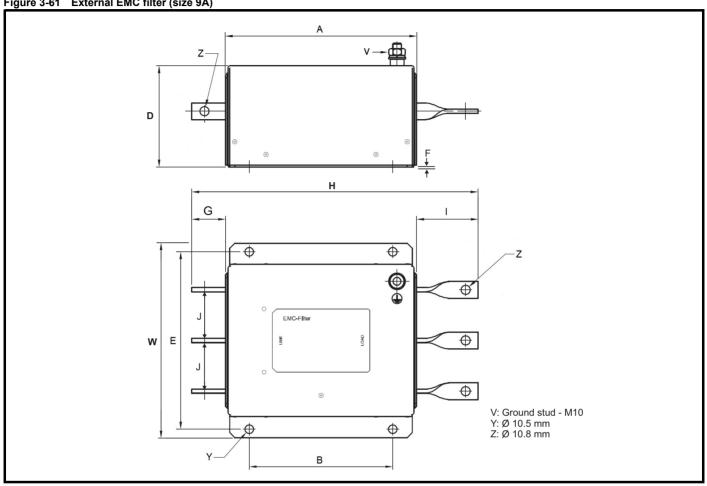


Table 3-16 Size 9A external EMC filter dimensions

CT part number	Α	В	D	E	F	G	Н	I	J	w
4200-3021	220 mm	170 mm	120 mm	210 mm	2 mm	40 mm	339 mm	73 mm	60 mm	230 mm
	(8.66 in)	(6.70 in)	(4.72 in)	(8.27 in)	(0.08 in)	(1.57 in)	(13.34)	(2.87 in)	(2.36 in)	(9.06 in)
4200-1660	280 mm	180 mm	105 mm	225 mm	2 mm	40 mm	360 mm	73 mm	60 mm	245 mm
	(11.02 in)	(7.09 in)	(4.13 in)	(8.86 in)	(0.08 in)	(1.57 in)	(14.17 in)	(2.87 in)	(2.36 in)	(9.65 in)

Figure 3-62 External EMC filter (size 9E and 10)

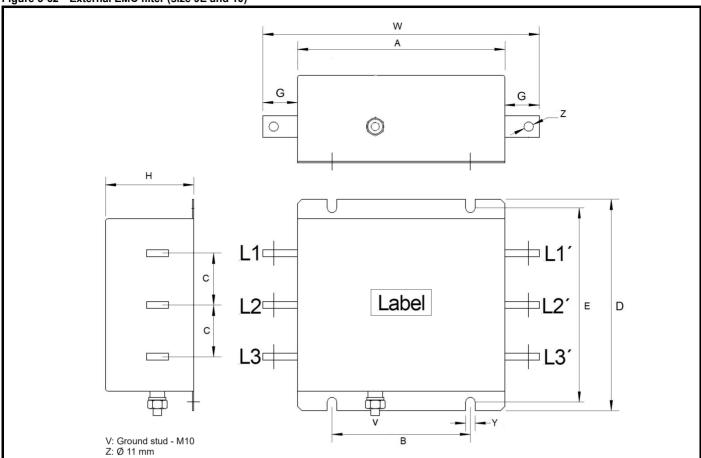


Table 3-17 Size 9E and 10 external EMC filter dimensions

CT part number	Α	В	С	D	E	G	Н	W	Υ
4200-4460	280 mm	180 mm	57 mm	245 mm	225 mm	40 mm	105 mm	360 mm	11 mm
4200-2210	(11.02 in)	(7.09 in)	(2.24 in)	(9.65 in)	(8.86 in)	(1.57 in)	(4.13 in)	(14.7 in)	(0.43 in)

Figure 3-63 External EMC filter (size 11)

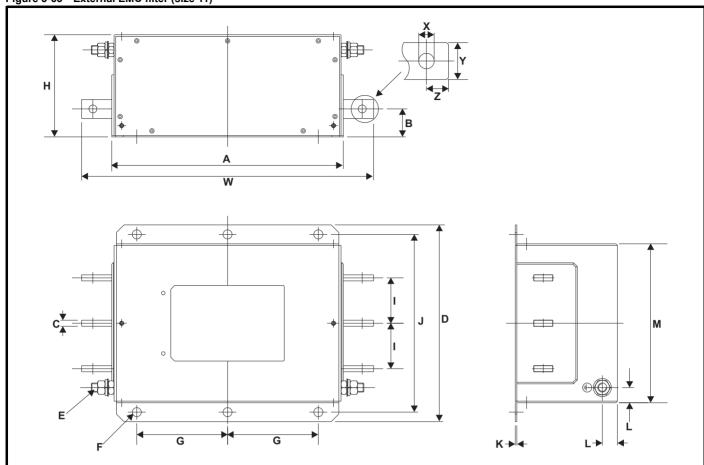


Table 3-18 Size 11 external EMC filter dimensions

CT part number	A	В	С	D	E	F	G	Н	I	J	к	L	М	х	Y	Z	w
4200-0400	306 mm	37 mm	8 mm	260 mm	M12	12 mm	120 mm	135 mm	60 mm	235 mm	2 mm	20 mm	210 mm	10.5 mm	25 mm	15 mm	386 mm
4200-0690	(12.05 in)	(1.46 in)	(0.32 in)	(10.2 in)	IVITZ	(0.47 in)	(4.72 in)	(5.32 in)	(2.36 in)	(9.25 in)	(0.08 in)	(0.79 in)	(8.27 in)	(0.41 in)	(0.98 in)	(0.59 in)	(15.20 in)

Getting started / Safety Functional descriptions UL listing Product Mechanical installation Electrical Basic NV Media Card Advanced Technical Optimization Diagnostics information Running the Motor information installation parameters Operation parameters data information

3.12 Line reactor mounting dimensions for size 9E, 10E and 11E

Figure 3-64 Input line reactor (INLX0X) for size 9 and 10

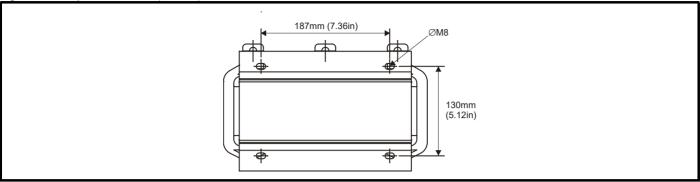
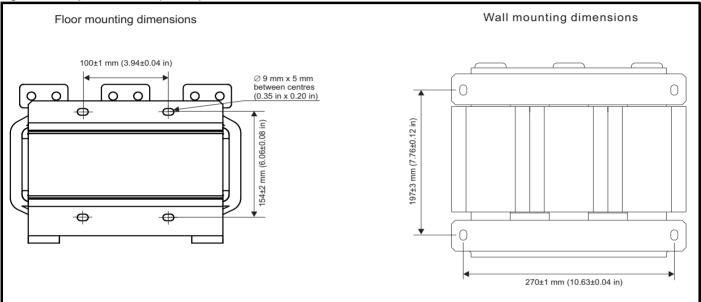
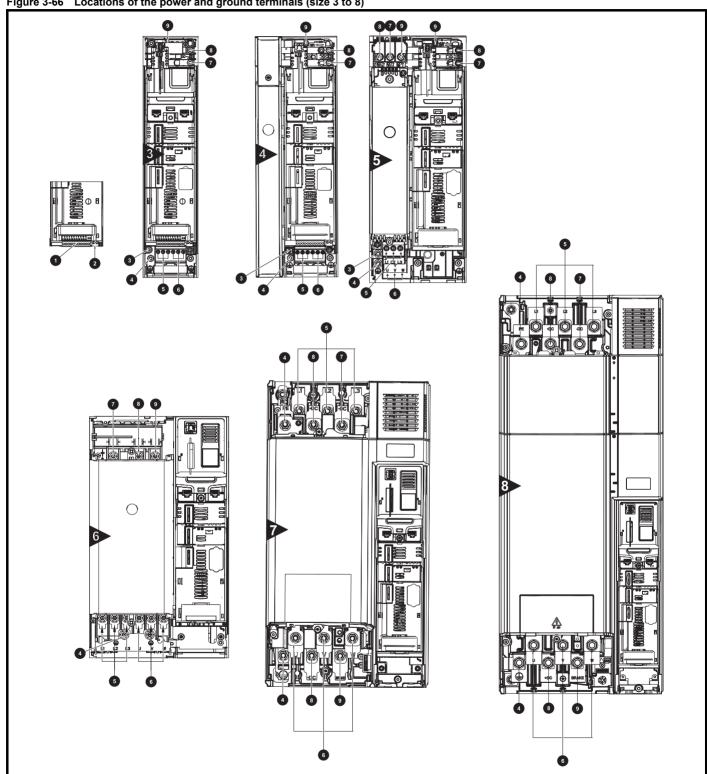



Figure 3-65 Input line reactor (INLX0X) for size 11

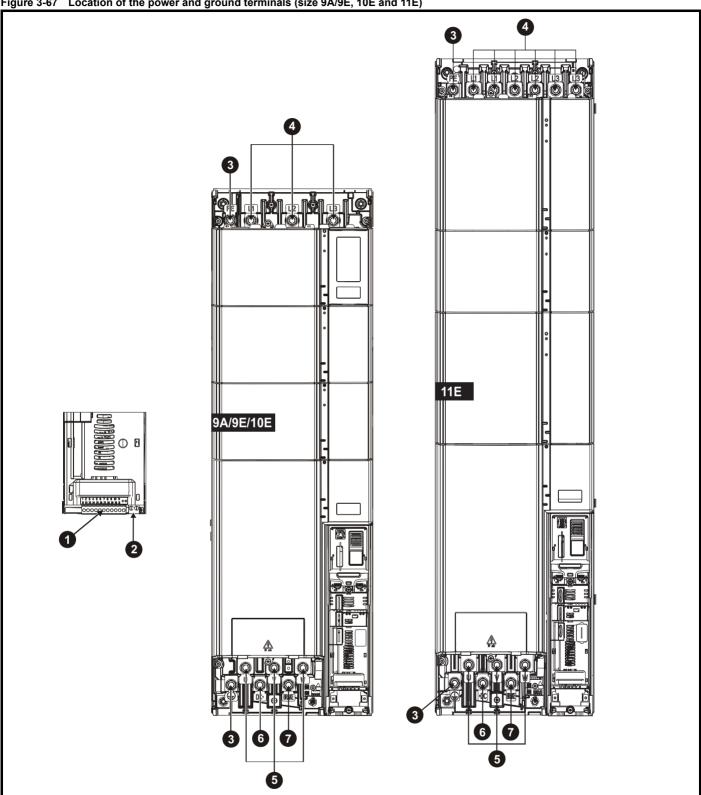

For overall dimensions and other details, refer to section 4.2.3 Drive model and input line reactor on page 106.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			-	-			

3.13 **Electrical terminals**

3.13.1 Location of the power and ground terminals

Figure 3-66 Locations of the power and ground terminals (size 3 to 8)


Key

- 1. Control terminals
- 2. Relay terminals
- 3. Additional ground connection
- 4. Ground connections
- 5. AC power terminals
- 6. Motor terminals

- 7. DC bus -
- 8. DC bus +
- 9. Brake terminal

Getting started / Product information Functional descriptions NV Media Card Operation UL listing information Basic parameters Safety Technical Mechanical installation Electrical Advanced Optimization Diagnostics Running the Motor information installation parameters data

Location of the power and ground terminals (size 9A/9E, 10E and 11E) Figure 3-67

Key

- 1. Control terminals
- 2. Relay terminals
- 3. Ground connections
- 4. AC power terminals
- 5. Motor terminals
- 6. DC bus +
- 7. Brake terminal

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

Mechanical installation **UL** listing Safety Product Electrical started / Basic Functional NV Media Card Technical Advanced Optimization Diagnostics Running the Motor Operation information information installation parameters descriptions parameters data information

3.13.2 Terminal sizes and torque settings

To avoid a fire hazard and maintain validity of the UL listing, adhere to the specified tightening torques for the power and ground terminals. Refer to the following tables.

Table 3-19 Drive power terminal data

Pump Drive	AC and mot	or terminals	DC and	braking	Ground terminal		
F600 frame size	Recommended	Maximum	Recommended	Maximum	Recommended	Maximum	
3 and 4	Plug-in ter	minal block	T20 To	rx (M4)	T20 Torx (M4) / M4 Nut (7 mm AF)		
3 and 4	0.7 Nm (6.2 lb in)	0.8 Nm (7.1 lb in)	2.0 Nm (17.7 lb in)	2.5 Nm (22.1 lb in)	2.0 Nm (17.7 lb in)	2.5 Nm (22.1 lb in)	
5	Plug-in ter	minal block	T20 Torx (M4) / M	4 Nut (7 mm AF)	M5 Nut (8 mm AF)		
J	1.5 Nm (13.3 lb in)	1.8 Nm (15.9 lb in)	1.5 Nm (13.3 lb in)	2.5 Nm (22.1 lb in)	2.0 Nm (17.7 lb in)	5.0 Nm (44.3 lb in)	
6	M6 Nut (1	0 mm AF)	M6 Nut (1	0 mm AF)	M6 Nut (10 mm AF)		
Ü	6.0 Nm (53.1 lb in)	8.0 Nm (70.8 lb in)	6.0 Nm (53.1 lb in)	8.0 Nm (70.8 lb in)	6.0 Nm (53.1 lb in)	8.0 Nm (70.8 lb in)	
7	M8 Nut (1	3 mm AF)	M8 Nut (1	3 mm AF)	M8 Nut (13 mm AF)		
•	12 Nm (106.2 lb in)	14 Nm (123.9 lb in)	12 Nm (106.2 lb in)	14 Nm (123.9 lb in)	12 Nm (106.2 lb in)	14 Nm (123.9 lb in)	
8 to 11	M10 Nut (17 mm AF)	M10 Nut (17 mm AF) M10 Nu			(17 mm AF)	
0 10 11	15 Nm (132.8 lb in) 20 Nm (177 lb in)		15 Nm (132.8 lb in	20 Nm (177 lb in)	15 Nm (132.8 lb in)	20 Nm (177 lb in)	

Table 3-20 Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 Nm (4.4 lb in)

Table 3-21 Plug-in terminal block maximum cable sizes

Model size	Terminal block description	Max cable size			
All	11 way control connectors	1.5 mm ² (16 AWG)			
All	2 way relay connector	2.5 mm ² (12 AWG)			
3	6 way AC power connector	6 mm² (10 AWG)			
4	o way Ao power connector	(10 AVVG)			
5	3 way AC power connector	8 mm² (8 AWG)			
	3 way motor connector	, ,			
6					
7	0				
8	2 way low voltage power 24 V supply connector	1.5 mm ² (16 AWG)			
9A/9E	24 V Supply Somission				
10E/11E					

Table 3-22 External EMC filter terminal data

CT part	Pov	ver connecti	ons	Ground co	nnections	
number	Bar hole diameter	Max cable size	Max torque	Ground stud size	Max torque	
4200-1132		50 mm²	8.0 Nm			
4200-0672		(1/0 AWG) (70.8 in)		M10	18 Nm (159.3 lb	
4200-1972		95 mm²	20 Nm	IVITO	(139.3 lb in)	
4200-1662		(3/0 AWG)	(177.0 lb in)		,	
4200-0122			2.3 Nm (20.4 lb in)			
4200-0252		16 mm²		M6	4.8 Nm	
4200-0272	N/A	(6 AWG)	1.8 Nm (15.9 lb		(42.5 lb in)	
4200-0312	14// (in)			
4200-0402			ŕ			
4200-3230		4 mm² (12 AWG)	0.8 Nm (7.1 lb in)	M5	3.0 Nm	
4200-3480		4 mm² (12 AWG)	0.8 N m (70.8 lb in)	M5	(26.6 lb in)	
4200-2300		40	2.3 Nm		4.0 N	
4200-4800		16 mm² (6 AWG)	(20.4 lb	M6	4.8 Nm (42.5 lb in)	
4200-3690		(1 - 7)	in)		,	
4200-3021	10.8 mm				40.11	
4200-4460	11 mm			M10	18 Nm (159.3 lb	
4200-1660	10.8 mm	N1/A	30 Nm		in)	
4200-2210	11 mm	N/A	(265.5 lb in)			
4200-0400	10.5 mm		,	M40	25 Nm	
4200-0690	10.5 mm			M12	(221.25 lb in)	

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

3.14 Routine maintenance

The drive should be installed in a cool, clean, well ventilated location. Contact of moisture and dust with the drive should be prevented.

Regular checks of the following should be carried out to ensure drive / installation reliability are maximized:

Environment							
Ambient temperature	Ensure the enclosure temperature remains at or below maximum specified						
Dust	Ensure the drive remains dust free – check that the heatsink and drive fan are not gathering dust. The lifetime of the fan is reduced in dusty environments.						
Moisture	Ensure the drive enclosure shows no signs of condensation						
Enclosure							
Enclosure door filters	Ensure filters are not blocked and that air is free to flow						
Electrical							
Screw connections	Ensure all screw terminals remain tight						
Crimp terminals	Ensure all crimp terminals remains tight – check for any discoloration which could indicate overheating						
Cables	Check all cables for signs of damage						

3.14.1 Real time clock battery replacement

The keypads with the real time clock feature contain a battery to ensure the clock works when the drive is powered down. The battery has a long life time but if the battery needs to be replaced or removed, follow the instructions below.

Low battery voltage is indicated by 📋 low battery symbol on the keypad display.

Figure 3-68 Keypad (rear view)

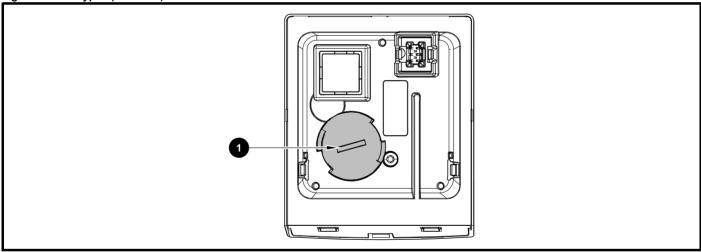
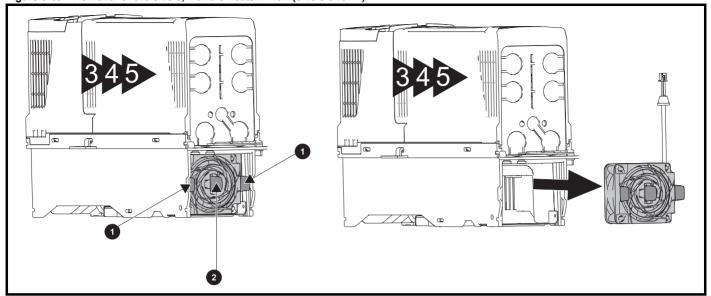


Figure 3-68 above illustrates a rear view of the keypad (KI-HOA Keypad RTC and HOA Keypad RTC).

- 1. To remove the battery cover insert a flat head screwdriver into the slot as shown (1), push and turn anti-clockwise until the battery cover is released.
- 2. Replace the battery (the battery type is: CR2032).
- 3. Reverse point 1 above to replace battery cover.


NOTE

Ensure the battery is disposed of correctly.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnootico	information
				the Motor	I	l					ĺ	

3.14.2 Size 3 to 5 heatsink fan removal procedure

Figure 3-69 Removal of the size 3, 4 and 5 heatsink fan (size 3 shown)

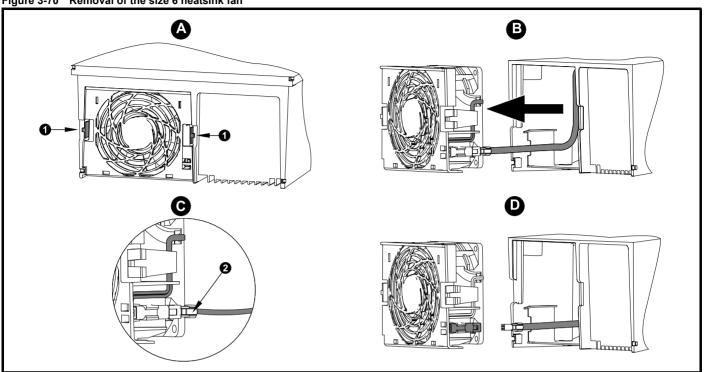
Ensure the fan cable is disconnected from the drive prior to attempting fan removal.

- 1. Press the two tabs inwards to release the fan from the drive frame.
- 2. Using the central fan tab, withdraw the fan assembly from the drive housing.

Replace the fan by reversing the above instructions.

NOTE

If the drive is surface mounted using the outer holes on the mounting bracket, then the heatsink fan can be replaced without removing the drive from the backplate.


Table 3-23 Size 3 to 5 heatsink fan part numbers

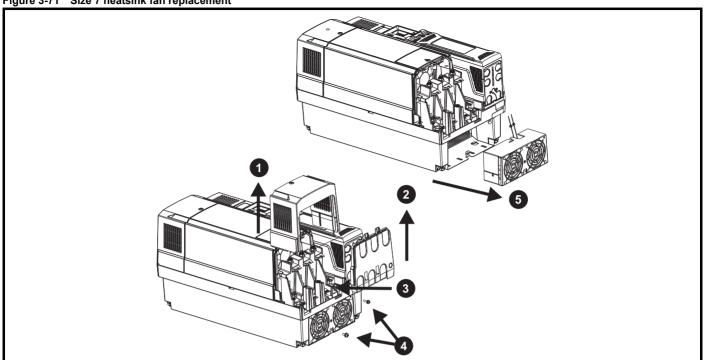
Model	Heatsink fan part number
Size 3	3251-0029
Size 4	3251-0245
Size 5	3251-0245

Safety information	Product	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

3.14.3 Size 6 heatsink fan removal procedure

Figure 3-70 Removal of the size 6 heatsink fan

- A: Press the tabs (1) inwards to release the fan assembly from the underside of the drive.
- **B:** Use the tabs (1) to withdraw the fan by pulling it away from the drive.
- C: Depress and hold the locking release on the fan cable lead as shown (2).
- **D**: With the locking release depressed (2), take hold of the fan supply cable and carefully pull to separate the connectors.


Table 3-24 Size 6 heatsink fan part number

Model	Heatsink fan part number
Size 6	3251-0030

				Getting								
Safet	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
informat	on information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-			•			

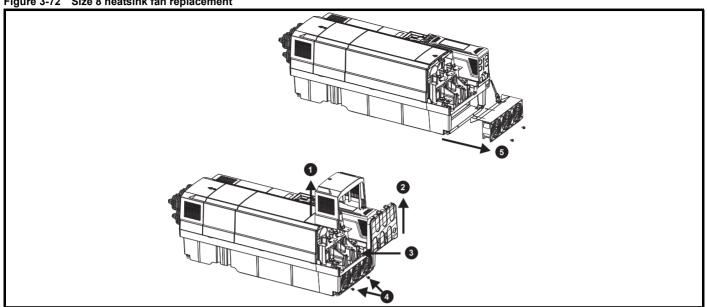
3.14.4 Size 7 heatsink fan replacement

Figure 3-71 Size 7 heatsink fan replacement

Size 7 heatsink fan removal procedure

- 1) Remove terminal cover
- 2) Remove finger guard
- 3) Disconnect fan cables from drive (making a note of the order) and push grommets down prior to attempting fan removal
- 4) Remove the mounting screws using a T20 and T25 torque driver
- 5) Withdraw fan housing from the drive

After fan(s) have been replaced, reverse the above steps to refit.


Table 3-25 Size 7 heatsink fan part number

Drive model	Heatsink fan part number
Size 7	3251-8247

Safety information		chanical stallation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	------------------------	-------------------------	--	---------------------	-------------------------	--	----------------------------	---------------------	-------------------	-------------	------------------------

3.14.5 Size 8 heatsink fan replacement

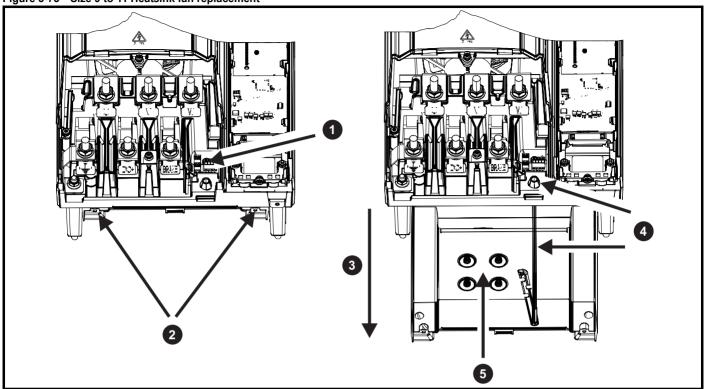
Figure 3-72 Size 8 heatsink fan replacement

Size 8 heatsink fan removal procedure

- 1) Remove terminal cover
- 2) Remove finger guard
- 3) Disconnect fan cables from drive (making a note of the order) and push grommet down prior to attempting fan removal
- 4) Remove the mounting screws using a T20 torque driver
- 5) Withdraw fan housing from the drive

After fan(s) have been replaced, reverse the above steps to refit.

Table 3-26 Size 8 heatsink fan part number


Drive model	Heatsink fan part number				
Size 8	3251-8240				

90 Pump Drive F600 User Guide

				Getting								
Safet	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
informat	on information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-			•			

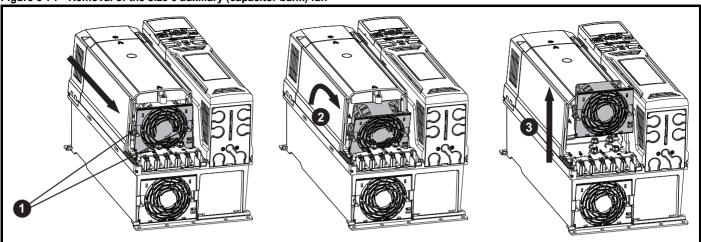
3.14.6 Size 9 to 11 heatsink fan replacement

Figure 3-73 Size 9 to 11 Heatsink fan replacement

Heatsink fan removal procedure

- 1) Using a flat screwdriver remove the fan wires from the fan connector (making a note of the order).
- 2) Using a T20 Torque driver remove the two screws that retain the heatsink fan housing
- 3) Withdraw the heatsink fan housing from the drive in the direction shown
- 4) Pull the fan cable through the fan cable gland
- 5) Using a T20 Torque driver remove the four screws that retain the fan in the housing

After fan has been replaced, reverse the above steps to refit.


Table 3-27 Heatsink fan part number

Drive model	Heatsink fan part number
Size 9 to 11	3251-1750

				Getting								
Safety	Product	Mechanical		started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

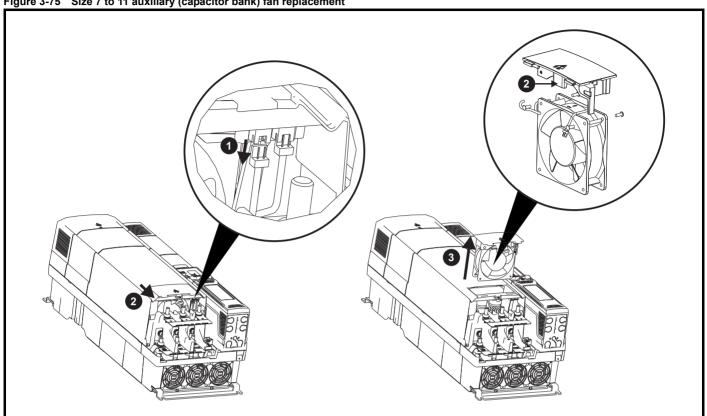
3.14.7 Size 6 auxiliary (capacitor bank) fan replacement

Figure 3-74 Removal of the size 6 auxiliary (capacitor bank) fan

- Press the tabs (1) inwards to release the fan assembly from the drive mid cover.
- Use the tabs (1) to withdraw the fan from the drive by pulling the fan assembly forward and tilting it at a slight angle (2).
- Pull the fan assembly up and away from the drive (3).
- Depress and hold the locking release on the fan cable lead.
- · With the locking release depressed, take hold of the fan supply cable and carefully pull to separate the connectors.

Replace the fan by reversing the above instructions.

Table 3-28 Size 6 auxiliary fan part number


Model	Auxiliary fan part number
Size 6	3251-0030

92 Pump Drive F600 User Guide

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-		·	•			ı

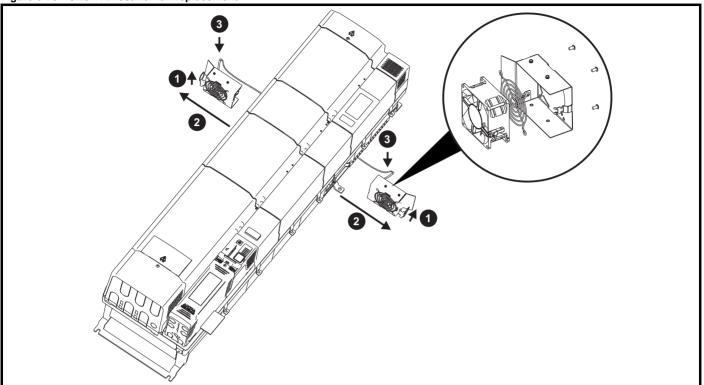
3.14.8 Size 7 to 11 auxiliary (capacitor bank) fan replacement

Figure 3-75 Size 7 to 11 auxiliary (capacitor bank) fan replacement

Size 7 to 11 auxiliary fan removal procedure

- 1) Disconnect the fan wiring connector shown
- 2) Slide fan housing in the direction shown using tongue shown in enlarged diagram of fan
- 3) Withdraw fan housing from the drive

After fan has been replaced, reverse the above steps to refit.


Table 3-29 Size 7 to 11 Auxiliary (capactitor bank) fan part numbers

Drive model	Auxiliary (capacitor bank fan part number
Size 7	3251-0041
Size 8	3251-2249
Size 9, 10 and 11 (575 V and 690 V)	3251-0042
Size 11 (400 V)	3251-1202

				Getting								
Safe	y Product	Mechanical		started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
informa	tion information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								1

3.14.9 Size 11E rectifier fan replacement

Figure 3-76 Size 11E rectifier fan replacement

Size 11E rectifier fan removal procedure

- 1) Lift the ring eye provided
- 2) Pull the fan housing in the direction shown
- 3) Disconnect the fan wiring at the connector shown

After fans have been replaced, reverse the above steps to refit the fan housing in the rectifier (making sure the fan housing aligns correctly in the slots top and bottom).

Table 3-30 Size 11E rectifier fan part number

Drive model	Rectifier fan part number
Size 11E rectifier	3251-0030

For the IP65 version, frame 3 there is an addition fan inside the drive cover. The part number for this fan is 3251-0029-00 and can be accessed as shown on page 54.

UL listing Functional Safety Product Mechanical **Electrical** started / Basic NV Media Card Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

4 Electrical installation

Many cable management features have been incorporated into the product and accessories, this chapter shows how to optimize them. Key features include:

- Safe Torque Off function
- · Internal EMC filter
- EMC compliance with shielding / grounding accessories
- · Product rating, fusing and cabling information
- Brake resistor details (selection / ratings)

Electric shock risk

The voltages present in the following locations can cause severe electric shock and may be lethal:

- AC supply cables and connections
- · DC and brake cables, and connections
- · Output cables and connections
- · Many internal parts of the drive, and external option units

Unless otherwise indicated, control terminals are single insulated and must not be touched.

Isolation device

The AC and / or DC power supply must be disconnected from the drive using an approved isolation device before any cover is removed from the drive or before any servicing work is performed.

STOP function

The STOP function does not remove dangerous voltages from the drive, the motor or any external option units.

Safe Torque Off function

The Safe Torque Off function does not remove dangerous voltages from the drive, the motor or any external option units.

Stored charge

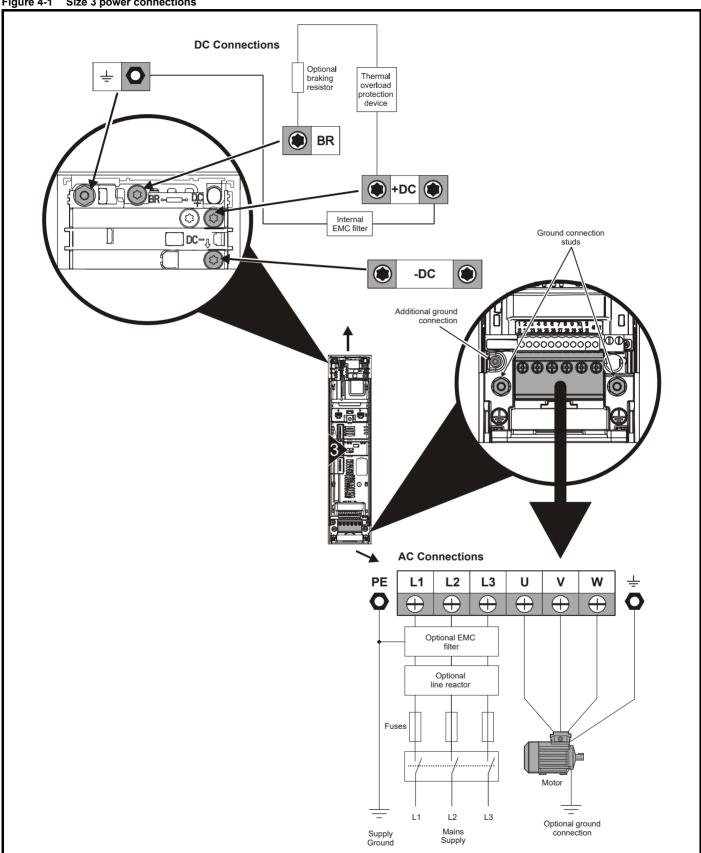
The drive contains capacitors that remain charged to a potentially lethal voltage after the AC and / or DC power supply has been disconnected. If the drive has been energized, the AC and / or DC power supply must be isolated at least ten minutes before work may continue.

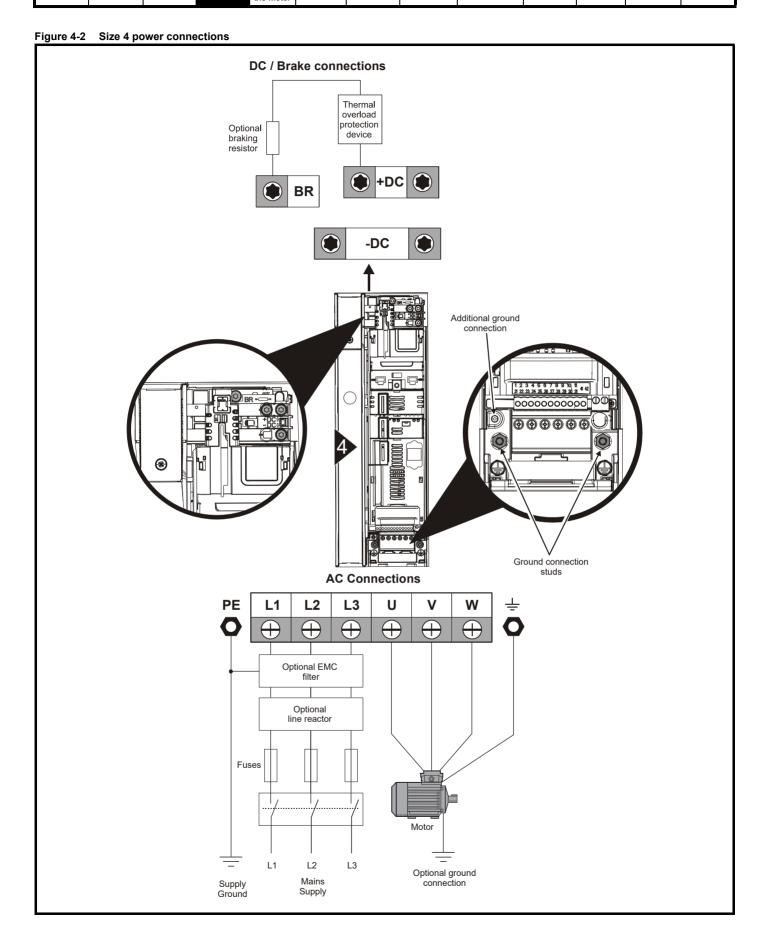
Normally, the capacitors are discharged by an internal resistor. Under certain, unusual fault conditions, it is possible that the capacitors may fail to discharge, or be prevented from being discharged by a voltage applied to the output terminals. If the drive has failed in a manner that causes the display to go blank immediately, it is possible the capacitors will not be discharged. In this case, consult Control Techniques or their authorized distributor.

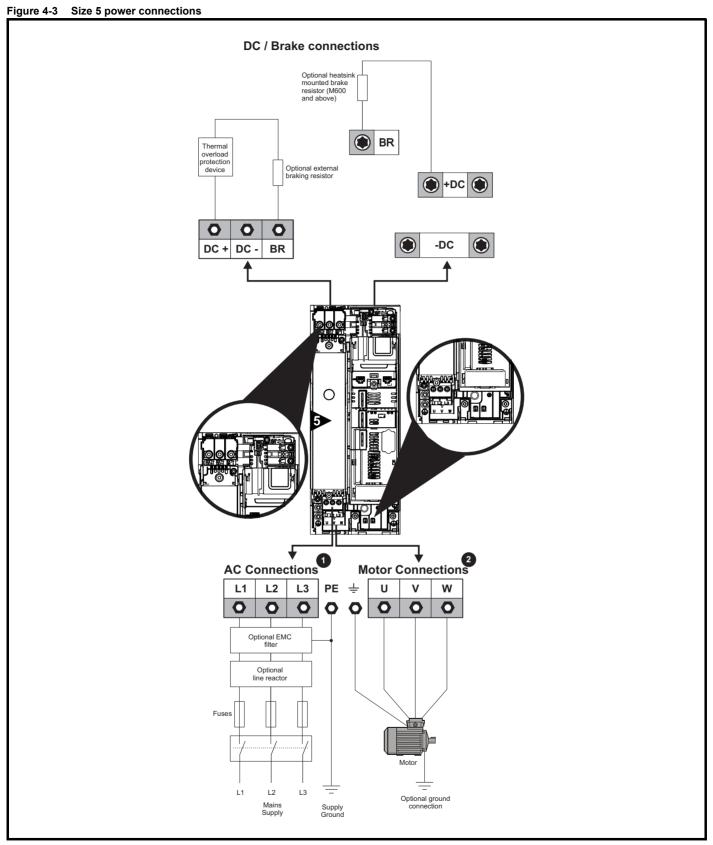
Equipment supplied by plug and socket

Special attention must be given if the drive is installed in equipment which is connected to the AC supply by a plug and socket. The AC supply terminals of the drive are connected to the internal capacitors through rectifier diodes which are not intended to give safety isolation. If the plug terminals can be touched when the plug is disconnected from the socket, a means of automatically isolating the plug from the drive must be used (e.g. a latching relay).

Permanent magnet motors

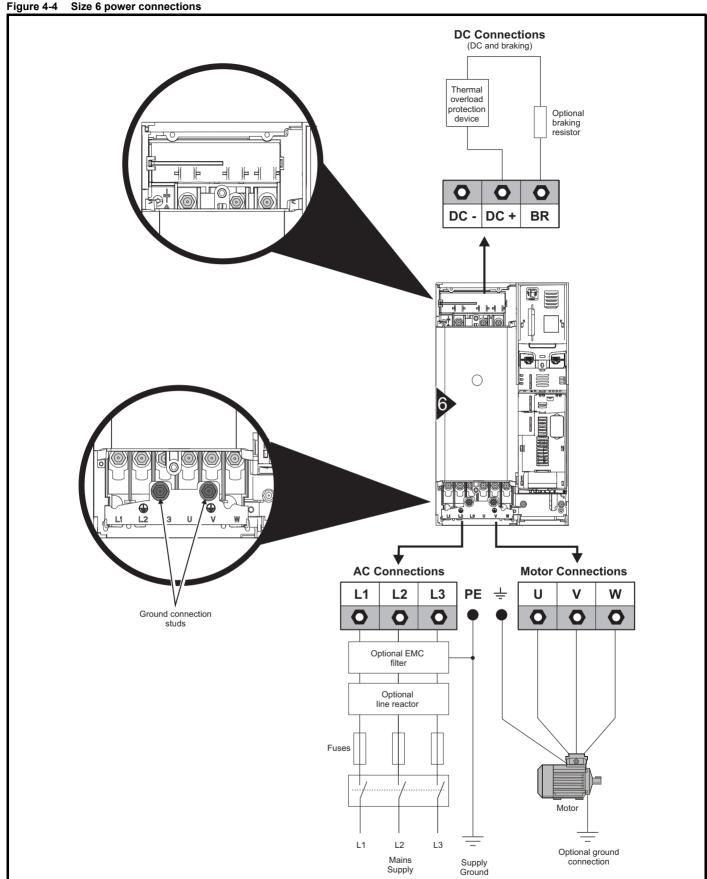

Permanent magnet motors generate electrical power if they are rotated, even when the supply to the drive is disconnected. If that happens then the drive will become energized through its motor terminals.


If the motor load is capable of rotating the motor when the supply is disconnected, then the motor must be isolated from the drive before gaining access to any live parts.


4.1 **Power connections**

4.1.1 AC and DC connections

Figure 4-1 Size 3 power connections



The upper terminal block (1) is used for AC supply connection.

The lower terminal block (2) is used for Motor connection.

Figure 4-4

Getting UL listing Safety Product Mechanical started / Basic Functional NV Media Card Technical **Electrical** Advanced Optimization Diagnostics installation Running the Motor parameters information information installation parameters descriptions Operation data information

Figure 4-5 Size 7 and 8 power connections (Size 7 shown)

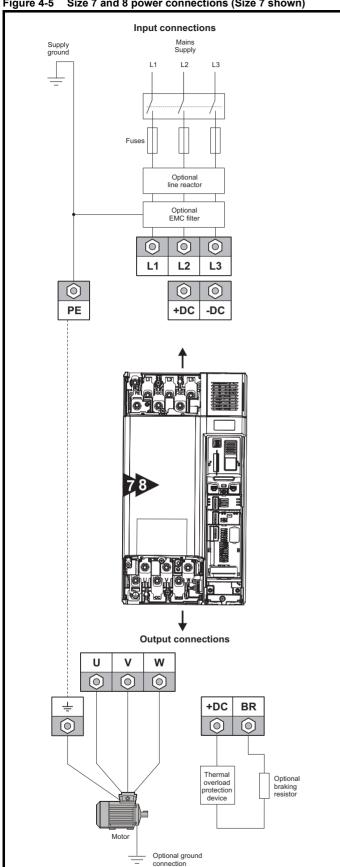
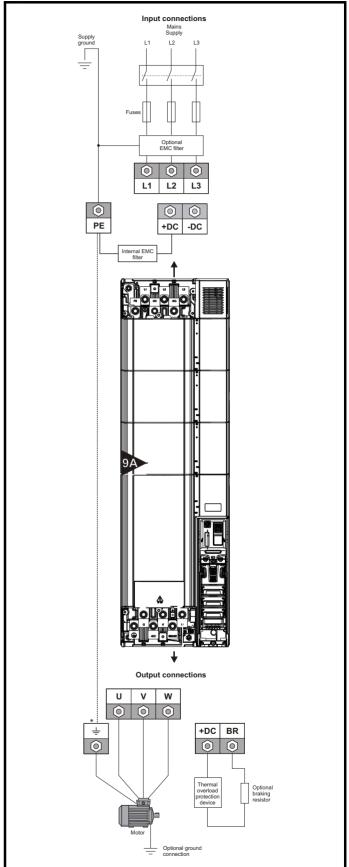
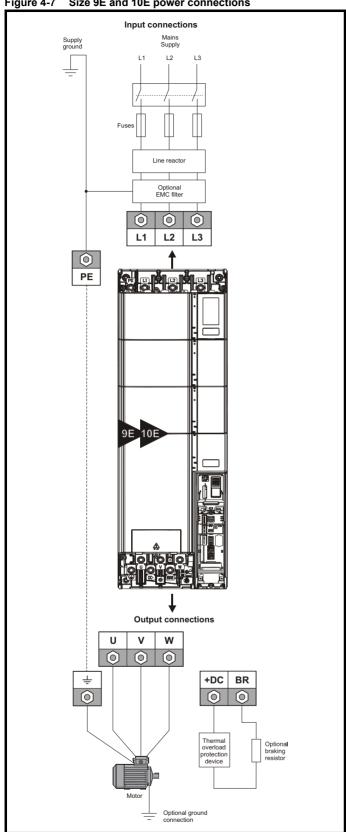
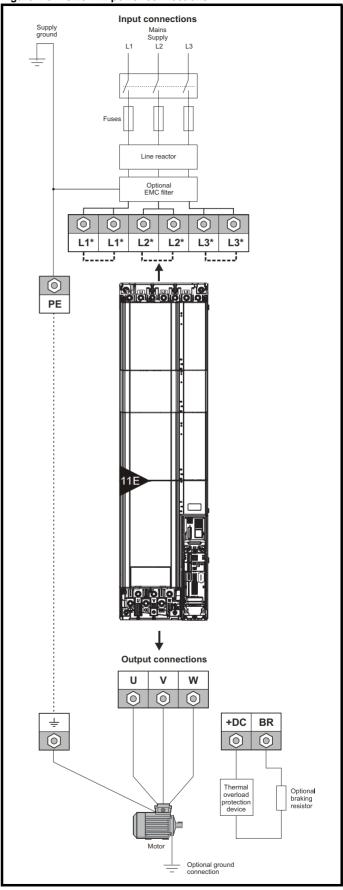


Figure 4-6 Size 9A power connections


Figure 4-7 Size 9E and 10E power connections

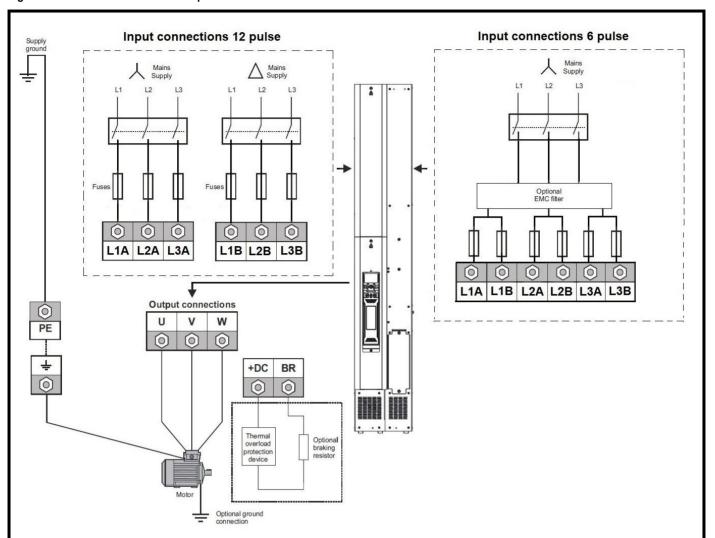

A separate line reactor (INLXXX) of at least the value shown in Table 4-3 and Table 4-2 on page 106 must be used with size 9E, 10E and 11E. Failure to provide sufficient reactance CAUTION could damage or reduce the service life of the drive.

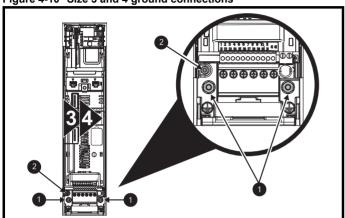
Figure 4-8 Size 11E power connections

^{*} Common AC supply connections are internally linked.

Figure 4-9 Power Module Frame 12 power connections

Functional UL listing Safety Product Mechanical NV Media Card Technical **Electrical** started / Basic Advanced Optimization Diagnostics information information information installation installation Running the Motor parameters descriptions Operation parameters data

4.1.2 Ground connections

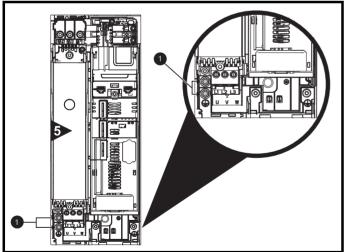


Electrochemical corrosion of grounding terminals Ensure that grounding terminals are protected against corrosion i.e. as could be caused by condensation.

Size 3 and 4

On sizes 3 and 4, the supply and motor ground connections are made using the M4 studs located either side of the drive near the plug-in power connector. Refer to Figure 4-10 for additional ground connection.

Figure 4-10 Size 3 and 4 ground connections

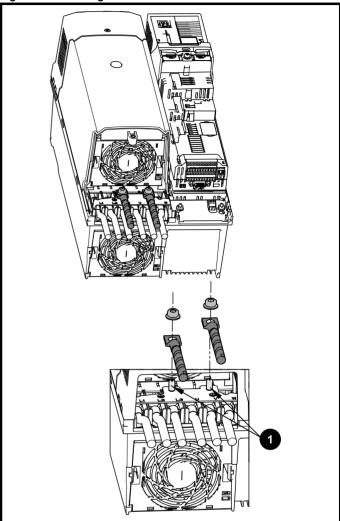


- 1. Ground connection studs.
- 2. Additional ground connection.

Size 5

On size 5, the supply and motor ground connections are made using the M5 studs located near the plug-in power connector. Refer to Figure 4-11 for additional ground connection.

Figure 4-11 Size 5 ground connections



1. Ground connection studs.

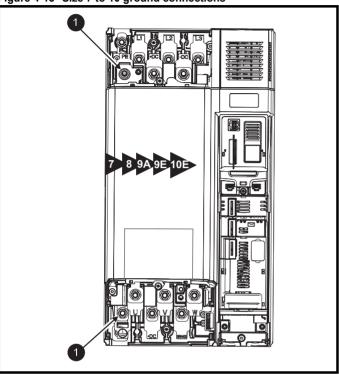
Size 6

On a size 6, the supply and motor ground connections are made using the M6 studs located above the supply and motor terminals. Refer to Figure 4-12 below.

Figure 4-12 Size 6 ground connections

Ground connection studs

UL listing Safety Product Mechanical Basic Functional NV Media Card Technical **Electrical** started / Advanced Optimization Diagnostics installation information information installation Running the Motor parameters descriptions Operation parameters data information


Size 7

On size 7, the supply and motor ground connections are made using the M8 studs located by the supply and motor connection terminals.

Size 8 to 11

On size 8 to 11, the supply and motor ground connections are made using the M10 studs located by the supply and motor connection terminals.

Figure 4-13 Size 7 to 10 ground connections

Ground connection studs.

The ground loop impedance must conform to the requirements of local safety regulations.

The drive must be grounded by a connection capable of carrying the prospective fault current until the protective device (fuse, etc.) disconnects the AC supply.

The ground connections must be inspected and tested at appropriate intervals.

Figure 4-14 Size 11E ground connections

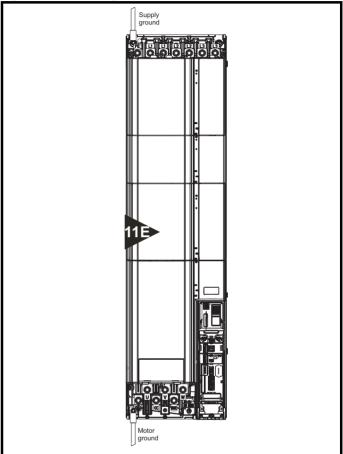


Table 4-1 Protective ground cable ratings

Input phase conductor size	Minimum ground conductor size
≤ 10 mm²	Either 10 mm² or two conductors of the same cross-sectional area as the input phase conductor.
> 10 mm² and ≤ 16 mm²	The same cross-sectional area as the input phase conductor
> 16 mm² and ≤ 35 mm²	16 mm²
> 35 mm²	Half of the cross-sectional area of the input phase conductor

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

4.2 AC supply requirements

Voltage:

200 V drive: 200 V to 240 V ±10 % 400 V drive: 380 V to 480 V ±10 % 575 V drive: 500 V to 575 V ±10 % 690 V drive: 500 V to 690 V ±10 %

Number of phases: 3

Maximum supply imbalance: 2 % negative phase sequence (equivalent to 3 % voltage imbalance between phases).

Frequency range: 45 to 66 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to 100 kA

4.2.1 Supply types

All drives are suitable for use on any supply type i.e TN-S, TN-C-S, TT and IT.

- Supplies with voltage up to 600 V may have grounding at any potential, i.e. neutral, centre or corner ("grounded delta")
- Supplies with voltage above 600 V may not have corner grounding

Drives are suitable for use on supplies of installation category III and lower, according to IEC60664-1. This means they may be connected permanently to the supply at its origin in a building, but for outdoor installation additional over-voltage suppression (transient voltage surge suppression) must be provided to reduce category IV to category III.

Operation with IT (ungrounded) supplies:

Special attention is required when using internal or external EMC filters with ungrounded supplies, because in the event of a ground (earth) fault in the motor circuit the drive may not trip and the filter could be over-stressed. In this case, either the filter must not be used (removed) or additional independent motor ground fault protection must be provided.

For instructions on removal, refer to section 4.12.2 *Internal EMC filter* on page 128. For details of ground fault protection contact the supplier of the drive.

A ground fault in the supply has no effect in any case. If the motor must continue to run with a ground fault in its own circuit then an input isolating transformer must be provided and if an EMC filter is required it must be located in the primary circuit.

Unusual hazards can occur on ungrounded supplies with more than one source, for example on ships. Contact the supplier of the drive for more information.

4.2.2 Supplies requiring line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2 % are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2 % line reactors permit drives to be used with a supply unbalance of up to 3.5 % negative phase sequence (equivalent to 5% voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply.
- Across the line (DOL) started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20 %.

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Line reactors are particularly recommended for use with the following drive models when one of the above factors exists, or when the supply capacity exceeds 175 kVA:

 $03200066,\,03200080,\,03200110,\,03200127,\,03400034,\,03400045,\,03400062,\,03400077$

Model sizes 03400104 to 07600730 have an internal DC choke and model sizes 08201490 to 0801080 and frame 9A have internal AC line chokes so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions. Drive sizes 9E,10E and 11E do not have internal input line reactors hence an external input line reactor must be used. For more information refer to section 4.2.3 *Drive model and input line reactor* on page 106.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive

Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

A separate line reactor (INLXXX) of at least the value shown in Table 4-3 and Table 4-2 must be used with size 9E, 10E and 11E. Failure to provide sufficient reactance could damage or reduce the service life of the drive.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

4.2.3 Drive model and input line reactor

Table 4-2 Drive model and line reactor part number

Size	Drive model	Inductor model	Line reactor part number
	03200066, 03200080	INL 2001	4401-0143
	03200110, 03200127	INL 2002	4401-0144
	03400034, 03400045	INL 4001	4401-0148
3	03400062	INL 4002	4401-0149
	03400077, 03400104	INL 4011	4401-0234
	03400123	INL 4003	4401-0151
	04200180	INL 2002	4401-0144
,	04200250	INL 2003	4401-0145
4	04400185	INL 4004	4401-0152
	04400240	INL 4005	4401-0153
	05200300	INL 2008	4401-0226
	05400300	INL 4013	4401-0236
5	05500039	INL 5007	4401-0242
	05500061	INL 5008	4401-0243
	05500100	INL 5009	4401-0244
	06200500	INL 2004	4401-0146
	06200580	INL 2005	4401-0147
	06400380	INL 4006	4401-0154
-	06400480	INL 4007	4401-0155
-	06400630	INL 4008	4401-0156
6	06500120	INL 5001	4401-0157
Ŭ	06500170	INL 5002	4401-0158
	06500220	INL 5003	4401-0159
	06500270	INL 5004	4401-0160
	06500340	INL 5005	4401-0161
	06500430	INL 5006	4401-0223
	07200750	INL 2009	4401-0227
-	07200940	INL 2010	4401-0228
-	07201170	INL 2011	4401-0229
-	07400790	INL 4014	4401-0237
+	07400940	INL 4014	4401-0238
+	07401120	INL 4016	4401-0239
+	07500530	INL 5006	4401-0233
7	07500330	INL 5010	4401-0245
+	07600230	INL 6001	4401-0248
+	07600300	INL 6001	4401-0249
+	07600360	INL 6002	4401-0250
-	07600460	INL 6003	4401-0251
+	07600520	INL 6004	4401-0251
-	07600730	INL 6005	4401-0252
	08201490	INL 2012	4401-0233
-			
+	08201800	INL 2013	4401-0231
+	08401550	INL 4017	4401-0240
8	08401840	INL 4018	4401-0241
-	08500860	INL 5011	4401-0246
-	08501080	INL 5012	4401-0247
-	08600860	INL 6007	4401-0254
	08601080	INL 6008	4401-0255
9E	09202160, 09202660, 09402210, 09402660	INL 401	4401-0181
	09501250, 09501500, 09601720, 09601970	INL 601	4401-0183
10E	10203250, 10203600, 10403200, 10403610	INL 402	4401-0182
	10502000, 10601720, 10601970	INL 602	4401-0184
	11404370	INL 403L**	4401-0274
11E	11404370, 11404870, 11405070	INL 403*	4401-0259
	11502480, 11502880, 11503150, 11602250, 11602750, 11603050	INL 603*	4401-0261

^{*} Natural cooling.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	9	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

^{**} May represent a more economic solution when operating below 420 A.

Table 4-3 Input line reactor ratings (2 %)

Part number	Model	Current	Inductance	Overall width (W)	Overall depth (D)	Overall height (H)	Weight	Max ambient temp	Min airflow	Maximum losses
		Α	μH	mm	mm	mm	kg	°C	m/s	w
4401-0143	INL 2001	13.5	790	156	70	125	1.8	50	0	42
4401-0144	INL 2002	20.6	480	156	80	125	2.4	50	0	43
4401-0145	INL 2003	26.8	320	156	80	125	2.5	50	0	48
4401-0148	INL 4001	6.6	2940	80	75	130	1.3	50	0	31
4401-0149	INL 4002	9.1	1620	156	70	125	1.8	50	0	42
4401-0234	INL 4011	13	1120	156	80	125	2.5	50	0	46
4401-0151	INL 4003	15.8	1050	156	80	125	2.6	50	0	47
4401-0152	INL 4004	18.7	790	156	60	145	3.5	50	0	62
4401-0153	INL 4005	24.3	610	156	75	145	4.9	50	0	59
4401-0226	INL 2008	32	260	156	60	145	3.30	50	0	64
4401-0146	INL 2004	48.8	170	156	75	145	4.8	50	0	59
4401-0147	INL 2005	56.6	150	156	120	130	4.9	50	0	58
4401-0236	INL 4013	32	480	156	75	145	4.9	50	0	63
4401-0154	INL 4006	36.5	400	206	140	200	8	50	0	78
4401-0155	INL 4007	46.2	320	206	140	200	9	50	0	84
4401-0156	INL 4008	60.6	240	255	125	195	11	50	0	104
4401-0242	INL 5007	4.3	492	80	75	130	1.4	50	0	35
4401-0243	INL 5008	6.8	311	156	70	125	1.8	50	0	39
4401-0244	INL 5009	11.4	1890	156	60	145	3.2	50	0	60
4401-0157	INL 5001	13.2	1600	156	60	145	3.5	50	0	60
4401-0158	INL 5002	18.7	1130	156	75	145	4.9	50	0	59
4401-0159	INL 5003	24.3	870	206	95	200	6	50	0	73
4401-0160	INL 5004	29.4	720	206	130	200	7.4	50	0	77
4401-0161	INL 5005	37.1	570	230	130	210	11	50	0	108
4401-0223	INL 5006	47	480	255	130	210	12.5	50	0	122
4401-0227	INL 2009	67	130	206	130	160	6.9	50	0	90
4401-0228	INL 2010	88	100	206	140	160	9	50	0	97
4401-0229	INL 2011	105	80	206	140	160	9.5	50	0	90
4401-0230	INL 2012	137	62	254	130	195	12.5	50	0	143
4401-0231	INL 2013	166	51	254	150	195	14	50	0	137
4401-0237	INL 4014	74	200	254	130	195	12	50	0	129
4401-0238	INL 4015	88	170	254	150	195	14	50	0	127
4401-0239	INL 4016	105	140	254	150	195	14	50	0	139
4401-0240	INL 4017	155	95	290	160	205	20	50	0	182
4401-0241	INL 4018	177	83	290	170	205	22	50	0	200
4401-0245	INL 5010	67	340	290	150	205	18	50	0	139
4401-0246	INL 5011	88	250	290	170	205	22	50	0	147
4401-0247	INL 5012	105	200	290	180	225	25	50	0	167
4401-0248	INL 6001	20	1270	206	95	200	5.8	50	0	71
4401-0249	INL 6002	26	980	206	130	200	7.4	50	0	80
4401-0250	INL 6003	32	880	206	140	200	10	50	0	84
4401-0251	INL 6004	39	650	254	130	210	12	50	0	123
4401-0252	INL 6005	45	580	254	130	210	12.5	50	0	124
4401-0253	INL 6006	67	410	290	150	205	18	50	0	123
4401-0254	INL 6007	88	300	290	170	205	22	50	0	169
4401-0255	INL 6008	105	240	290	180	225	25	50	0	204
4401-0181	INL 401	245	63	240	190	225	32	50	1	148

Pump Drive F600 User Guide 107

information inf	formation install	lation installa	the Motor	parameters desc	criptions	Operat	ion paran	neters data	3	information
Part number	Model	Current	Inductance	Overall width (W)	Overall depth (D)	Overall height (H)	Weight	Max ambient temp	Min airflow	Maximum losses
		Α	μH	mm	mm	mm	kg	°C	m/s	W
4401-0182	INL 402	370	44	276	200	225	36	50	1	205
4401-0183	INL 601	145	178	240	190	225	33	50	1	88
4401-0184	INL 602	202	133	276	200	225	36	50	1	116
4401-0181	INL 401	245	63	240	190	225	32	50	1	148
4401-0182	INL 402	339	44	276	200	225	36	50	1	205
4401-0274	INL 403L*	420	30	300	216	264	57	40	0	289
4401-0259	INL403*	557	30	300	216	264	57	40	0	330
4401-0183	INL 601	145	178	240	190	225	33	50	1	88
4401-0184	INL 602	192	133	276	200	225	36	50	1	116
4401-0261	INL 603*	331	93	300	216	264	58	40	0	320

Functional

Optimization

NV Media Card

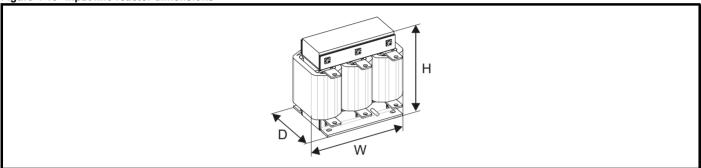
Advanced

Technical

UL listing

Basic

started /


Figure 4-15 Input line reactor dimensions

Product

Mechanical

Electrical

Safety

4.2.4 Input inductor calculation

To calculate the inductance required (at Y%), use the following equation:

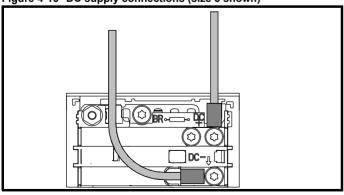
$$L = \frac{Y}{100} \times \frac{V}{\sqrt{3}} \times \frac{1}{2\pi fI}$$

Where:

I = drive rated input current (A)

L = inductance (H)

f = supply frequency (Hz)


V = voltage between lines

4.3 Supplying the drive with DC

All drive sizes have the option to be powered from an external DC power supply. Refer to section 3.13 *Electrical terminals* on page 83 to identify the location of DC supply connections.

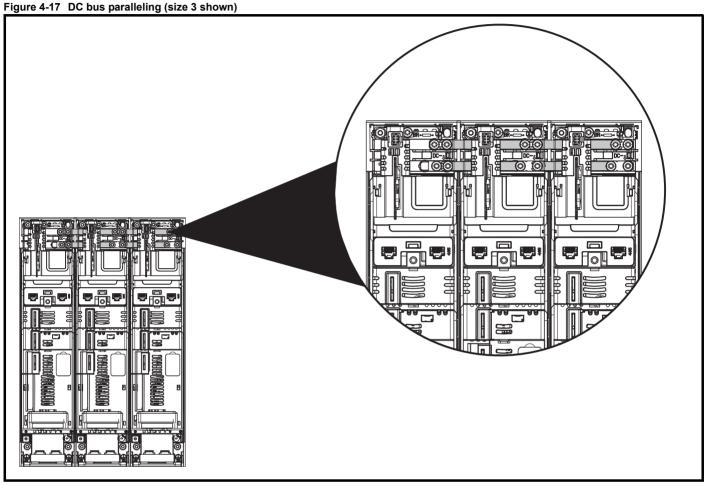
The DC supply connections for size 3 and 4 are located under the DC / Terminal cover. Figure 4-16 below shows DC supply connections and cable routing.

Figure 4-16 DC supply connections (size 3 shown)

NOTE

The Internal EMC filter and plastics have been removed from the above Figure 4-16 to demonstrate the routing of the DC cables.

^{*} Natural cooling.


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

4.4 DC bus paralleling

DC bus paralleling using standard cable / busbars is supported by all frame sizes.

On frame sizes 3, 4, 5 and 6, terminal and enclosure design enables the DC bus of a number of drives to be connected together using pre-made busbars. The diagram below shows how the busbar links connect the DC bus of several drives together.

The connecting of the DC bus between several drives is typically used to return energy from a drive which is being overhauled by the load to a second motoring drive.

There are limitations to the combinations of drives which can be used in this configuration.

For application data, contact the supplier of the drive.

NOTE

The DC bus paralleling kit is not supplied with the drive but is available to order.

Table 4-4 DC bus paralleling kit part numbers

Size	CT part number				
3	3470-0048				
4	3470-0061				
5	3470-0068				
6	3470-0063				

Functional UL listing Product NV Media Card Safety Mechanical **Electrical** started / Basic Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Moto

4.5 24 Vdc supply

The 24 Vdc supply connected to control terminals 1 & 2 provides the following functions:

- It can be used to supplement the drive's own internal 24 V supply when multiple option modules are being used and the current drawn by these module is greater than the drive can supply.
- It can be used as a back-up power supply to keep the control circuits
 of the drive powered up when the line power supply is removed.
 This allows any fieldbus modules, application modules, or serial
 communications to continue to operate.
- It can be used to commission the drive when the line power supply is
 not available, as the display operates correctly. However, the drive
 will be in the Under voltage trip state unless either line power supply
 or low voltage DC operation is enabled, therefore diagnostics may
 not be possible. (Power down save parameters are not saved when
 using the 24 V back-up power supply input).
- If the DC bus voltage is too low to run the main SMPS in the drive, then the 24 V supply can be used to supply all the low voltage power requirements of the drive. Low Under Voltage Threshold Select (06.067) must also be enabled for this to happen.

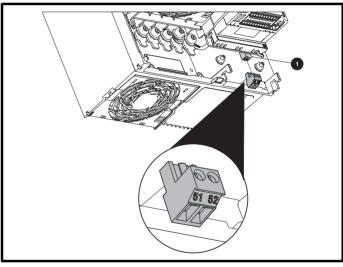
NOTE

On size 6 and larger, the power 24 Vdc supply (terminals 51, 52) must be connected to enable the 24 Vdc supply to be used as a backup supply, when the line power supply is removed. If the power 24 Vdc supply is not connected none of the above mentioned functions can be used, "Waiting For Power System" will be displayed on the keypad and no drive operations are possible. The location of the power 24 Vdc can be identified from Figure 4-18 *Location of the 24 Vdc power supply connection on size* 6 on page 110.

Table 4-5 24 Vdc Supply connections

Function	Sizes 3-5	Sizes 6-11		
Supplement the drive's internal supply	Terminal 1, 2	Terminal 1, 2		
Back-up supply for the control circuit	Terminal 1, 2	Terminal 1, 2 51, 52		

The working voltage range of the control 24 V power supply is as follows:


1	0V common									
2	+24 Vdc									
Nominal	operating voltage	24.0 Vdc								
Minimun	n continuous operating voltage	19.2 V								
Maximu	m continuous operating voltage	28.0 V								
Minimun	n start up voltage	21.6 V								
Maximu	m power supply requirement at 24 V	40 W								
Recomn	nended fuse	3 A, 50 Vdc								

Minimum and maximum voltage values include ripple and noise. Ripple and noise values must not exceed 5 %.

The working range of the 24 V power supply is as follows:

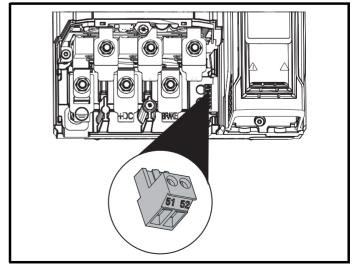

51	0V common			
52	+24 Vdc			
Size 6				
Nominal	operating voltage	24.0 Vdc		
Minimun	n continuous operating voltage	18.6 Vdc		
Maximu	m continuous operating voltage	28.0 Vdc		
Minimun	n startup voltage	18.4 Vdc		
Maximu	m power supply requirement	40 W		
Recomn	nended fuse	4 A @ 50 Vdc		
Size 7 to	o 11			
Nominal	operating voltage	24.0 Vdc		
Minimun	n continuous operating voltage	19.2 Vdc		
Maximu	m continuous operating voltage	30 Vdc (IEC), 26 Vdc (UL)		
Minimun	n startup voltage	21.6 Vdc		
Maximu	m power supply requirement	60 W		
Recomn	nended fuse	4 A @ 50 Vdc		

Figure 4-18 Location of the 24 Vdc power supply connection on size 6

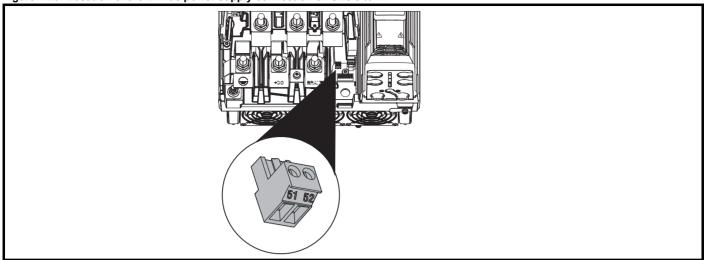

1. 24 Vdc power supply connection

Figure 4-19 Location of the 24 Vdc power supply connection on size 7

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Figure 4-20 Location of the 24 Vdc power supply connection on size 8 to 11

4.6 Low voltage operation

With the addition of a 24 Vdc power supply to supply the control circuits, the drive is able to operate from a low voltage DC supply with a range from 24 Vdc to the maximum DC volts. It is possible for the drive to go from operating on a normal line power supply voltage to operating on a much lower supply voltage without interruption.

Going from low voltage operation to normal mains operation requires the inrush current to be controlled. This may be provided externally. If not, the drive supply can be interrupted to utilise the normal soft starting method in the drive.

To fully exploit the new low voltage mode of operation, the under voltage level is now user programmable. For application data, contact the supplier of the drive.

The working voltage range of the low voltage DC power supply is as follows:

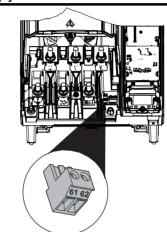
Size 3 to 12

Minimum continuous operating voltage: 26 V Minimum start up voltage: 32 V

Maximum over voltage trip threshold: 230 V drives: 415 V

400 V drives: 830 V 575 V drives: 990 V 690 V drives: 1190 V

NOTE


Pump Drive F600 size 9E, 10E and 11E drives do not have an accessible negative DC terminal. It is recommended that 9D, 10D and 11D drives are used as an alternative when this is needed, please refer to the *Unidrive M Modular Installation Guide* for further details.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	----------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

In low voltage mode only, with frame size 9 to 11, a 24 V supply needs to be provided for the heatsink fan. The fan supply should be connected to terminal 61 and 62.

61	0V common							
62	+24 Vdc heatsink fan supply							
Size 9 t	Size 9 to 11							
Nomina	operating voltage	24.0 Vdc						
Minimur	n continuous operating voltage	23.5 Vdc						
Maximu	m continuous operating voltage	27 Vdc						
Current	consumption	Size 9 to 10 (all): 6A						
Recomn	nended power supply	24 V, 7 A						
Recomn	nended fuse	8 A fast blow						

Figure 4-21 Location of the heatsink fan supply connector on size 9 to 11

4.7 Heatsink fan supply

When operating on normal mains supply the heatsink fan on all drive sizes is supplied internally by the drive. When operating size 9 to 11 in low voltage mode it is necessary to connect an external 24 V supply to terminal 61 and 62 if heatsink fan operation is required. Please see section 4.6 Low voltage operation on page 111 for more details.

4.8 Ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases would be significantly lower.

The values of maximum input current are stated for a supply with a 2 % negative phase-sequence imbalance and rated at the supply fault current given in Table 4-6.

Table 4-6 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

Fusas

The AC supply to the drive must be installed with suitable protection against overload and short-circuits. Table 4-7 shows recommended fuse ratings. Failure to observe this requirement will cause risk of fire.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 4-7 AC Input current and fuse ratings (200 V)

	Typical	Maximum	Maximum	Fuse rating								
Model	input	continuous	overload input		IEC			UL / USA				
Wodei	current	input current	current	Nominal Maximum		Class	Nominal	Maximum	Class			
	Α	Α	Α	Α	Α	Class	Α	Α	Class			
03200066	8.2	10.4	15.8	16			20					
03200080	9.9	12.6	20.9	20	25	aC	20	25	CC, J or T*			
03200110	14	17	25	20	25	gG	25	25	CC, 3 01 1			
03200127	16	20	34	25			25					
04200180	17	20	30	25	25	aC.	25	25	CC Lor T*			
04200250	23	28	41	32	32	gG	30	30	CC, J or T*			
05200300	24	31	52	40	40	gG	40	40	CC, J or T*			
06200500	42	48	64	63	63	gG	60	60	CC, J or T*			
06200580	49	56	85	03	03	gG	60	- 60				
07200750	58	67	109	80	80		80	80				
07200940	73	84	135	100	100	gG	100	100	CC, J or T*			
07201170	91	105	149	125	125] [125	125				
08201490	123	137	213	200	200	αD	200	200	HSJ			
08201800	149	166	243	200	200	gR	225	225	пол			
09202160	172	205	270	250	250	αD	250	250	ПС І			
09202660	228	260	319	315	315	gR	300	300	HSJ			
10203250	277	305	421	400	400	αD	400	400	HSJ			
10203600	333	361	494	450	450	gR	450	450	ПОЈ			

^{*} These fuses are fast acting.

Table 4-8 AC Input current and fuse ratings (400 V)

	Typical	Maximum	Maximum			Fu	use rating	Fuse rating								
	input	continuous	overload input		IEC			UL / USA								
Model	current	input current	current	Nominal	Maximum	Class	Nominal	Maximum	Class							
	Α	Α	Α	Α	Α	Class	Α	Α	Class							
03400034	5	5	7													
03400045	6	7	9	10	10		10	10								
03400062	8	9	13			gG			CC, J or T							
03400077	11	13	21			gG			CC, 3 01 1							
03400104	12	13	20	20	20		20	20								
03400123	14	16	25													
04400185	17	19	30	25	25	aC.	25	25	CC, J or T							
04400240	22	24	35	32	32	gG	30	30	CC, J 01 1							
05400300	26	29	52	40	40	gG	35	35	CC, J or T							
06400380	32	36	67				40									
06400480	41	46	80	63	63	gG	50	60	CC, J or T							
06400630	54	60	90				60									
07400790	67	74	124	100	100		80	80								
07400940	80	88	145	100	100	gG	100	100	CC, J or T							
07401120	96	105	188	125	125		125	125	1 /							
08401550	137	155	267	250	250	αD	225	225	HSJ							
08401840	164	177	303	230	250	gR	225	225	ПОЛ							
09402210	211	232	306	315	315	gR	300	300	HSJ							
09402660	245	267	359	313	313	gix	350	350	1100							
10403200	306	332	445	400	400	αP	400	400	HSJ							
10403610	370	397	523	450	450	gR	450	450	1100							
11404370	424	449	579	500	500											
11404870	455	492	613	300	500	gR	₹ 600	600	HSJ							
11405070	502	539	752	630	630	1										

1					Getting								
	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
	information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
					the Motor				·	•			1

^{*} These fuses are fast acting.

Table 4-9 AC Input current and fuse ratings (575 V)

	Typical	Maximum	Maximum			Fu	use rating		
Madal	input	continuous	overload input		IEC			UL / USA	
Model	current	input current	current	Nominal	Maximum	01	Nominal	Maximum	01
	Α	Α	Α	Α	Α	Class	Α	Α	Class
05500039	4	4	7	10			10	10	
05500061	6	7	9	10	20	gG	10	10	CC, J or T*
05500100	9	11	15	20		1	20	20	
06500120	12	13	22	20			20		
06500170	17	19	33	32	40		25	30	
06500220	22	24	41	40		~C	30		CC Lor T*
06500270	26	29	50	50		gG	35		CC, J or T*
06500340	33	37	63	30	63		40	50	
06500430	41	47	76	63			50		
07500530	41	45	75	50	50	gG	50	50	CC, J or T*
07500730	57	62	94	80	80	- gG	80	80	CC, J 01 1
08500860	74	83	121	125	125	αD	100	100	HSJ
08501080	92	104	165	160	160	gR	150	150	ПОЈ
09501250	145	166	190	150	150	gR	150	150	HSJ
09501500	145	166	221	200	200	gix	175	175	1100
10502000	177	197	266	250	250	gR	250	250	HSJ
11502480	240	265	327						
11502880	285	310	395	400	400 gR	gR 400	400	400	HSJ
11503150	313	338	473						

^{*} These fuses are fast acting.

Table 4-10 AC Input current and fuse ratings (690 V)

	Typical	Maximum	Maximum			F	use rating		
Model	input	continuous	overload		IEC			UL / USA	
Woder	current	input current	input	Nominal	Maximum	Class	Nominal	Maximum	Class
	Α	Α	Α	Α	Α	Oluss	Α	Α	Olass
07600230	18	20	32	25			25		
07600300	23	26	41	32	50		30	50	
07600360	28	31	49	40	50	gG	35	30	CC, J or T*
07600460	36	39	65	50]	gG	50		CC, 3 01 1
07600520	40	44	75	50	80		50	80	
07600730	57	62	92	80	80		80	- 80	
08600860	74	83	121	125	125	αD	100	100	HSJ
08601080	92	104	165	160	160	gR	150	150	ПОЈ
09601250	124	149	194	150	150	gR	150	150	HSJ
09601550	145	171	226	200	200	git	200	200	1133
10601720	180	202	268	225	225	gR	250	250	HSJ
10601970	202	225	313	250	250	gR	250	250	ПОЈ
11602250	225	256	379						
11602750	217	302	425	400	400	gR	400	400	HSJ
11603050	298	329	465						

^{*} These fuses are fast acting.

NOTE

Ensure cables used suit local wiring regulations.

The nominal cable sizes below are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

					Getting								
	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
ı	information	information	installation	installation	Running the Motor	parameters	descriptions		Operation	parameters	data		information

Table 4-11 Cable ratings (200 V)

			Cable siz mn	` ,					size (UL) WG	
Model		Input			Output		In	put	Out	tput
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum
03200066	1.5			1.5			14		14	
03200080	1.0	4	B2	1.0	4	B2	14	10	1	10
03200110	4	7	52	4	7	52	12	10	12	10
03200127	7						12		12	
04200180	6	8	B2	6	8	B2	10	8	10	8
04200250	8	Ü	D2	8	Ü	DL	8	Ü	8	Ü
05200300	10	10	B2	10	10	B2	8	8	8	8
06200500	16	25	B2	16	25	B2	4	3	4	3
06200580	25	20	D2	25	20	D2	3	Ü	3	Ü
07200750	35			35			2		2	
07200940	33	70	B2	33	70	B2	1	1/0	1	1/0
07201170	70			70			1/0		1/0	
08201490	95	2 x 70	B2	95	2 x 70	B2	3/0	2 x 1	3/0	2 x 1
08201800	2 x 70	2 X 10	DZ.	2 x 70	2 X 70	DZ	2 x 1	2 % 1	2 x 1	2 7 1
09202160	2 x 70	2 x 185	B1	2 x 95	2 x 150	B2	2 x 2/0	2 x 500	2 x 2/0	2 x 350
09202660	2 x 95	2 X 100	DI	2 x 120	2 X 130	DZ.	2 x 4/0	2 X 300	2 x 4/0	2 x 330
10203250	2 x 120	2 v 185	B1	2 x 120	2 x 150	С	2 x 250	2 x 500	2 x 250	2 x 350
10203600	2 x 150	——— 2 x 185 ⊢	С	2 x 120	2 X 100)	2 x 300	2 X 300	2 x 300	2 7 000

Table 4-12 Cable ratings (400 V)

			Cable siz	e (IEC)				Cable s	ize (UL)	
Model		Input			Output		In	put	Ou	tput
	Nominal	Maximum	Installation	Nominal	Maximum	Installation	Nominal	Maximum	Nominal	Maximum
03400034							18		18	
03400045	1.5			1.5			16		16	
03400062		4	B2		4	B2		10		10
03400077		4	62		4	D2	14	10	14	10
03400104	2.5			2.5						
03400123							12		12	
04400185	4	6	B2	4	6	B2	10	8	10	- 8
04400240	6	O	62	6	O	D2	8	0	8	0
05400300	6	6	B2	6	6	B2	8	8	8	8
06400380	10			10			6		6	
06400480	16	25	B2	16	25	B2	4	3	4	3
06400630	25			25			3		3	
07400790	35			35			1		1	
07400940	50	70	B2	50	70	B2	2	1/0	2	1/0
07401120	70			70			1/0		1/0	
08401550	2 x 50	2 x 70	B2	2 x 50	2 x 70	B2	2 x 1	2 x 1/0	2 x 1	2 x 1/0
08401840	2 x 70	2 X 70	DZ	2 x 70	2 X 70	DZ	2 x 1/0	2 X 1/U	2 x 1/0	2 X 1/U
09402210	2 x 70	2 x 185	B1	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 2/0	2 x 350
09402660	2 x 95	2 X 100	ы	2 x 120	2 X 150	D2	2 x 4/0	2 X 300	2 x 4/0	2 X 330
10403200	2 x 120	2 x 185	С	2 x 120	2 x 150	С	2 x 300	2 x 500	2 x 250	2 x 350
10403610	2 x 150	2 X 100	C	2 x 150	2 X 150		2 x 350	2 X 300	2 x 300	2 X 330
11404370				2 x 185	2 x 185		4 x	3/0		•
11404870 11405070	4 :	x 95	С	2 x 240	2 x 240	С	4 x	c 4/0	2 x	400

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional		NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation		parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 4-13 Cable ratings (575 V)

			Cable size	e (IEC)				Cable s	ize (UL)	
Model		Input			Output		In	put	Ou	tput
	Nominal	Maximum	Installation	Nominal	Maximum	Installation	Nominal	Maximum	Nominal	Maximum
05500039	0.75			0.75			16		16	
05500061	1	1.5	B2	1	1.5	B2	14	16	14	16
05500100	1.5			1.5	1		14		14	
06500120	2.5			2.5			14		14	
06500170	4			4	1		10		10	
06500220	6	25	B2	6	25	B2	10	3	10	3
06500270	10	25	DZ		25	DZ	8	3	8	3
06500340	10			10			6		6	
06500430	16						6		6	
07500530	16	25	B2	16	25	B2	4	3	4	3
07500730	25	25	DZ	25	25	DZ	3	3	3	3
08500860	35	50	B2	35	50	B2	1	1	1	1
08501080	50	30	DZ	50	30	DZ	'	'	ı	'
09501250	2 x 70	2 x 185	B2	2 x 35	2 x 150	B2	2 x 1	2 x 500	2 x 3	2 x 350
09501500	2 X 70	2 X 100	DZ	2 x 50	2 X 130	62	2 X I	2 X 300	2 x 1	2 X 330
10502000	2 x 70	2 x 185	B2	2 x 70	2 x 150	B2	2 x 2/0	2 x 500	2 x 2/0	2 x 350
11502480	2 >	70		2)	· 70			2 x	3/0	
11502880	2)	(95	С	2)	¢ 95	С		2 x	4/0	
11503150	2 x	120		2 x	120			2 x	250	

Table 4-14 Cable ratings (690 V)

			Cable size	, ,					ize (UL) VG					
Model		Input			Output		In	put	Ou	tput				
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum				
07600230							8		8					
07600300	10			10			6		6					
07600360		25	B2		25	B2	6	3	6	3				
07600460	16	25	62	16	25	62	4	3	4	3				
07600520	16	1		16			4		4					
07600730	25			25			3		3					
08600860	50	70	B2	50	70	B2	2	1/0	2	1/0				
08601080	70	70	D2	70	1 70	DZ	1/0	1/0	1/0	1/0				
09601250	2 x 50	2 x 185	B2	2 x 35	2 x 150	B2	2 x 1	2 x 500	2 x 3	2 x 350				
09601550	2 x 70	2 X 103	52	2 x 50	2 X 130	DZ	2 x 1/0	2 X 300	2 x 1	2 X 330				
10601720	2 x 70	2 x 185	B2	2 x 70	2 x 150	B2	2 x 2/0	2 x 500	2 x 1/0	2 x 350				
10601970	2 x 95	2 X 100	62	2 X 70	2 X 130	62	2 x 3/0	2 X 300	2 x 2/0	2 X 330				
11602250	2	2 x 70		23	k 70			2 x	3/0					
11602750	2		С	2 x 95	С	2 x 4/0								
11603050		2 x 95	¢ 95	95	¢ 95	95		2 2	k 95			2 x	250	

NOTE

PVC insulated cable should be used.

NOTE

Cable sizes are from IEC60364-5-52:2001 table A.52.C with correction factor for 40 °C ambient of 0.87 (from table A52.14) for cable installation method as specified.

Installation class (ref: IEC60364-5-52:2001)

B1 - Separate cables in conduit.

B2 - Multicore cable in conduit.

C - Multicore cable in free air.

Cable size may be reduced if a different installation method is used, or if the ambient temperature is lower.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	O-41141	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	[·			· .			

NOTE

The nominal output cable sizes assume that the motor maximum current matches that of the drive. Where a motor of reduced rating is used the cable rating may be chosen to match that of the motor. To ensure that the motor and cable are protected against overload, the drive must be programmed with the correct motor rated current.

A fuse or other protection must be included in all live connections to the AC supply.

Fuse types

The fuse voltage rating must be suitable for the drive supply voltage.

Ground connections

The drive must be connected to the system ground of the AC supply. The ground wiring must conform to local regulations and codes of practice.

NOTE

For information on ground cable sizes, refer to Table 4-1 *Protective* ground cable ratings on page 104.

4.8.1 Main AC supply contactor

The recommended AC supply contactor type is AC1.

4.9 Output circuit and motor protection

The output circuit has fast-acting electronic short-circuit protection which limits the fault current to typically no more than five times the rated output current, and interrupts the current in approximately 20 $\mu s.$ No additional short-circuit protection devices are required.

The drive provides overload protection for the motor and its cable. For this to be effective, *Rated Current* (00.006) must be set to suit the motor

Rated Current (00.006) must be set correctly to avoid a risk of fire in the event of motor overload.

There is also provision for the use of a motor thermistor to prevent overheating of the motor, e.g. due to loss of cooling.

4.9.1 Cable types and lengths

Since capacitance in the motor cable causes loading on the output of the drive, ensure the cable length does not exceed the values given in Table 4-15 to Table 4-18.

Use 105 °C (221 °F) (UL 60/75 °C temp rise) PVC-insulated cable with copper conductors having a suitable voltage rating, for the following power connections:

- AC supply to external EMC filter (when used)
- AC supply (or external EMC filter) to drive
- · Drive to motor
- · Drive to braking resistor

Table 4-15 Maximum motor cable lengths (200 V drives)

		200 V N	ominal A	C supply v	voltage			
Model	Maxim	•		motor cab switching	•		of the	
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	
03200066			65 m (210) ft)				
03200080		100 n	n (330 ft)			50 m	37 m	
03200110	13	0 m (425	5 ft)	100 m	75 m	(165 ft)	(120 ft)	
03200127	200 m (660 ft)		150 m (490 ft)	(330 ft)	(245 ft)	,	,	
04200180	200 m (660 ft)		150 m	100 m	75 m	50 m	37 m	
04200250	200 m (660 π)		(490 ft)	(330 ft)	(245 ft)	(165 ft)	(120 ft)	
05200300	200 m (660 ft)		150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
06200500	200 m (660 ft)		150 m	100 m	75 m	50 m	37 m	
06200580	200 111	(000 11)	(490 ft)	(330 ft)	(245 ft)	(165 ft)	(120 ft)	
07200750			187 m	125 m	93 m	62 m	46 m	
07200940	250 m	(820 ft)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)	
07201170			,	(- /	(,	(,	(- /	
08201490	250 m	(820 ft)	187 m	125 m	93 m	62 m	46 m	
08201800	250 m (820 ft)		(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)	
09202160	250 m (820 ft)		187 m	125 m	93 m	62 m	46 m	
09202660	250 m (820 lt)		(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)	
10203250	250 m (820 ft)		187 m	125 m	93 m	62 m	46 m	
10203600	250 m (820 ft)		(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)	

Table 4-16 Maximum motor cable lengths (400 V drives)

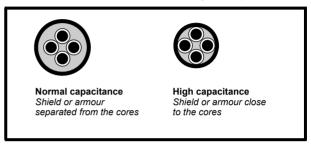
	4	00 V Noi	oltage/				
Model	Maxim	•	le length frequenc		of the		
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
03400034		6	5 m (210	ft)			
03400045		100 m	(330 ft)				
03400062	13	0 m (425	ft)			50 m	37 m
03400077				100 m	75 m (245 ft)	(165 ft)	(120 ft)
03400104	200 m	(660 ft)	150 m (490 ft)	(330 ft)	(243 11)		
03400123			(490 11)				
04400185	200 m	(660 ft)	150 m	100 m	75 m	50 m	37 m
04400240	200 111	(660 ft)	(490 ft)	(330 ft)	(245 ft)	(165 ft)	(120 ft)
05400300	200 m	(660 ft)	150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)
06400380	200) m	150 m	100 m	75 m	50 m	37 m
06400480		200 m (660 ft)		(330 ft)	(245 ft)	(165 ft)	(120 ft)
06400630	(- ,	(490 ft)	,	(- /	(,	(- /
07400790			187 m	125 m	93 m	62 m	46 m
07400940	250 m	(820 ft)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)
07401120							
08401550	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m
08401840			,	,	,	,	(151 ft)
09402210 09402660	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)
10403200	250 m (820 ft)		,	125 m	93 m	62 m	46 m
10403200	250 m (820 ft)		187 m (614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)
11404370			(0 :)	(,	(000 11)	(====)	(1011)
11404870	250 m	(820 ft)	187 m	125 m	93 m		
11405070	200 ///	((614 ft)	(410 ft)	(305 ft)		
.7100070			l				

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		•		•	•			

Table 4-17 Maximum motor cable lengths (575 V drives)

	5	75 V Nor	ninal AC	supply v	oltage					
Model	Maximum permissible motor cable length for each of the following switching frequencies									
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz			
05500039	200) m	150 m	100 m	75 m	50 m	37 m			
05500061	(660		(490 ft)	(330 ft)	(245 ft)	(165 ft)	(120 ft)			
05500100	(00.	3 1.1)	(10011)	(000 11)	(21011)	(10011)	(120 11)			
06500120										
06500170										
06500220	200 m (660 ft)		150 m	100 m	75 m	50 m	37 m			
06500270			(490 ft)	(330 ft)	(245 ft)	(165 ft)	(120 ft)			
06500340										
06500430										
07500530	250 m	(820 ft)	187 m	125 m	93 m	62 m	46 m			
07500730	200 111	(020 11)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
08500860	250 m	(820 ft)	187 m	125 m	93 m	62 m	46 m			
08501080	200 111	(020 11)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
09501250	250 m	(820 ft)	187 m	125 m	93 m	62 m	46 m			
09501500	250 m (820 ft)		(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
10502000	250 m (820 ft)		187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)			
11502480			187 m							
11502880	250 m (820 ft)		(614 ft)							
11503150			(5.110)							

Table 4-18 Maximum motor cable lengths (690 V drives)


	690 V Nominal AC supply voltage									
Model	Maximum permissible motor cable length for each of the following switching frequencies									
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz			
07600230										
07600300										
07600360	250 m		187 m	125 m	93 m	62 m	46 m			
07600460	(820 ft)		(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
07600520										
07600730										
08600860	250) m	187 m	125 m	93 m	62 m	46 m			
08601080	(82	Oft)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
09601250	250) m	187 m	125 m	93 m	62 m	46 m			
09601550	(82	Oft)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
10601720	250) m	187 m	125 m	93 m	62 m	46 m			
10601970	(82	Oft)	(614 ft)	(410 ft)	(305 ft)	(203 ft)	(151 ft)			
11602250	250) m	187 m							
11602750	250 m (820 ft)		(614 ft)							
11603050	(02)	<i>J</i> 11)	(3.110)							

4.9.2 High-capacitance / reduced diameter cables

The maximum cable length is reduced from that shown in section 4.9.1 *Cable types and lengths* if high capacitance or reduced diameter motor cables are used. For further information, refer to section 4.9.2 *High-capacitance / reduced diameter cables* on page 118.

Most cables have an insulating jacket between the cores and the armor or shield; these cables have a low capacitance and are recommended. Cables that do not have an insulating jacket tend to have high capacitance; if a cable of this type is used, the maximum cable length is half that quoted in the tables, (Figure 4-22 shows how to identify the two types).

Figure 4-22 Cable construction influencing the capacitance

The maximum motor cable lengths specified in section 4.9.1 *Cable types and lengths* is shielded and contains four cores. Typical capacitance for this type of cable is 130 pF/m (i.e. from one core to all others and the shield connected together).

4.9.3 Motor winding voltage

The PWM output voltage can adversely affect the inter-turn insulation in the motor. This is because of the high rate of change of voltage, in conjunction with the impedance of the motor cable and the distributed nature of the motor winding.

For normal operation with AC supplies up to 500 Vac and a standard motor with a good quality insulation system, there is no need for any special precautions. In case of doubt the motor supplier should be consulted. Special precautions are recommended under the following conditions, but only if the motor cable length exceeds 10 m:

- AC supply voltage exceeds 500 V
- DC supply voltage exceeds 670 V (i.e. regenerative / AFE supply)
- Operation of 400 V drive with continuous or very frequent sustained braking
- · Multiple motors connected to a single drive

For multiple motors, the precautions given in section 4.9.4 *Multiple motors* on page 119 should be followed.

For the other cases listed, it is recommended that an inverter-rated motor be used taking into account the voltage rating of the inverter. This has a reinforced insulation system intended by the manufacturer for repetitive fast-rising pulsed voltage operation.

Users of 575 V NEMA rated motors should note that the specification for inverter-rated motors given in NEMA MG1 section 31 is sufficient for motoring operation but not where the motor spends significant periods braking. In that case an insulation peak voltage rating of 2.2 kV is recommended.

If it is not practical to use an inverter-rated motor, an output choke (inductor) should be used. The recommended type is a simple iron-cored component with a reactance of about 2 %. The exact value is not critical. This operates in conjunction with the capacitance of the motor cable to increase the rise-time of the motor terminal voltage and prevent excessive electrical stress.

UL listing Safety Functional NV Media Card Product Mechanical **Electrical** started / Basic Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

Multiple motors 4.9.4

Open-loop only

If the drive is to control more than one motor, one of the fixed V/F modes should be selected (Pr 05.014 = Fixed or Squared). Make the motor connections as shown in Figure 4-23 and Figure 4-24. The maximum motor cable lengths specified in section 4.9.1 Cable types and lengths on page 117 apply to the sum of the total cable lengths from the drive to each motor.

It is recommended that each motor is connected through a protection relay since the drive cannot protect each motor individually. For λ connection, a sinusoidal filter or an output inductor must be connected as shown in Figure 4-24, even when the cable lengths are less than the maximum permissible. For high DC voltages or when supplied by a regen system, a sinusoidal filter is recommended. For details of filter or inductor sizes refer to the supplier of the drive.

Figure 4-23 Preferred chain connection for multiple motors

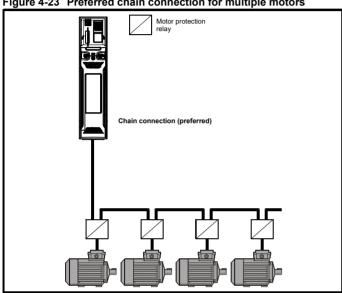
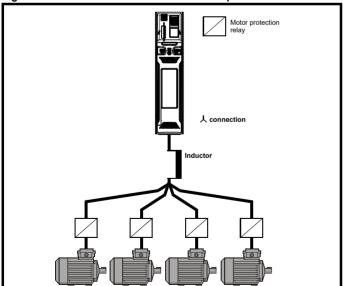



Figure 4-24 Alternative connection for multiple motors

4.9.5 人 / Δ motor operation

The voltage rating for $oldsymbol{\curlywedge}$ and Δ connections of the motor should always be checked before attempting to run the motor.

The default setting of the motor rated voltage parameter is the same as the drive rated voltage, i.e.

400 V drive 400 V rated voltage 230 V drive 230 V rated voltage

A typical 3 phase motor would be connected in \curlywedge for 400 V operation or Δ for 230 V operation, however, variations on this are common e.g. \curlywedge 690 \lor Δ 400 \lor .

Incorrect connection of the windings will cause severe under or over fluxing of the motor, leading to a very poor output torque or motor saturation and overheating respectively.

4.9.6 **Output contactor**

If the cable between the drive and the motor is to be interrupted by a contactor or circuit breaker, ensure that the drive is disabled before the contactor or circuit breaker is opened or closed. Severe arcing may occur if this circuit is interrupted with the motor running at high current and low

A contactor is sometimes required to be installed between the drive and motor for safety purposes.

The recommended motor contactor is the AC3 type.

Switching of an output contactor should only occur when the output of the drive is disabled.

Opening or closing of the contactor with the drive enabled will lead to:

- 1. OI ac trips (which cannot be reset for 10 seconds)
- High levels of radio frequency noise emission
- Increased contactor wear and tear

The Drive Enable terminal (T29) when opened provides a Safe Torque Off function. This can in many cases replace output contactors.

For further information see section 4.15 Safe Torque Off (STO) on page 141.

0.6.6.	Decident	Marchandard	Floodstool	Getting	D	F		AD (Martin Const	A di	Technologi		I II - Parkin ii
Safety information	Product information	Mechanical installation	Electrical installation	started / Running	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor				·	•			

4.10 Ground leakage

The ground leakage current depends upon whether the internal EMC filter is installed or not. The drive is supplied with the filter installed. Instructions for removing the internal filter are given in section 4.12.2 *Internal EMC filter* on page 128.

With internal filter installed:

Size 3 to 5: 28 mA* AC at 400 V 50 Hz

30 μA DC with a 600 V DC bus (10 $M\Omega$)

Size 7 to 11: 56 mA* AC at 400 V 50 Hz

18 μ A DC with a 600 V DC bus (33 $M\Omega$)

Size 12: 18 mA* AC at 400 V 50 Hz with internal filter in circuit

* Proportional to the supply voltage and frequency.

With internal filter removed**:

Size 3 to 11: < 1 mA **Size 12:** < 63 mA

**Please note that the internal filter is not removable on size 9E, 10E and 11E

When the internal filter is installed the leakage current is high. In this case a permanent fixed ground connection must be provided, or other suitable measures taken to prevent a safety hazard occurring if the connection is lost.

4.10.1 Use of residual current device (RCD)

There are three common types of ELCB / RCD:

- 1. AC detects AC fault currents
- 2. A detects AC and pulsating DC fault currents (provided the DC current reaches zero at least once every half cycle)
- 3. B detects AC, pulsating DC and smooth DC fault currents
 - Type AC should never be used with drives.
 - Type A can only be used with single phase drives
 - Type B must be used with three phase drives

Only type B ELCB / RCD are suitable for use with 3 phase inverter drives.

WARNING

If an external EMC filter is used, a delay of at least 50 ms should be incorporated to ensure spurious trips are not seen. The leakage current is likely to exceed the trip level if all of the phases are not energized simultaneously.

120

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-				-			

4.11 Braking

Braking occurs when the drive is decelerating the motor, or is preventing the motor from gaining speed due to mechanical influences. During braking, energy is returned to the drive from the motor. When motor braking is applied by the drive, the maximum regenerated power that the drive can absorb is equal to the power dissipation (losses) of the drive.

When the regenerated power is likely to exceed these losses, the DC bus voltage of the drive increases. Under default conditions, the drive brakes the motor under PI control, which extends the deceleration time as necessary in order to prevent the DC bus voltage from rising above a user defined set-point.

If the drive is expected to rapidly decelerate a load, or to hold back an overhauling load, a braking resistor must be installed.

Table 4-19 shows the default DC voltage level at which the drive turns on the braking transistor. However the braking resistor turn on and the turn off voltages are programmable with *Braking IGBT Lower Threshold* (06.073) and *Braking IGBT Upper Threshold* (06.074).

Table 4-19 Default braking transistor turn on voltage

Drive voltage rating	DC bus voltage level
200 V	390 V
400 V	780 V
575 V	930 V
690 V	1120 V

NOTE

When a braking resistor is used, Pr 02.004 should be set to Fast ramp mode.

High temperatures

Braking resistors can reach high temperatures. Locate braking resistors so that damage cannot result. Use cable having insulation capable of withstanding high temperatures.

4.11.1 Heatsink mounted braking resistor

A resistor has been especially designed to be mounted within the heatsink of the drive (size 3, 4 and 5). See section 4.11.1 *Heatsink mounted braking resistor* on page 121 for mounting details. The design of the resistor is such that no thermal protection circuit is required, as the device will fail safely under fault conditions. On size 3, 4 and 5 the in built software overload protection is set-up at default for the designated heatsink mounted resistor. The heatsink mounted resistor is not supplied with the drive and can be purchased separately.

Table 4-20 provides the resistor data for each drive rating.

NOTE

The internal / heatsink mounted resistor is suitable for applications with a low level of regen energy only. See Table 4-20.

Braking resistor overload protection parameter settings Failure to observe the following information may damage the resistor.

The drive software contains an overload protection function for a braking resistor. On size 3, 4 and 5 this function is enabled at default to protect the heatsink mounted resistor. Below are the parameter settings.

				Size 4		Size 5		
Parameter			400 V drive	200 V drive	400 V drive	200 V drive	400 V drive	575 V drive
Braking resistor rated power	Pr 10.030	50 W		100 W		100 W		
Braking resistor thermal time constant	onstant Pr 10.031		3.3 s		2.0 s		2.0 s	
Braking resistor resistance Pr 10.061		75	Ω	38 Ω		38 Ω		

For more information on the braking resistor software overload protection, see Pr 10.030, Pr 10.031 and Pr 10.061 full descriptions in the *Parameter Reference Guide*.

If the resistor is to be used at more than half of its average power rating, the drive cooling fan must be set to full speed by setting Pr 06.045 to 11.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

Table 4-20 Heatsink mounted braking resistor data

Parameter	Size 3	Size 4			
Part number	1220-2752-00	1299-0003-00			
DC resistance at 25 °C	75 Ω	37.5 Ω			
Peak instantaneous power over 1 ms at nominal resistance	8 kW	16 kW			
Average power over 60 s *	50 W	0 W			
Ingress Protection (IP) rating	IP54				
Maximum altitude	2000 m				

^{*} To keep the temperature of the resistor below 70 °C (158 °F) in a 30 °C (86 °F) ambient, the average power rating is 50 W for size 3, 100 W for size 4 and 5. The above parameter settings ensure this is the case.

4.11.2 **External braking resistor**

Overload protection

When an external braking resistor is used, it is essential that an overload protection device is incorporated in the braking WARNING resistor circuit; this is described in Figure 4-25 on page 125.

When a braking resistor is to be mounted outside the enclosure, ensure that it is mounted in a ventilated metal housing that will perform the following functions:

- Prevent inadvertent contact with the resistor
- Allow adequate ventilation for the resistor

When compliance with EMC emission standards is required, external connection requires the cable to be armored or shielded, since it is not fully contained in a metal enclosure. See section 4.12.6 Compliance with generic emission standards on page 132 for further details.

Internal connection does not require the cable to be armored or shielded.

Minimum resistances and power ratings for the braking resistor at 40 °C (104 °F)

Table 4-21 Braking resistor resistance and power rating (200 V)

Model	Minimum resistance*	Instantaneous power rating	Continuous power rating
	Ω	kW	kW
03200066			0.75
03200080	22	7.7	1.1
03200110	22	7.7	1.5
03200127			2.2
04200180	18	9.4	3
04200250	10	9.4	4
05200300	19	8.9	5.5
06200500	10	16.9	7.5
06200580	10	16.9	11
07200750	4.5	37.6	15
07200940	4.5	37.0	18.5
07201170	4.5	37.6	22
08201490	2.3	73.5	30
08201800	2.5	73.5	37
09202160 (9A)	2	84.5	45
09202660 (9A)	2	04.5	55
09202160 (9E)	1.4	120.8	45
09202660(9E)	1.4	120.0	55
10203250	1.7	00.5	75
10203600	1.7	99.5	90

Table 4-22 Braking resistor resistance and power rating (400 V)

			1
Model	Minimum resistance*	Instantaneous power rating	Continuous power rating
	Ω	kW	kW
03400034			0.75
03400045	74	9.2	1.1
03400062	74	3.2	1.5
03400077			2.2
03400104	50	13.6	3
03400123	30	13.0	4
04400185	37	18.3	5.5
04400240	37	10.3	7.5
05400300	40	16.9	11
06400380			15
06400480	20	33.8	18.5
06400630			22
07400790			30
07400940	7.5	90.2	37
07401120			45
08401550	6.3	107.4	55
08401840	0.5	107.4	75
09402210 (9A)	3.6	187.8	90
09402660 (9A)	3.0	107.0	110
09402210 (9E)	2.6	260	90
09402660 (9E)	2.0	200	110
10403200	3.1	218.1	132
10403610	J. I	210.1	160
11404370	1.83	369.4	185
11404870	1.2	563.4	200
11405070	1.2	303.4	250

Table 4-23 Frame 12 Minimum resistance values and peak power rating for the braking resistor at 40 °C (104 °F)

Voltage range	resistance* Ω		Average Power for 60 s (kW)
400 V	2.6	234	209

^{*} Resistor tolerance: ±10 %

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 4-24 Braking resistor resistance and power rating (575 V)

Model	Minimum resistance*	Instantaneous power rating	Continuous power rating			
	Ω	kW	kW			
05500039			1.5			
05500061	80	12.1	2.2			
05500100			4			
06500120			5.5			
06500170			7.5			
06500220	15	64.1	11			
06500270		04.1	15			
06500340			18.5			
06500430			22			
07500530	11	87.4	30			
07500730	11	07.4	37			
08500860	5.5	174.8	45			
08501080	3.3	174.0	55			
09501250 (9A)	5.1	188.5	75			
09501500(9A)	3.1	100.5	90			
09501250 (9E)	3.3	291.3	75			
09501500 (9E)	3.3	291.5	90			
10502000 11502480	3.3	291.3	110			
			150			
11502880	1.83	525.2	185			
11503150			225			

Table 4-25 Braking resistor resistance and power rating (690 V)

Model	Minimum resistance*	Instantaneous power rating	Continuous power rating
	Ω	kW	kW
07600230			15
07600300			18.5
07600360	13	107.3	22
07600460	13	107.3	30
07600520			37
07600730			45
08600860	5.5	253.5	55
08601080	5.5	200.0	75
09601250(9A)	6.5	214.5	90
09601500(9A)	0.5	214.3	110
09601250(9E)	4.2	331.9	90
09601500 (9E)	4.2	331.9	110
10601720	4.2	331.9	132
10601970	3.8	366.8	160
11602250			185
11602750	2.2	633.6	200
11603050			250

^{*} Resistor tolerance: ±10 %

For high-inertia loads, the *continuous power* dissipated in the braking resistor may be as high as the power rating of the drive. The total *energy* dissipated in the braking resistor is dependent on the amount of energy to be extracted from the load.

The instantaneous power rating refers to the short-term maximum power dissipated during the *on* intervals of the pulse width modulated braking control cycle. The braking resistor must be able to withstand this dissipation for short intervals (milliseconds). Higher resistance values require proportionately lower instantaneous power ratings.

In most applications, braking occurs only occasionally. This allows the continuous power rating of the braking resistor to be much lower than the power rating of the drive. It is therefore essential that the instantaneous power rating and energy rating of the braking resistor are sufficient for the most extreme braking duty that is likely to be encountered.

Optimization of the braking resistor requires careful consideration of the braking duty.

Select a value of resistance for the braking resistor that is not less than the specified minimum resistance. Larger resistance values may give a cost saving, as well as a safety benefit in the event of a fault in the braking system. Braking capability will then be reduced, which could cause the drive to trip during braking if the value chosen is too large.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional		NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

The following external brake resistors are available from Control Techniques for drive sizes 3 to 6.

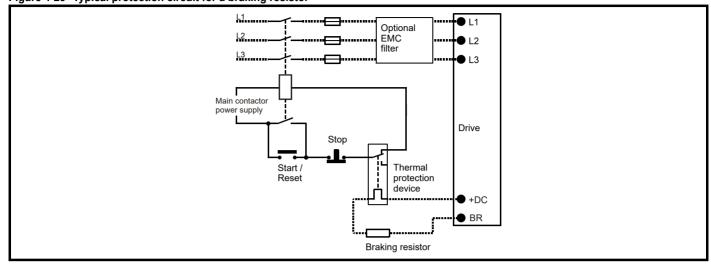
Table 4-26 External brake resistors for drive sizes 3 to 6

Part number	Part description	Resistance value	Continuous power (40 °C)	Max. instantaneous (40 °C) ton = 1 ms	Pulse power (40 °C) 1/120 s (ED 0.8 %)	Pulse power (40 °C) 5/120 s (ED 4.2 %)	Pulse power (40 °C) 10/120 s (ED 8.3 %)	Pulse power (40 °C) 40/120 s (ED 33.3 %)
1220-2201	DBR, 100 W, 20R, 130 x 68, TS	20 Ω	100 W	2.0 MW	2300 W	1000 W	650 W	250 W
1220-2401	DBR, 100 W, 40R, 130 x 68, TS	40 Ω	100 W	1.6 MW	1900 W	900 W	610 W	240 W
1220-2801	DBR, 100 W, 80R, 130 x 68, TS	80 Ω	100 W	1.25 MW	1500 W	775 W	570 W	230 W

The brake resistors can be used in a series or parallel to get the required resistance and power depending on the size of the drive as per Table 4-21 to Table 4-25. The brake resistor is equipped with a thermal switch. The thermal switch should be integrated in the control circuit by the user.

The resistor combinations shown in Table 4-27 below can be made using one or more brake resistor/s from Table 4-26 above. Pr 10.030, Pr 10.031 and Pr 10.061 should be set as per information provided in Table 4-27 below. Refer to description of Pr 10.030, Pr 10.031 and Pr 10.061 in the Parameter Reference Guide for more information.

Table 4-27 Resistor combinations


Pump Drive F600 type	Normal duty (kW)	150 % Peak power (Ω)	Braking voltage (Vdc)	Resistor Min. value (Ω)	Resistor combinations (Ω)		
03200066	1.1	135					
03200080	1.5	92	390	22	1 x 40 = 40		
03200110	2.2	68	390	22	2 x 80 = 40 (when connected in parallel)		
03200127	3	46					
03400034	1.1	540					
03400045	1.5	370	1	74			
03400062	2.2	271	780	74	1 x 80 = 80		
03400077	3	184	700		2 x 40 = 80 (when connected in series)		
03400104	4	135	1	50	1		
03400123	5.5	101	1	50			
04200180	4	34	390	18	1 x 20 = 20		
04200250	5.5	26	390	10	2 x 40 = 20 (when connected in parallel)		
04400185	7.5	74	780	37	1 x 40 = 40		
04400240	11	54	700	31	2 x 80 = 40 (when connected in parallel)		
05200300	7.5	19	390	19	1 x 20 = 20 2 x 40 = 20 (when connected in parallel)		
05400300	15	37	780	40	1 x 40 = 40 2 x 80 = 40 (when connected in parallel)		
05500039	2.2	384					
05500061	4	263	930	80	1 x 80 = 80 2 x 40 = 80 (when connected in parallel)		
05500100	5.5	144	1		2 x 40 - 00 (when connected in parallel)		
06200500	11	13.3	390	10	2 x 20 = 10 (when connected in parallel)		
06200580	15	9.3	390	10	4 x 40 = 10 (when connected in parallel)		
06400380	18.5	27			1 x 20 = 20		
06400480	22	22	780	20	2 x 40 = 20 (when connected in parallel)		
06400630	30	18.4	1		4 x 80 = 20 (when connected in parallel)		
06500120	7.5	104					
06500170	11	77	1				
	15	52	930	15	$1 \times 20 = 20$		
	18.5	39	930	15	2 x 40 = 20 (when connected in parallel) 4 x 80 = 20 (when connected in parallel)		
	22	33			. X 00 20 (Whom contributed in paralle		
	30	27	7				

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information i	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor					-			

Thermal protection circuit for the braking resistor

The thermal protection circuit must disconnect the AC supply from the drive if the resistor becomes overloaded due to a fault. Figure 4-25 shows a typical circuit arrangement.

Figure 4-25 Typical protection circuit for a braking resistor

See Figure 4-1 on page 96 and Figure 4-4 on page 99 for the location of the +DC and braking resistor connections.

4.11.3 Braking resistor software overload protection

The drive software contains an overload protection function for a braking resistor. In order to enable and set-up this function, it is necessary to enter three values into the drive:

- Braking Resistor Rated Power (10.030)
- Braking Resistor Thermal Time Constant (10.031)
- Braking Resistor Resistance (10.061)

This data should be obtained from the manufacturer of the braking resistors. The braking resistor thermal time constant can be calculated from resistor data sheet values using the following equation:

Pr 10.031 = Resistor pulse power rating x Braking time Resistor continuous power rating

Pr 10.039 gives an indication of braking resistor temperature based on a simple thermal model. Zero indicates the resistor is close to ambient and 100 % is the maximum temperature the resistor can withstand. A 'Brake Resistor' alarm is given if this parameter is above 75 % and the braking IGBT is active. A Brake R Too Hot trip will occur if Pr 10.039 reaches 100 %, when Pr 10.037 is set to 0 (default value) or 1.

If Pr 10.037 is equal to 2 or 3, a Brake R Too Hot trip will not occur when Pr 10.039 reaches 100 %, but instead the braking IGBT will be disabled until Pr 10.039 falls below 95 %. This option is intended for applications with parallel connected DC buses where there are several braking resistors, each of which cannot withstand full DC bus voltage continuously. With this type of application it is unlikely the braking energy will be shared equally between the resistors because of voltage measurement tolerances within the individual drives. Therefore with Pr 10.037 set to 2 or 3, then as soon as a resistor has reached its maximum temperature the drive will disable the braking IGBT, and another resistor on another drive will take up the braking energy. Once Pr 10.039 has fallen below 95 % the drive will allow the braking IGBT to operate again.

See the Parameter Reference Guide for more information on Pr 10.030, Pr 10.031, Pr 10.037 and Pr 10.039.

This software overload protection should be used in addition to an external overload protection device.

4.12 EMC (Electromagnetic compatibility)

The requirements for EMC are divided into three levels in the following three sections:

Section 4.12.4, General requirements for all applications, to ensure reliable operation of the drive and minimise the risk of disturbing nearby equipment. The immunity standards specified in Chapter 11 *Technical data* on page 425 will be met, but no specific emission standards are applied. Note also the special requirements given in *Surge immunity of control circuits - long cables and connections outside a building* on page 135 for increased surge immunity of control circuits where control wiring is extended.

Section 4.12.5, Requirements for meeting the EMC standard for power drive systems, IEC61800-3 (EN 61800-3:2004).

Section 4.12.6, Requirements for meeting the generic emission standards for the industrial environment, IEC61000-6-4, EN 61000-6-4:2007.

The recommendations of section 4.12.4 will usually be sufficient to avoid causing disturbance to adjacent equipment of industrial quality. If particularly sensitive equipment is to be used nearby, or in a non-industrial environment, then the recommendations of section 4.12.5 or section 4.12.6 should be followed to give reduced radio-frequency emission.

In order to ensure the installation meets the various emission standards described in:

- The EMC data sheet available from the supplier of the drive
- The Declaration of Conformity at the front of this manual
- · Chapter 11 Technical data on page 425

				Getting								
Safety	Product	Mechanical		started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
i				the Motor								

The correct external EMC filter must be used and all of the guidelines in section 4.12.4 *General requirements for EMC* on page 131 and section 4.12.6 *Compliance with generic emission standards* on page 132 must be followed.

Table 4-28 Drive and EMC filter cross reference

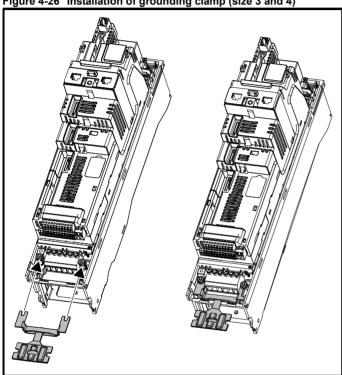
Model	CT part number
200 V	
03200066 to 03200127	4200-3230
04200180 to 04200250	4200-0272
05200300	4200-0312
06200500 to 06200580	4200-2300
07200750 to 07201170	4200-1132
08201490 to 08201800	4200-1972
09202160 to 09202660 (9A)	4200-3021
09202160 to 09202660 (9E)	4200-4460
10203250 to 10203600	4200-4460
400 V	
03400034 to 03400123	4200-3480
04400185 to 04400240	4200-0252
05400300	4200-0402
06400380 to 06400630	4200-4800
07400790 to 07401120	4200-1132
08401550 to 08401840	4200-1972
09402210 to 09402660 (9A)	4200-3021
09402210 to 09402660 (9E)	4200-4460
10403200 to 10403610	4200-4460
11404370 to 11405070	4200-0400
575 V	
05500039 to 05500100	4200-0122
06500120 to 06500430	4200-3690
07500530 to 07500730	4200-0672
08500860 to 08501080	4200-1662
09501250 to 09501500 (9A)	4200-1660
09501250 to 09501500 (9E)	4200-2210
10502000	4200-2210
11502480 to 11503150	4200-0690
690 V	
07600230 to 07600730	4200-0672
08600860 to 08601080	4200-1662
09601250 to 09601550 (9A)	4200-1660
09601250 to 09601550 (9E)	4200-2210
10601720 to 10601970	4200-2210
11602250 to 11603050	4200-0690

High ground leakage current

When an EMC filter is used, a permanent fixed ground connection must be provided which does not pass through a connector or flexible power cord. This includes the internal EMC filter.

NOTE

The installer of the drive is responsible for ensuring compliance with the EMC regulations that apply in the country in which the drive is to be used.


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								ľ

4.12.1 **Grounding hardware**

The drive is supplied with a grounding bracket and grounding clamp to facilitate EMC compliance. They provide a convenient method for direct grounding of cable shields without the use of "pig-tails". Cable shields can be bared and clamped to the grounding bracket using metal clips or clamps¹ (not supplied) or cable ties. Note that the shield must in all cases be continued through the clamp to the intended terminal on the drive, in accordance with the connection details for the specific signal.

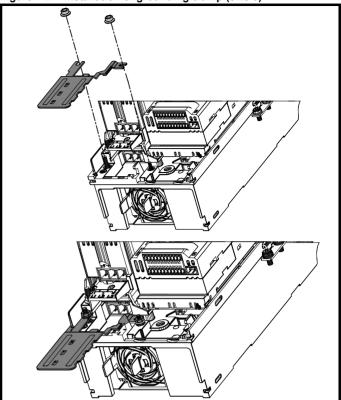
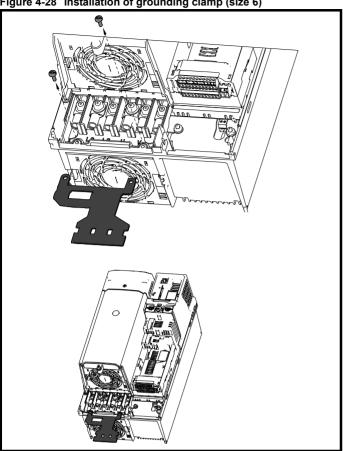

- ¹ A suitable clamp is the Phoenix DIN rail mounted SK14 cable clamp (for cables with a maximum outer diameter of 14 mm).
- See Figure 4-26, Figure 4-27 and Figure 4-28 for details on installing the grounding clamp.
- See Figure 4-29 for details on installing the grounding bracket.

Figure 4-26 Installation of grounding clamp (size 3 and 4)

Loosen the ground connection nuts and slide the grounding clamp in the direction shown. Once in place, the ground connection nuts should be tightened with a maximum torque of 2 Nm (17.7 lb in).


Figure 4-27 Installation of grounding clamp (size 5)

Loosen the ground connection nuts and slide the grounding clamp down onto the pillars in the direction shown. Once in place, the ground connection nuts should be tightened with a maximum torque of 2 Nm (17.7 lb in).

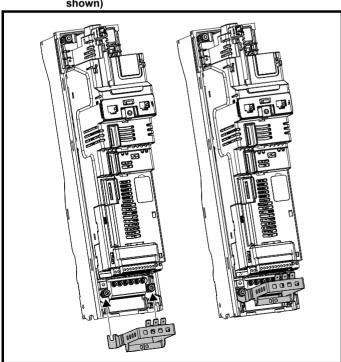

UL listing Functional NV Media Card Safety Product Mechanical **Electrical** started / Rasic Advanced Technical Optimization Diagnostics information information installation installation Runnina parameters descriptions Operation parameters data information the Moto

Figure 4-28 Installation of grounding clamp (size 6)

The grounding clamp is secured using the provided 2 x M4 x 10 mm fasteners. The fasteners should be tightened with the maximum torque of 2 Nm (1.47 lb ft).

Figure 4-29 Installation of grounding bracket (all sizes - size 3

Loosen the ground connection nuts and slide the grounding bracket in the direction shown. Once in place, the ground connection nuts should be tightened with a maximum torque of 2 Nm (17.7 lb in).

On size 3 the grounding bracket is secured using the power ground terminal of the drive. Ensure that the supply ground connection is secure after installing / removing the grounding bracket. Failure to do so will result in the drive not being grounded.

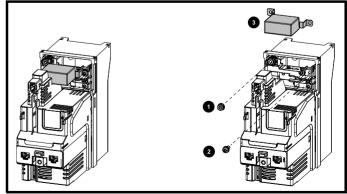
A faston tab is located on the grounding bracket for the purpose of connecting the drive 0V to ground should the user require to do so.

Internal EMC filter

It is recommended that the internal EMC filter be kept in place unless there is a specific reason for removing it.

If the drive is used with ungrounded (IT) supplies, the internal EMC filter must be removed unless additional motor ground fault protection is installed.

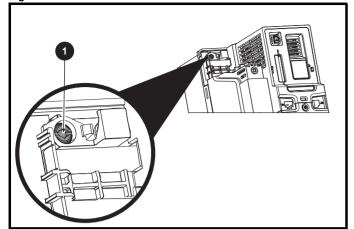
For instructions on removal refer to section 4.12.2. For details of ground fault protection contact the supplier of the drive.


If the drive is used as part of a regen system, then the internal EMC filter

The internal EMC filter reduces radio-frequency emission into the line power supply. Where the motor cable is short, it permits the requirements of EN 61800-3:2004 to be met for the second environment - see section 4.12.5 Compliance with EN 61800-3:2004 (standard for Power Drive Systems) on page 132 and section 11.1.24 Electromagnetic compatibility (EMC) on page 452. For longer motor cables the filter continues to provide a useful reduction in emission levels, and when used with any length of shielded motor cable up to the limit for the drive, it is unlikely that nearby industrial equipment will be disturbed. It is recommended that the filter be used in all applications unless the instructions given above require it to be removed, or where the ground leakage current of 28 mA for size 3 is unacceptable. See section 4.12.2 for details of removing and installing the internal EMC

The supply must be disconnected before removing the internal EMC filter.

Figure 4-30 Removal of the size 3 internal EMC filter



Remove the screw and nut (1) and (2) as shown above. Lift away from the securing points and rotate away from the drive. Ensure the screw and nut are replaced and re-tightened with a maximum torque of 2 Nm (17.7 lb in).

128

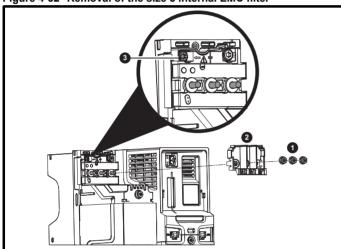

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		•			-			

Figure 4-31 Removal of the size 4 internal EMC filter

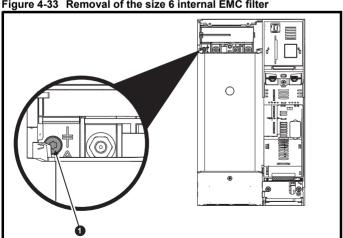

To electrically disconnect the Internal EMC filter, remove the screw as highlighted above (1).

Figure 4-32 Removal of the size 5 internal EMC filter

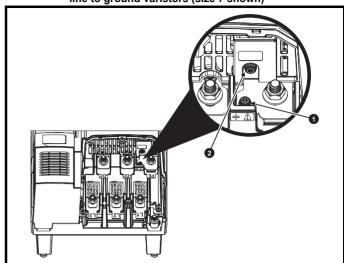

Remove the three M4 terminal nuts (1). Lift away the cover (2) to expose the M4 Torx internal EMC filter removal screw. Finally remove the M4 Torx internal EMC filter removal screw (3) to electrically disconnect the internal EMC filter.

Figure 4-33 Removal of the size 6 internal EMC filter

To electrically disconnect the Internal EMC filter, remove the screw as highlighted above (1).

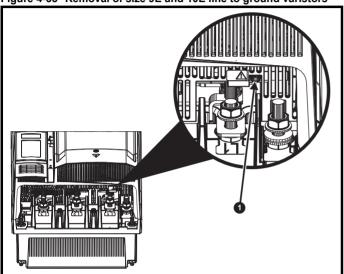
Figure 4-34 Removal of the size 7, 8 and 9A internal EMC filter and line to ground varistors (size 7 shown)

To electrically disconnect the Internal EMC filter, remove the screw as highlighted above (1).

To electrically disconnect the line to ground varistors, remove the screw as highlighted above (2).

NOTE

The Internal EMC filter on size 9E, 10E and 11E cannot be removed.


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
1				the Motor								ŀ

4.12.3 Line to ground varistors

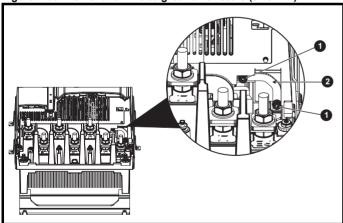

The line to ground varistors should only be removed in special circumstances such as ungrounded supplies with more than one source, for example on ships. Where the line to ground varistors are removed, ensure that line to ground transients are limited to values of category II. This is to ensure that line to ground transients do not exceed 4 kV as the drive insulation system from power to ground is designed to category II. Contact the supplier of the drive for more information.

Figure 4-35 Removal of size 9E and 10E line to ground varistors

To electrically disconnect the line to ground varistors, remove the screw as highlighted above (1).

Figure 4-36 Removal of line to ground varistors (size 11E)

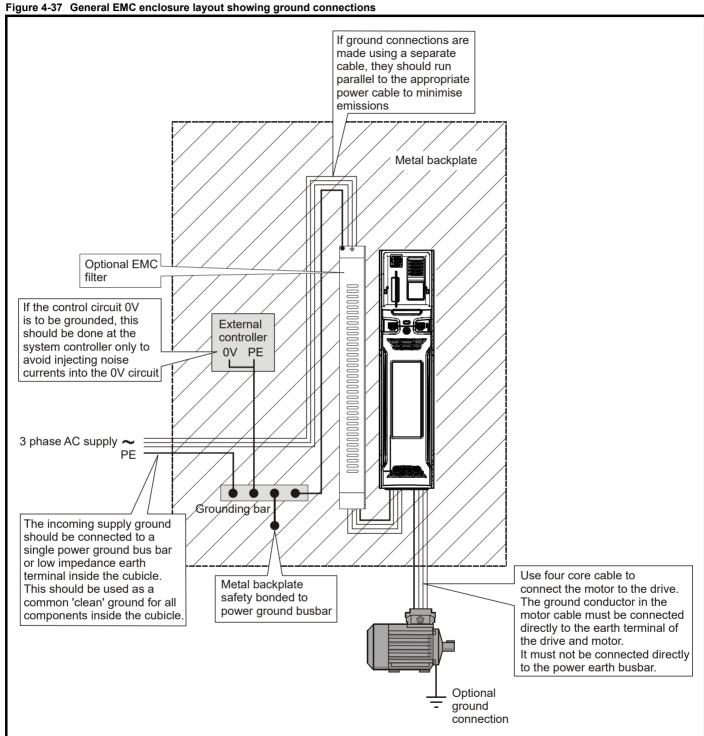
To electrically disconnect the line to ground varistors, remove the two screws highlighted (1) above and remove the bracket (2).

NOTE

The line to ground varistors should only be removed in special circumstances.

NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

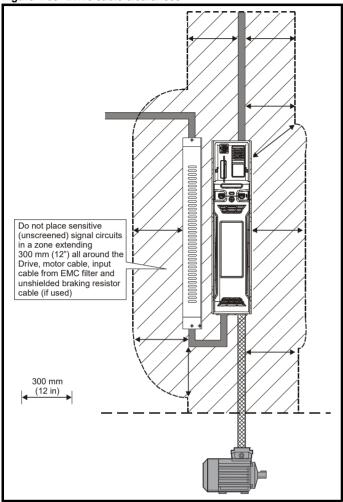

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-				-			

4.12.4 **General requirements for EMC**

Ground (earth) connections

The grounding arrangements should be in accordance with Figure 4-37, which shows a single drive on a back-plate with or without an additional enclosure.

Figure 4-37 shows how to configure and minimise EMC when using unshielded motor cable. However shielded cable is a better option, in which case it should be installed as shown in section 4.12.6 Compliance with generic emission standards on page 132.



UL listing Safety Product Mechanical **Electrical** started / Rasic **Functional** NV Media Card Advanced Technical Optimization Diagnostics information information installation installation Runnina parameters descriptions Operation parameters data information the Moto

Cable layout

Figure 4-38 indicates the clearances which should be observed around the drive and related 'noisy' power cables by all sensitive control signals / equipment.

Figure 4-38 Drive cable clearances

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the motor cable, to avoid this noise current spreading through the control system.

4.12.5 Compliance with EN 61800-3:2004 (standard for Power Drive Systems)

Meeting the requirements of this standard depends on the environment that the drive is intended to operate in, as follows:

Operation in the first environment

Observe the guidelines given in section 4.12.6 *Compliance with generic emission standards* on page 132. An external EMC filter will always be required.

This is a product of the restricted distribution class according to IEC 61800-3

In a residential environment this product may cause radio interference in which case the user may be required to take adequate measures.

Operation in the second environment

In all cases a shielded motor cable must be used, and an EMC filter is required for all drives with a rated input current of less than 100 A.

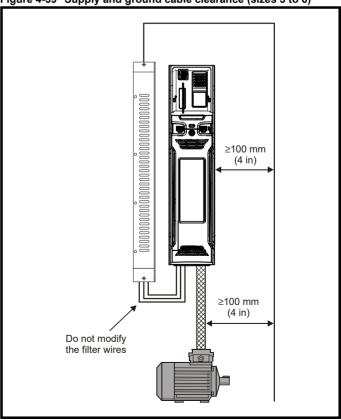
The drive contains an in-built filter for basic emission control. In some cases feeding the motor cables (U, V and W) once through a ferrite ring can maintain compliance for longer cable lengths.

For longer motor cables, an external filter is required. Where a filter is required, follow the guidelines in section 4.12.6 *Compliance with generic emission standards*.

Where a filter is not required, follow the guidelines given in section 4.12.4 *General requirements for EMC* on page 131.

The second environment typically includes an industrial low-voltage power supply network which does not supply buildings used for residential purposes. Operating the drive in this environment without an external EMC filter may cause interference to nearby electronic equipment whose sensitivity has not been appreciated. The user must take remedial measures if this situation arises. If the consequences of unexpected disturbances are severe, it is recommended that the guidelines in section 4.12.6 *Compliance with generic emission standards* be adhered to.

Refer to section 11.1.24 *Electromagnetic compatibility (EMC)* on page 452 for further information on compliance with EMC standards and definitions of environments.


Detailed instructions and EMC information are given in the *EMC Data Sheet* which is available from the supplier of the drive.

4.12.6 Compliance with generic emission standards

The following information applies to frame sizes 3 to 10.

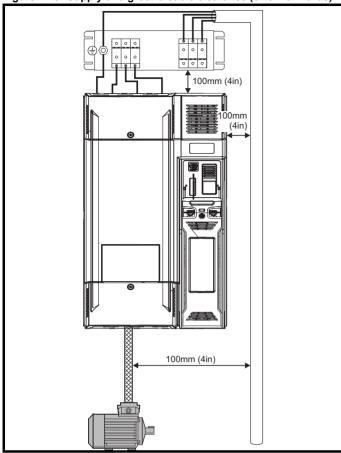

Use the recommended filter and shielded motor cable. Observe the layout rules given in Figure 4-39 and Figure 4-42. Ensure the AC supply and ground cables are at least 100 mm from the power module and motor cable.

Figure 4-39 Supply and ground cable clearance (sizes 3 to 6)

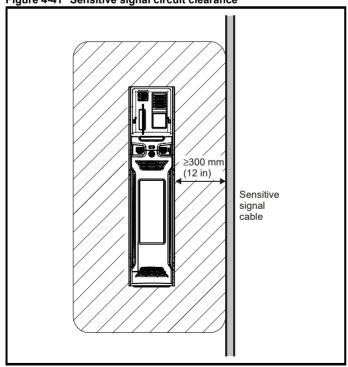

UL listing Safety Product Functional NV Media Card Mechanical **Electrical** started / Basic Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

Figure 4-40 Supply and ground cable clearance (size 7 onwards)

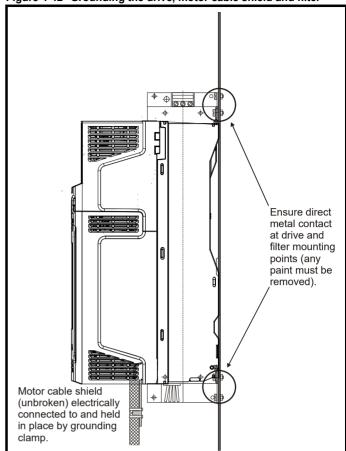
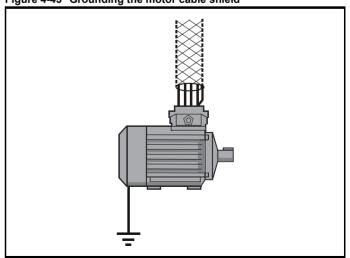

Ensure the AC supply and ground cables are at least 100 mm from the power module and motor cable.

Figure 4-41 Sensitive signal circuit clearance

Avoid placing sensitive signal circuits in a zone 300 mm (12 in) in the area immediately surrounding the power module. Ensure good EMC grounding.

Figure 4-42 Grounding the drive, motor cable shield and filter

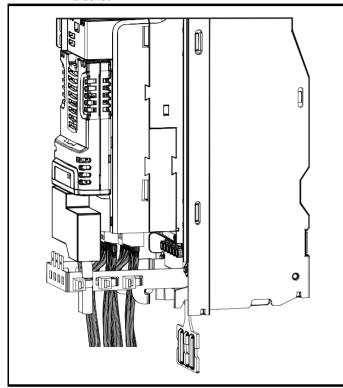


Connect the shield of the motor cable to the ground terminal of the motor frame using a link that is as short as possible and not exceeding 50 mm (2 in) long.

A complete 360° termination of the shield to the terminal housing of the motor is beneficial.

From an EMC consideration it is irrelevant whether the motor cable contains an internal (safety) ground core, or if there is a separate external ground conductor, or where grounding is through the shield alone. An internal ground core will carry a high noise current and therefore it must be terminated as close as possible to the shield termination.

Figure 4-43 Grounding the motor cable shield


Functional UL listing NV Media Card Safety Product Mechanical **Electrical** started Basic Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Moto

Unshielded wiring to the optional braking resistor(s) may be used provided the wiring runs internally to the enclosure.

If the control wiring is to leave the enclosure, it must be shielded and the shield(s) clamped to the drive using the grounding bracket as shown in Figure 4-44. Remove the outer insulating cover of the cable to ensure the shield(s) make direct contact with the bracket, but keep the shield(s) intact until as close as possible to the terminals

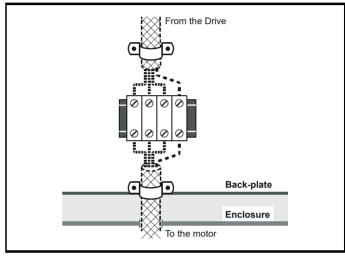
Alternatively, wiring may be passed through a ferrite ring, part number 3225-1004.

Figure 4-44 Grounding of signal cable shields using the grounding bracket

4.12.7 Variations in the EMC wiring

Interruptions to the motor cable

The motor cable should ideally be a single length of shielded or armored cable having no interruptions. In some situations it may be necessary to interrupt the cable, as in the following examples:

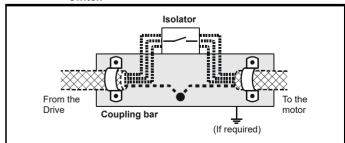

- · Connecting the motor cable to a terminal block in the drive enclosure
- Installing a motor isolator / disconnect switch for safety when work is done on the motor

In these cases the following guidelines should be followed.

Terminal block in the enclosure

The motor cable shields should be bonded to the back-plate using uninsulated metal cable-clamps which should be positioned as close as possible to the terminal block. Keep the length of power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3 m (12 in) away from the terminal block.

Figure 4-45 Connecting the motor cable to a terminal block in the enclosure


Using a motor isolator / disconnect-switch

The motor cable shields should be connected by a very short conductor having a low inductance. The use of a flat metal coupling-bar is recommended; conventional wire is not suitable.

The shields should be bonded directly to the coupling-bar using uninsulated metal cable-clamps. Keep the length of the exposed power conductors to a minimum and ensure that all sensitive equipment and circuits are at least 0.3 m (12 in) away.

The coupling-bar may be grounded to a known low-impedance ground nearby, for example a large metallic structure which is connected closely to the drive ground.

Figure 4-46 Connecting the motor cable to an isolator / disconnect switch

134

UL listing Functional Safety Product Mechanical **Electrical** started / Basic NV Media Card Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

Surge immunity of control circuits - long cables and connections outside a building

The input/output ports for the control circuits are designed for general use within machines and small systems without any special precautions.

These circuits meet the requirements of EN 61000-6-2:2005 (1 kV surge) provided the 0V connection is not grounded.

In applications where they may be exposed to high-energy voltage surges, some special measures may be required to prevent malfunction or damage. Surges may be caused by lightning or severe power faults in association with grounding arrangements which permit high transient voltages between nominally grounded points. This is a particular risk where the circuits extend outside the protection of a building.

As a general rule, if the circuits are to pass outside the building where the drive is located, or if cable runs within a building exceed 30 m, some additional precautions are advisable. One of the following techniques should be used:

- Galvanic isolation, i.e. do not connect the control 0V terminal to ground. Avoid loops in the control wiring, i.e. ensure every control wire is accompanied by its return (0V) wire.
- 2. Shielded cable with additional power ground bonding. The cable shield may be connected to ground at both ends, but in addition the ground conductors at both ends of the cable must be bonded together by a power ground cable (equipotential bonding cable) with cross-sectional area of at least 10 mm², or 10 times the area of the signal cable shield, or to suit the electrical safety requirements of the plant. This ensures that fault or surge current passes mainly through the ground cable and not in the signal cable shield. If the building or plant has a well-designed common bonded network this precaution is not necessary.
- Additional over-voltage suppression for the analog and digital inputs and outputs, a zener diode network or a commercially available surge suppressor may be connected in parallel with the input circuit as shown in Figure 4-47 and Figure 4-48.

If a digital port experiences a severe surge its protective trip may operate (I/O Overload trip). For continued operation after such an event, the trip can be reset automatically by setting Pr **10.034** to 5.

Figure 4-47 Surge suppression for digital and unipolar inputs and outputs

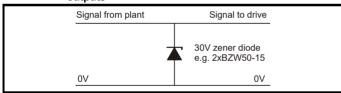
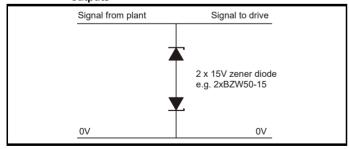



Figure 4-48 Surge suppression for analog and bipolar inputs and outputs

Surge suppression devices are available as rail-mounting modules, e.g. from Phoenix Contact:

Unipolar TT-UKK5-D/24 DC Bipolar TT-UKK5-D/24 AC

These devices are not suitable for fast digital data networks, because the capacitance of the diodes adversely affects the signal. For data networks, follow the specific recommendations for the particular network

4.13 Communications

The drive offers a 2 wire EIA-485 serial interface located beneath the control terminals, see Figure 4-49 *Location of the comms connector* below. The drive supports the Modbus RTU protocol as standard. See Table 4-29 for the connection details.

Figure 4-49 Location of the comms connector

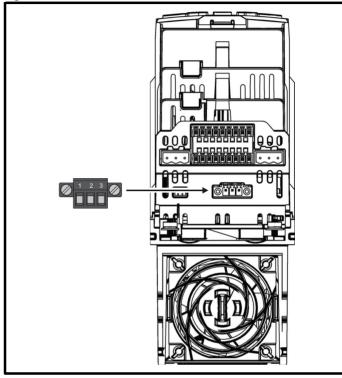


Table 4-29 Serial communication port pin-outs

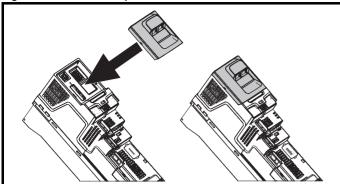
Pin	Function
1	RX TX
2	Isolated 0V
3	RX\ TX\

EIA-485 Serial communications

The serial communications port is a 3 way screw type connector, which is isolated from the power stage and the other control terminals. The communications port applies a 2 unit load to the communications network.

USB/EIA-232 to EIA-485 Communications

An external USB/EIA-232 hardware interface such as a PC cannot be used directly with the 2-wire EIA-485 interface of the drive.


To gain access to the drive parameters (including connection to Connect), a KI-485 Adaptor should be installed as shown in Figure 4-15 and used in conjunction with a suitable USB to EIA-485 isolated converter. A suitable isolated converter is available from Control Techniques:

CT USB Comms Cable (CT part number: 4500-0096).

A KI-485 Adaptor is also required for remote LCD keypad operation. The communications cable between the KI-485 Adaptor and keypad is wired one to one. The maximum cable length is 100 m when conductors of 0.129 mm² (AWG 26) or larger are used and the cable shield should be connected to the grounded panel / cubicle at the keypad end of the cable.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
i				the Motor		·		·	•			

Figure 4-50 KI-485 Adaptor Installation

To install, align the KI-485 Adaptor and press gently in the direction shown until it clicks into position.

To remove, reverse the installation instructions.

NOTE

IEC cable sizes assume Copper conductor, PVC insulation, Installation method B2 and ambient temperature of 40 °C (104 °F). UL cable sizes assume Copper conductor with insulation rated at 75 °C (167 °F).

When using the Control Techniques converters or any other suitable converter with the drive, it is recommended that no terminating resistors be connected on the network. It may be necessary to disconnect the terminating resistor within the converter depending on which type is used.

Serial communications set-up parameters

The following parameters need to be set according to the system requirements.

Seria	l communications	set-up parameters
Serial Mode (11.024)	8 2 NP (0), 8 1 NP (1), 8 1 EP (2), 8 1 OP (3), 8 2 NP M (4), 8 1 NP M (5), 8 1 EP M (6), 8 1 OP M (7), 7 2 NP (8), 7 1 NP (9), 7 1 EP (10), 7 1 OP (11), 7 2 NP M (12), 7 1 NP M (13), 7 1 EP M (14), 7 1 OP M (15)	The drive only supports the Modbus RTU protocol and is always a slave. This parameter defines the supported data formats used by the EIA 485 comms port on the drive. This parameter can be changed via the drive keypad, via an option module or via the comms interface itself.
Serial Baud Rate (11.025)	300 (0), 600 (1), 1200 (2), 2400 (3), 4800 (4), 9600 (5), 19200 (6), 38400 (7), 57600(8), 76800(9), 115200 (10)	This parameter can be changed via the drive keypad, via an option module or via the comms interface itself. If it is changed via the comms interface, the response to the command uses the original baud rate. The master should wait at least 20 ms before sending a new message using the new baud rate.
Serial Address (11.023)	1 to 247	This parameter defines the serial address and an addresses between 1 and 247 are permitted.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•	•						

4.14 Control connections

4.14.1 General

Table 4-30 The control connections consist of:

Function	Qty	Control parameters available	Terminal number
Single ended analog input	2	Mode, offset, invert, scaling, destination	5, 6
Analog output	2	Source, scaling, mode	7, 8
Digital input	3	Destination, invert, logic select	25, 26, 27
Digital input / output	3	Input / output mode select, destination / source, invert, logic select	22, 23, 24
Relay	2	Source, invert	41, 42, 71, 72
Drive enable (Safe Torque Off)	1		29
+24 V User output	1	Source, invert	3
0V common	5		1, 4, 9, 21, 28
+24 V External input	1	Destination, invert	2

Key:

Destination parameter:	Indicates the parameter which is being controlled by the terminal / function
Source parameter:	Indicates the parameter being output by the terminal
Mode parameter:	Analog - indicates the mode of operation of the terminal, i.e. voltage 0-10 V, current 4-20 mA etc. Digital - indicates the mode of operation of the terminal, i.e. positive / negative logic (the Drive Enable terminal is fixed in positive logic), open collector.

All analog terminal functions can be programmed in menu 7. All digital terminal functions (including the relay) can be programmed in menu 8.

The control circuits are isolated from the power circuits in the drive by basic insulation (single insulation) only. The installer must ensure that the external control circuits are insulated from human contact by at least one layer of insulation (supplementary insulation) rated for use at the AC supply voltage.

If the control circuits are to be connected to other circuits classified as Safety Extra Low Voltage (SELV) (e.g. to a personal computer), an additional isolating barrier must be included in order to maintain the SELV classification.

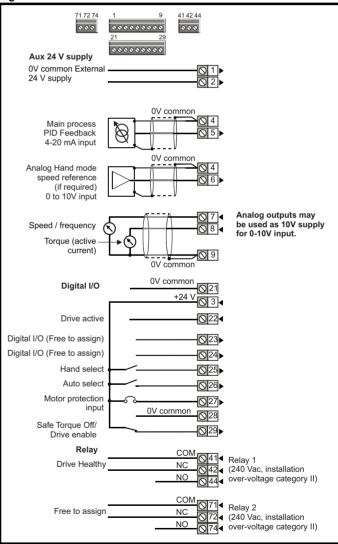
If any of the digital inputs (including the drive enable input) are connected in parallel with an inductive load (i.e. contactor coil), then suitable suppression (i.e. diode or varistor) should be used on the coil of the load. If no suppression is used then over voltage spikes can cause damage to the digital inputs and outputs on the drive.

Ensure the logic sense is correct for the control circuit to be used. Incorrect logic sense could cause the motor to be started unexpectedly.

Positive logic is the default state for the drive.

NOTE

Any signal cables which are carried inside the motor cable (i.e. motor thermistor) will pick up large pulse currents via the cable capacitance. The shield of these signal cables must be connected to ground close to the point of exit of the motor cable, to avoid this noise current spreading through the control system.


NOTE

The Safe Torque Off drive enable terminal is a positive logic input only. It is not affected by the setting of *Input Logic Polarity* Pr **08.029**.

NOTE

The common 0V from analog signals should, wherever possible, not be connected to the same 0 V terminal as the common 0 V from digital signals. Terminals 1, 4 and 9 should be used for connecting the 0 V common of analog signals, and terminals 21 and 28 for digital signals. This is to prevent small voltage drops in the terminal connections causing inaccuracies in the analog signals.

Figure 4-51 Default terminal functions

*The Safe Torque Off / Drive enable terminal is a positive logic input only.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation		parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

4.14.2 Control terminal specification

1	0V common	
Funct	ion	Common connection for all external devices

2	+24V external input					
Function	on	To supply the control circuit without providing a supply to the power stage				
Program	nmability	Can be switched on or off to act as a digital input by setting the source Pr 08.063 and input invert Pr 08.053				
Nominal	voltage	+24.0 Vdc				
Minimur voltage	n continuous operating	+19.2 Vdc				
Maximu voltage	m continuous operating	+28.0 Vdc				
Minimur	n start-up voltage	21.6 Vdc				
Recomn	nended power supply	40 W 24 Vdc nominal				
Recomn	nended fuse	3 A, 50 Vdc				

+24 V user output (se	lectable)
Terminal 3 default function	+24 V user output
Programmability	Can be switched on or off to act as a fourth digital output (positive logic only) by setting the source Pr 08.028 and source invert Pr 08.018
Nominal output current	100 mA combined with DIO3
Maximum output current	100 mA 200 mA (total including all Digital I/O)
Protection	Current limit and trip
Sample / update period	2 ms when configured as an output (output will only change at the update rate of the source parameter if slower)

4	0V common	
Functi	on	Common connection for all external devices

5 Analog input 1			
6 Analog input 2			
Terminal 5 Default function	Main process PID Feedback 4-20 mA input (Pr 29.034)		
Terminal 6 Default function	Analog Hand mode speed reference (Pr 1.036)		
Type of input AI 1 [AI 2]	Unipolar current and Bipolar single-ended analog voltage		
Mode controlled by:	Pr 07.007 [07.011]		
Operating in current mode (D	efault for terminal 5)		
Current ranges	0 to 20 mA ±5 %, 20 to 0 mA ±5 %, 4 to 20 mA ±5 %, 20 to 4 mA ±5 %		
Maximum offset	250 μΑ		
Absolute maximum voltage (reverse bias)	±36 V relative to 0V		
Absolute maximum current	±30 mA		
Equivalent input resistance	≤ 300 Ω		
Operating in voltage mode (D	efault for terminal 6)		
Full scale voltage range	±10 V ±2 %		
Maximum offset	±10 mV		
Absolute maximum voltage range	±36 V relative to 0V		
Input resistance	≥100 k Ω		
Common to all modes			
Resolution	12 bits (11 bits plus sign)		
Sample / update	250 µs with destinations Pr 01.036, Pr 01.037 or Pr 03.022, Pr 04.008 in RFC-A or RFC-S. 4 ms for open loop mode and all other destinations in RFC-A or RFC-S mode.		
Operating in thermistor input	mode		
Voltage range ±10 V ±2 %			
Supported thermistor types	Din 4408, KTY 84, PT 1000, PT 2000, NI 1000		
Internal pull-up voltage 5 V			
Trip threshold resistance	User defined in Pr 07.055 [07.060]		
Reset resistance	User defined in Pr 07.056 [07.061]		
Short-circuit detection resistance	50 Ω ± 40 %		
Common to all modes			
Resolution	12 bits (11 bits plus sign)		
Sample / update period	4 ms		

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	O-41141	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	[·			· .			

7	Analog output 1	Analog output 1					
8	Analog output 2						
Termi	nal 7 default function	OL> Motor FREQUENCY output signal RFC> SPEED output signal					
Termi	nal 8 default function	Motor active current					
Type of	foutput	Bipolar single-ended analog voltage or unipolar current					
AOI [AO	D2] Mode controlled by	Pr 07.021 [07.024]					
Opera	ting in Voltage mode (default)					
Voltage range		±10 V ±5 %					
Maximum offset		±120 mV					
Maximu	ım output current	±20 mA					
Load re	esistance	≥1 k Ω					
Protect	ion	20 mA max. Short circuit protection					
Opera	ting in current mode						
Current ranges		0 to 20 mA ±5%, 20 to 0 mA ±5% 4 to 20 mA ±5%, 20 to 4 mA ±5%					
Comm	non to all modes						
Resolution		10-bit					
Sample	e / update period	250 μs (output will only change at update the rate of the source parameter if slower)					

9	0V common	
Functi	on	Common connection for all external devices

	21	0V common	
Function		on	Common connection for all external
Ľ	uncu	UII	devices

22	Digital I/O 1					
23	Digital I/O 2					
24	Digital I/O 3					
Termin	nal 22 default function	DRIVE ACTIVE output				
Termin	nal 23 default function	Unassigned				
Termin	nal 24 default function	Unassigned				
Туре		Positive or negative logic digital inputs, positive logic voltage source outputs				
Input / o	utput mode controlled by	Pr 08.031 , Pr 08.032 and Pr 08.033				
Operat	ing as an input					
Logic m	ode controlled by	Pr 08.029				
Absolute maximum applied voltage range		-3 V to +30 V				
Impeda	nce	>2 mA @15 V from IEC 61131-2, type 1, 6.6 k Ω				
Input the	esholds	10 V ±0.8 V from IEC 61131-2, type 1				
Operat	ting as an output					
Nomina	I maximum output current	100 mA (DIO1 & 2 combined) 100 mA (DIO3 & 24 V User Output Combined)				
Maximu	m output current	100 mA 200 mA (total including all Digital I/O)				
Comm	on to all modes					
Voltage range		0 V to +24 V				
Sample	/ Update period	2 ms (output will only change at the update rate of the source parameter)				

25 Digita	Digital Input 4				
26 Digita	l Input 5				
Terminal 25	default function	Default is Hand select			
Terminal 26	default function	Default is Auto select			
Туре		Negative or positive logic digital inputs			
Logic mode cor	ntrolled by	Pr 08.029			
Voltage range		0 V to +24 V			
Absolute maxin voltage range	num applied	-3 V to +30 V			
Impedance		>2 mA @15 V from IEC 61131-2, type 1, 6.6 k Ω			
Input thresholds	S	10 V ±0.8 V from IEC 61131-2, type 1			
Sample / Updat	te period	2 ms			

27	Digital Input 6						
Termin	al 27 default function	Default is motor protection input					
Туре		Negative or positive logic digital inputs					
Logic m	ode controlled by	Pr 08.029					
Voltage range		0 V to +24 V					
Absolute voltage	e maximum applied range	-3 V to +30 V					
Impedar	nce	>2 mA @15 V from IEC 61131-2, type 1, 6.6 k Ω					
Input thresholds		10 V ±0.8 V from IEC 61131-2, type 1					
Sample	/ Update period	2 ms					

				Getting								
Safety	Product	Mechanical		started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

28	0V common	
Function		Common connection for all external devices

29	Safe Torque Off function (drive enable)					
Туре		Positive logic only digital input				
Voltage	range	0 V to +24 V				
Absolute	e maximum applied voltage	30 V				
Logic Th	reshold	10 V ± 5 V				
	te maximum voltage for to SIL3 and PL e	5 V				
Impeda	nce	>4 mA @15 V from IEC 61131-2, type 1, 3.3 k Ω				
Low state maximum current for disable to SIL3 and PL e		0.5 mA				
Response time		Nominal: 8 ms Maximum: 20 ms				

The Safe Torque Off function may be used in a safety-related application in preventing the drive from generating torque in the motor to a high level of integrity. The system designer is responsible for ensuring that the complete system is safe and designed correctly according to the relevant safety standards. If the Safe Torque Off function is not required, this terminal is used for enabling the drive.

Refer to section 4.15 Safe Torque Off (STO) on page 141 for further information.

41 Relay 1 Common	Relay 1 Common					
42 Relay 1 Normally clos	Relay 1 Normally closed					
44 Relay 1 Normaly open	1					
Default function	Drive Healthy indicator					
Contact voltage rating	240 Vac, Installation over-voltage category II					
Contact maximum current rating	2 A AC 240 V 4 A DC 30 V resistive load 0.5 A DC 30 V inductive load (L/R = 40 ms					
Contact minimum recommended rating	12 V 100 mA					
Contact type	Common - 41 Normally closed - 42 Normally open - 44					
Default contact condition	Closed when power applied and drive healthy					
Update period	4 ms					

	n.,							
51	0V common*							
52	+24 Vdc*							
Size 6								
Nominal (operating voltage	24.0 Vdc						
Minimum	continuous operating voltage	18.6 Vdc						
Maximum	continuous operating voltage	28.0 Vdc						
Minimum	startup voltage	18.4 Vdc						
Maximum	power supply requirement	40 W						
Recomm	ended fuse	4 A @ 50 Vdc						
Size 7 to	11							
Nominal	operating voltage	24.0 Vdc						
Minimum	continuous operating voltage	19.2 Vdc						
Maximum	continuous operating voltage	30 Vdc (IEC), 26 Vdc (UL)						
Minimum	startup voltage	21.6 Vdc						
Maximum	power supply requirement	60 W						
Recomm	ended fuse	4 A @ 50 Vdc						

*See Figure 4-18 to Figure 4-20 on page 111 for location.

71	Relay 2 Common						
72	Relay 2 Normally closed						
74	Relay 2 Normally oper	1					
Defaul	t function	UNASSIGNED					
Contact	voltage rating	240 Vac, Installation over-voltage category II					
Contact maximum current rating		2 A AC 240 V 4 A DC 30 V resistive load 0.5 A DC 30 V inductive load (L/R = 40 ms)					
Contact rating	minimum recommended	12 V 100 mA					
Contact	type	Common - 71 Normally closed - 72 Normally open - 74					
Default contact condition		Closed when power applied and drive healthy					
Update	period	4 ms					

To prevent the risk of a fire hazard in the event of a fault, a fuse or other over-current protection must be installed in the relay circuit.

NOTE

With the F600, high IP units there is maximum of 46 mA (24 V) available for user option modules.

This will not affect the use of most of the option modules, however, when using the digital outputs of SI-IO modules or when supplying the power to an encoder connected to an SI-Encoder or SI-Universal Encoder will require an external 24 V power supply to be used if the total current required exceeds 46 mA.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•	-			•			

4.15 Safe Torque Off (STO)

The Safe Torque Off function provides a means for preventing the drive from generating torque in the motor, with a very high level of integrity. It is suitable for incorporation into a safety system for a machine. It is also suitable for use as a conventional drive enable input.

The safety function is active when the STO input is in the logic-low state as specified in the control terminal specification. The function is defined according to EN 61800-5-2 and IEC 61800-5-2 as follows. (In these standards a drive offering safety-related functions is referred to as a PDS(SR)):

'Power, that can cause rotation (or motion in the case of a linear motor), is not applied to the motor. The PDS(SR) will not provide energy to the motor which can generate torque (or force in the case of a linear motor)'.

This safety function corresponds to an uncontrolled stop in accordance with stop category 0 of IEC 60204-1.

The Safe Torque Off function makes use of the special property of an inverter drive with an induction motor, which is that torque cannot be generated without the continuous correct active behavior of the inverter circuit. All credible faults in the inverter power circuit cause a loss of torque generation.

The Safe Torque Off function is fail-safe, so when the Safe Torque Off input is disconnected the drive will not operate the motor, even if a combination of components within the drive has failed. Most component failures are revealed by the drive failing to operate. Safe Torque Off is also independent of the drive firmware. This meets the requirements of the following standards, for the prevention of operation of the motor.

Machinery Applications

The Safe Torque Off Function has been independently assessed by Notified Body, TüV Rheinland for use as a safety component of a machine:

Prevention of unintended motor operation: The safety function "Safe Torque Off" can be used in applications up to Cat 4. PL e according to EN ISO 13849-1, SIL 3 according to EN 61800-5-2/EN 62061/IEC 61508 and in lift applications according to EN 81-1 and EN81-2.

Type examination certificate No.	Date of issue	Models	
01.205/5270.01/17	2017-08-28	F600	

This certificate is available for download from the TüV Rheinland website at: http://www.tuv.com

Safety Parameters as verified by TüV Rheinland:

According to IEC 61508-1 to 07 / EN 61800-5-2 / EN 62061

Туре	Value	Percentage of SIL 3 allowance					
Proof test interval							
High demand or a continuous mode of operation							
PFH (1/h)	<1 %						
Low demand mode of operation (not EN 61800-5-2)							
PFDavg	3.68 x 10 ⁻⁶	< 1 %					

According to EN ISO 13849-1

Туре	Value	Classification		
Category	4			
Performance Level (PL)	е			
MTTF _D	> 2500 years	High		
DC _{avg}	≥ 99 %	High		

Type Value Classification Mission time 20 years

UL listing Product Functional NV Media Card Safety Mechanical **Electrical** started / Rasic Advanced Technical Optimization Diagnostics information information installation installation Runnina parameters descriptions Operation parameters data information the Moto

NOTE

Logic levels comply with IEC 61131-2:2007 for type 1 digital inputs rated at 24 V. Maximum level for logic low to achieve SIL3 and PL e 5 V and 0.5 mA.

UL Approval

The Safe Torque Off function has been independently assessed by Underwriters Laboratories (UL). The on-line certification (yellow card) reference is: FSPC.E171230.

Safety Parameters as verified by UL:

According to IEC 61508-1 to 7

Туре	Value
Safety Rating	SIL 3
SFF	> 99 %
PFH (1/h)	4.43 x 10 ⁻¹⁰ 1/h (<1 % of SIL 3 allowance)
HFT	1
Beta Factor	2 %
CFF	Not applicable

According to EN ISO 13849-1

Туре	Value
Category	4
Performance Level (PL)	е
MTTF _D	2574 years
Diagnostic coverage	High
CCF	65

Note on response time of Safe Torque Off, and use with safety controllers with self-testing outputs:

Safe Torque Off has been designed to have a response time of greater than 1 ms so that it is compatible with safety controllers whose outputs are subject to a dynamic test with a pulse width not exceeding 1 ms.

Note on the use of servo motors, other permanent-magnet motors, reluctance motors and salient-pole induction motors:

When the drive is disabled through Safe Torque Off, a possible (although highly unlikely) failure mode is for two power devices in the inverter circuit to conduct incorrectly.

This fault cannot produce a steady rotating torque in any AC motor. It produces no torque in a conventional induction motor with a cage rotor. If the rotor has permanent magnets and/or saliency, then a transient alignment torque may occur. The motor may briefly try to rotate by up to 180° electrical, for a permanent magnet motor, or 90° electrical, for a salient pole induction motor or reluctance motor. This possible failure mode must be allowed for in the machine design.

The design of safety-related control systems must only be done by personnel with the required training and experience. The Safe Torque Off function will only ensure the safety of a machine if it is correctly incorporated into a complete safety system. The system must be subject to a risk assessment to confirm that the residual risk of an unsafe event is at an acceptable level for the application.

Safe Torque Off inhibits the operation of the drive, this includes inhibiting braking. If the drive is required to provide both braking and Safe Torque Off in the same operation (e.g. for emergency stop) then a safety timer relay or similar device must be used to ensure that the drive is disabled a suitable time after braking. The braking function in the drive is provided by an electronic circuit which is not fail-safe. If braking is a safety requirement, it must be supplemented by an independent fail-safe braking mechanism.

Safe Torque Off does not provide electrical isolation. The supply to the drive must be disconnected by an approved isolation device before gaining access to power connections.

With Safe Torque Off there are no single faults in the drive which can permit the motor to be driven. Therefore it is not necessary to have a second channel to interrupt the power connection, nor a fault detection circuit

It is important to note that a single short-circuit from the Safe Torque Off input to a DC supply of >5 V could cause the drive to be enabled. This can be excluded under EN ISO 13849-2 by the use of protected wiring. The wiring can be protected by either of the following methods:

- By placing the wiring in a segregated cable duct or other enclosure.
- By providing the wiring with a grounded shield in a positive-logic grounded control circuit. The shield is provided to avoid a hazard from an electrical fault. It may be grounded by any convenient method; no special EMC precautions are required.

It is essential to observe the maximum permitted voltage of 5 V for a safe low (disabled) state of Safe Torque Off. The connections to the drive must be arranged so that voltage drops in the 0V wiring cannot exceed this value under any loading condition. It is strongly recommended that the Safe Torque Off circuit be provided with a dedicated 0V conductor which should be connected to terminal 28 at the drive.

Safe Torque Off over-ride

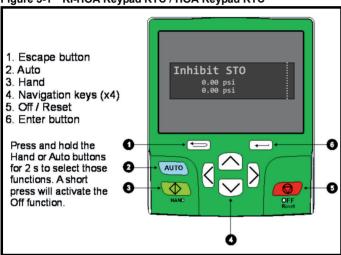
The drive does not provide any facility to over-ride the Safe Torque Off function, for example for maintenance purposes.

UL listing Safety Product Mechanical Flectrical started Basic **Functional** NV Media Card Advanced Technica Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Moto

5 Getting started / Running the Motor

This chapter introduces the user interfaces, menu structure and security levels of the drive.

5.1 Understanding the display


The KI-HOA keypad RTC can only be mounted on the drive. The HOA keypad RTC can be mounted on the drive or remotely mounted.

5.1.1 Keypad details

The display of both keypads consists of two rows of text. The upper row shows the drive status or the menu and parameter number currently being viewed. The lower row of the display line shows the parameter value or the specific trip type. The last two characters on the first row may display special indications. If more than one of these indications is active then the indications are prioritized as shown in Table 5-2.

When the drive is powered up the lower row will show the power up parameter defined by *Parameter Displayed At Power-Up* (11.022).

Figure 5-1 KI-HOA Keypad RTC / HOA Keypad RTC

NOTE

The red stop button is also used to reset the drive.

The parameter value is correctly displayed in the lower row of the keypad display, see table below.

Table 5-1 Keypad display formats

Display formats	Value
IP Address	127.000.000.000
MAC Address	01ABCDEF2345
Time	12:34:56
Date	31-12-11 or 12-31-11
Version number	01.02.02.00
Character	ABCD
32 bit number with decimal point	21474836.47
16 bit binary number	0100001011100101

Table 5-2 Active action icon

Active action icon	Description	Row (1=top)	Priority in row
0	Accessing non-volatile media card	1	1
å	Alarm active	1	2
٥	Keypad real-time clock battery low	1	3
A or A	Drive security active and locked or unlocked	1	4
44	User program running		1
4	Keypad reference active	4	1

5.2 Keypad operation

5.2.1 Control buttons

The keypad consists of:

- Navigation Keys Used to navigate the parameter structure and change parameter values.
- Enter / Mode button Used to toggle between parameter edit and view mode.
- Escape / Exit button Used to exit from parameter edit or view mode. In parameter edit mode, if parameter values are edited and the exit button is pressed, the parameter value will be restored to the value it had on entry to edit mode.

Three control buttons are used to select Hand / Off / Auto modes (see below).

NOTE

Low battery voltage is indicated by [in] low battery symbol on the keypad display. Refer to section 3.14.1 *Real time clock battery replacement* on page 86 for information on battery replacement.

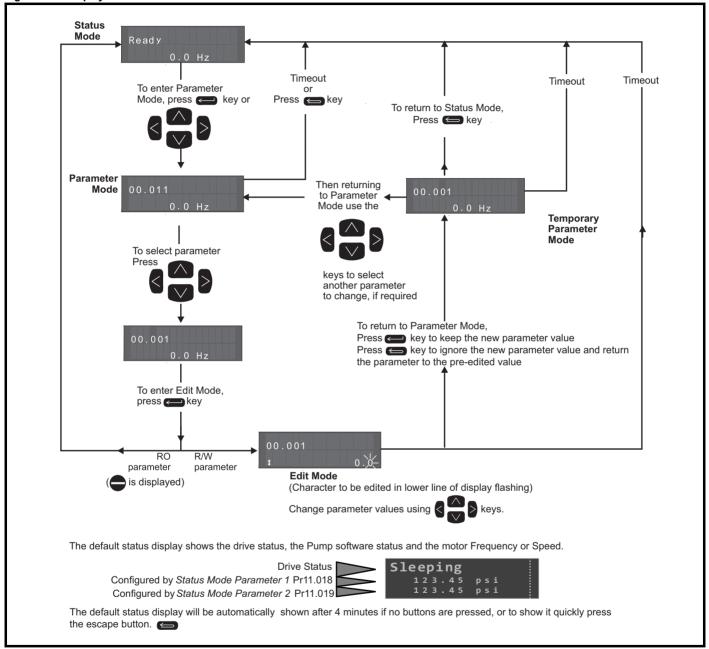
Figure 5-2 *Display modes* on page 144, shows an example of moving between menus and editing parameters.

Safety information	Product Mechanical installation	Electrical installation Running the Moto	parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------------------	--	------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Auto

In Auto mode, the reference for the motor speed/frequency is set in Pr 01.021 by the main process PID controller..

Hand


The speed/frequency reference Pr 01.022 is automatically set to keypad reference.

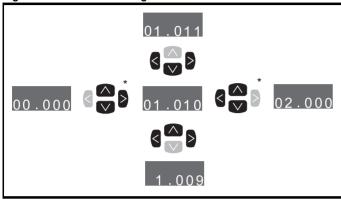
If Hand mode is selected from Off mode, the motor will ramp up to the speed determined by the keypad control mode reference.

Off

In Off mode, the motor is stopped. The speed/frequency reference is automatically set to keypad reference.

Figure 5-2 Display modes

NOTE

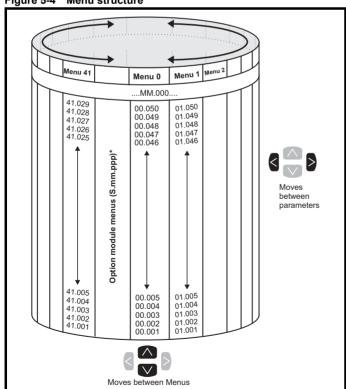

The navigation keys can only be used to move between menus if Pr **00.001** has been set to show 'All Menus'. Refer to section 5.10 *Parameter access level and security* on page 161.

5.3 Menu structure

The drive parameter structure consists of menus and parameters.

The drive initially powers up so that only Menu 0 can be viewed. The up and down arrow buttons are used to navigate between parameters and once Pr 00.001 has been set to 'All Menus' the left and right buttons are used to navigate between menus. For further information, refer to section 5.10 Parameter access level and security on page 161

Figure 5-3 Parameter navigation


* Can only be used to move between menus if all menus have been enabled (Pr 00.001). Refer to section 5.10 Parameter access level and security on page 161.

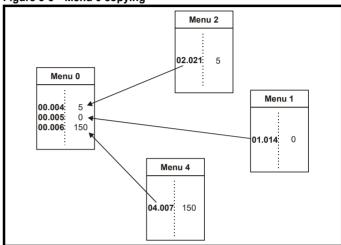
The menus and parameters roll over in both directions.

i.e. if the last parameter is displayed, a further press will cause the display to rollover and show the first parameter.

When changing between menus the drive remembers which parameter was last viewed in a particular menu and thus displays that parameter.

Figure 5-4 Menu structure

^{*} The option module menus (S.mm.ppp) are only displayed if option modules are installed. Where S signifies the option module slot number and the mm.ppp signifies the menu and the parameter number of the option module's internal menus and parameter.


5.4 Menu 0

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive. The parameters displayed in Menu 0 can be configured in Menu 22.

Appropriate parameters are copied from the advanced menus into Menu 0 and thus exist in both locations.

For further information, refer to Chapter 6 Basic parameters on page 162.

Figure 5-5 Menu 0 copying

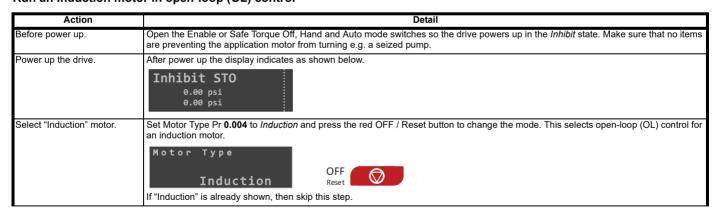
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

5.5 Connect and guided setup tool for PC

To help the user to configure and monitor their pump system, Control Techniques has a drive commissioning tool called Connect. This software allows the user to setup, monitor, default, save and recover drive parameters and update drive and option module software over digital communications. This tool is available from http://controltechniques.com/support.

Connect features a comprehensive guided setup tool that covers all 3 operating modes for the drive, in a logical configuration order, with a context-based help system to simplify setup of the Pump Drive F600 If it is possible to use a PC laptop during commissioning, and the required comms lead is available, this is a highly recommended way to setup the drive.

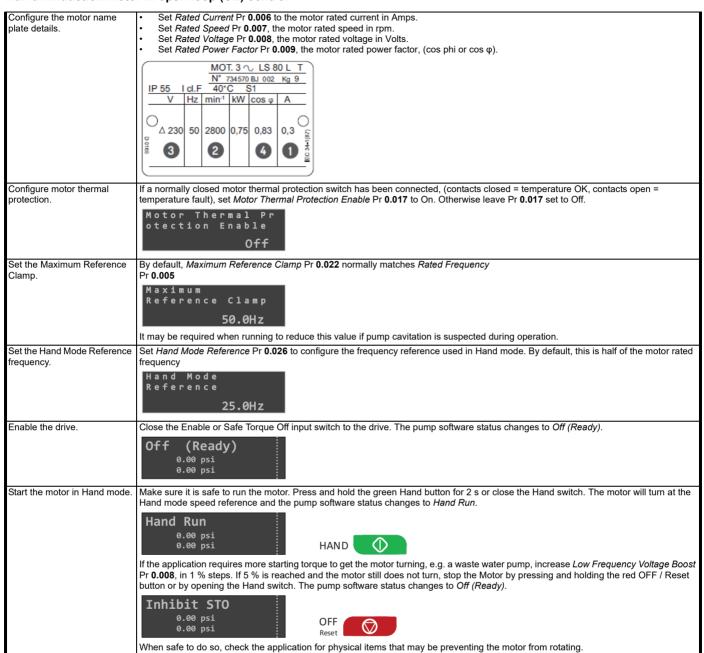
5.6 Step by Step Setup


STEP 1: Run the drive for the first time in Hand mode

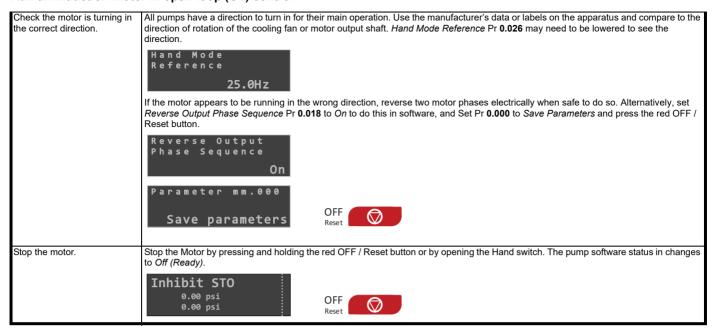
Step 1 and 2 cover basic fixed pressure pump setup. There is a comprehensive guided set-up wizard included in the Connect PC software package which covers pump system set-up.

Hand mode is where the drive runs from a fixed frequency or speed reference where the process PID loop is disabled. The user can modify the hand mode frequency or speed as detailed in the following steps.

Before starting, it is important to identify the type of motor used in the application. If the type of motor isn't known, please contact the motor manufacturer to find out if it is an induction or permanent-magnet motor.


Run an Induction motor in open-loop (OL) control

146


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	0-4::4:	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			•	-			

Run an Induction motor in open-loop (OL) control

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor		Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	Ì
-----------------------	---------------------	-------------------------	-------------------------	--	--	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	---

Run an Induction motor in open-loop (OL) control

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

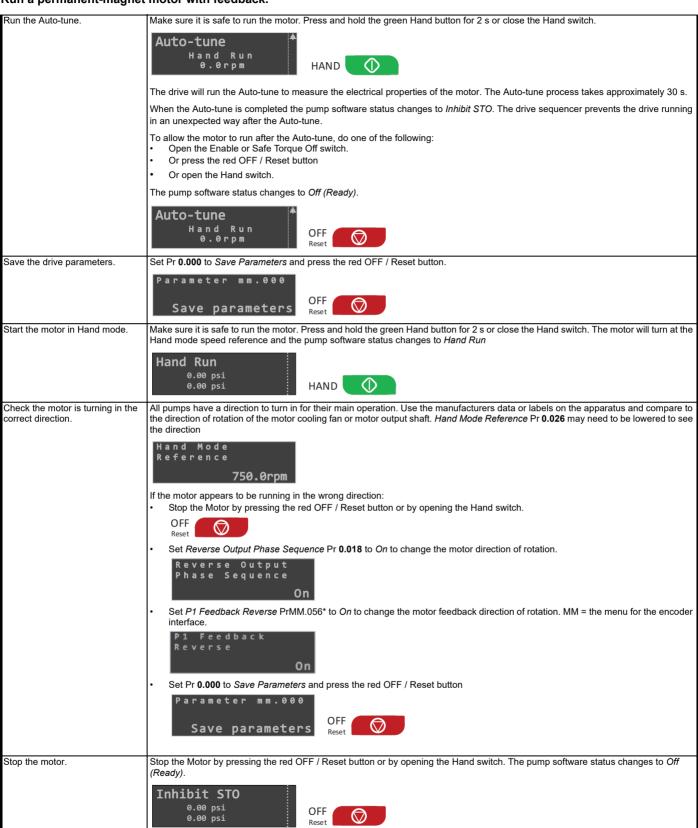
Run a Permanent-magnet motor in closed-loop sensorless (RFC-S)

Action	Detail
Before power up.	Ensure: The drive enable signal is not given (terminal 29). The Run signal is not given Motor is connected
Power up the drive.	If RFC-S mode is displayed when the drive is powered up: • If the frequency of the mains supply is 60 Hz, set Pr 00.000 = 1244, otherwise if the frequency of the mains is 50 Hz, set Pr 00.000 = 1233. If Open Loop or RFC-A mode is displayed when the drive is powered up: • If the frequency of the mains supply is 60 Hz, set Pr 00.000 = 1254, otherwise if the frequency of the mains is 50 Hz, Pr 00.000 = 1253. Press the red Reset button or toggle the Reset logic input. These actions will leave the drive in RFC-S mode with defaulted parameters. The drive will be in a tripped state, but the associated trips are addressed by settings within this procedure. After power, up the display indicates as shown below. Inhibit STO 0.00 psi 0.00 psi 0.00 psi
Motor thermistor setup.	The motor PTC thermistor must be connected to the drive, using analogue input 2 (terminals 4 and 6). For the drive to manage the thermistor: Set Analogue Input 2 Mode (Pr 07.011) = Therm Short Cct (7). Set Analogue Input 2 Destination (Pr 07.014) = 0.000 If two analogue inputs are required, then it may be necessary to fit an SI-I/O module.
Configure the motor name plate details.	Refer to the Dyneo+ motor tables located in the Appendix. Select the table corresponding to the motor speed range (1500 or 3000 rpm). Then depending on the motor type and its power, select the line that corresponds to the voltage, the supply frequency and the rated speed of the application. From this line, set in the drive the values of all the parameters listed in the table. NOTE If the motor type does not appear in the table, then it is from the Compact range. In this case, please contact Control Techniques Techniques Technical Support. Example: For the 1500 range motor, LSHRM 160MR1 – 11 kW 400 V – 50 Hz with a rated speed of 1500 rpm, parameter values to set in the drive is shown on fist line detail indicated in the table: NOTE • When setting Pr 05.069, it may be necessary to increase the value entered, to ensure that the actual trip level displayed in Pr 05.068 is close to (but not greater than) the required value.
Set maximum speed.	Set the maximum speed in Pr 01.006.
Set acceleration and deceleration rates.	Set: • Acceleration rate in Pr 02.011 (s up to Pr 01.006) - A value of 20 s suits most applications. • Deceleration rate in Pr 02.021 (s up to Pr 01.006) - A value of 20 s suits most applications. If a braking resistor is installed, set Pr 02.004 = Fast (0). Also ensure Pr 10.030 and Pr 10.031 and Pr 10.061 are set correctly, otherwise premature 'Brake R Too Hot' trips may be seen.
Additional settings.	Set: Current Reference Filter 1 Time Constant (Pr 04.012) = 2 ms Thermal Protection Mode (Pr 04.016) = Disabled (4) Maximum Switching Frequency (Pr 05.018) = 3 kHz (1) Flux Control Gain (Pr 05.027) = 0.1 Minimum Switching Frequency (Pr 05.038) = 3 kHz (1) Voltage Headroom (Pr 05.041) = 5 % [Do not set a lower value. Increase this value to 10 %, if the motor is unstable in the field weakening area] RFC Low Speed Mode (Pr 05.064) = Injection (0) Saliency Torque Control Select (Pr 05.065) = Auto [Ensure that Pr 05.066 = High, otherwise check the value entered for Pr 05.087 from the table] Inverted Saturation Characteristic (Pr 05.070) = On (1) Low Speed Sensorless Mode Current Limit (Pr 05.071) = 60 % [Note: This forces a reduced current limit between zero speed and 20 % of motor rated speed] If the load is a high inertia, Pr 03.010 may need to be increased.
Save the drive parameters.	Set Pr 0.000 to Save Parameters and press the red OFF / Reset button. Parameter mm.000 OFF Reset

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Run a permanent-magnet motor with feedback.

Before power up.	Open the Enable or Safe Torque Off, Hand and Auto mode switches so the drive powers up in the <i>Inhibit STO</i> state. Make sure that no items are preventing the application motor from turning e.g. a seized or blocked pump.
	Ensure an SI-Universal Encoder module has been fitted and connected to the motor encoder.
Power up.	After power, up the display indicates as shown below.
	Sleeping 123.45 psi 123.45 psi
Select Permanent-magnet motor.	Set Motor Type Pr 0.004 to Permanent-magnet and press the red OFF / Reset button to change the mode. This selects closed loop sensorless control for a permanent-magnet motor.
	Motor Type Permanent-magnet
	If "Permanent-magnet" is already shown, then skip this step.
Configure the motor name plate	Refer to the Dyneo+ motor tables located in the Appendix.
details.	Select the table corresponding to the motor speed range (1500 or 3000 rpm). Then depending on the motor type and its power, select the line that corresponds to the voltage, the supply frequency and the rated speed of the application. From this line, set in the drive the values of all the parameters listed in the table.
	If the motor type does not appear in the table, then it is from the Compact range. In this case, please contact Control Techniques Technical Support. Example:
	For the 1500 range motor, LSHRM 160MR1 – 11 kW 400 V – 50 Hz with a rated speed of 1500 rpm, parameter values to set in the drive is shown on fist line detail indicated in the table:
	NOTE
	When setting Pr 05.069 , it may be necessary to increase the value entered, to ensure that the actual trip level displayed in Pr 05.068 is close to (but not greater than) the required value.
Configure Motor Thermal	If a normally closed motor thermal protection switch has been connected, (contacts closed = temperature OK, contacts open =
Protection.	temperature fault), set Motor Thermal Protection Enable Pr 0.017 to On. Otherwise leave Pr 0.017 set to Off. Motor Thermal Pr
	otection Enable Off
Set the Maximum Reference	The Maximum Reference Clamp, Pr 0.022 normally matches the motor name plate speed as entered in Pr 0.007.
Clamp.	Maximum Reference Clamp
	1500.0 rpm It may be required when running to reduce this value if pump cavitation is suspected during operation.
Set the Hand Reference Speed.	Set the Hand mode digital frequency reference Pr 0.026 . By default, this is half of the motor rated speed.
	Hand Mode Reference 750.0rpm
Identify the encoder interface slot number.	To configure the motor encoder parameters, the physical slot that the SI-Universal Encoder option module has been fitted in must be identified. The diagram shows the slot numbers and the configuration parameter menus
	Slot 3 Pr17.PPP
	PPP = 3 digit encoder parameter number


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	0-4::4:	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			•	-			

Run a permanent-magnet motor with feedback.

	Set up the encoder interface parameters. MM = 15, 16 or 17 as identified in the previous step.
Configure the encoder interface	Ensure Menu Access Level Pr 0.001 is set to All Menus to allow access to the encoder option parameters.
	Menu Access Level
	• Set <i>P1Rotary Lines Per Revolution</i> PrMM.034 to the number of lines or encoder counts per revolution.
	P1 Rotary Lines Per Revolution 1024
	Set P1 Supply Voltage PrMM.036 to the supply voltage stated on the encoder 5 V, 8 V or 15 V. P1 Supply Voltage 5 V
	Set P1 Comms Baud Rate PrMM0.37 to 2M Baud if the encoder is and EnDat or BiSS type. Leave at the default of 300 k for all other types P1 Comms Baud
	Rate 2M Baud
	Set P1 Device Type AB Servo AB Servo
	• Set P1 Auto-config select to Enabled. P1 Auto-config Select Enabled
	Reset any encoder trips caused when changing the encoder type by pressing the red OFF / reset button. OFF Reset Reset any encoder trips caused when changing the encoder type by pressing the red OFF / reset button.
Change to encoder feedback mode.	First, set Motor Control Feedback Select Pr 3.026 to P1 Slot1, P1 Slot2 or P1 Slot3, depending on the option slot that the SI- Universal encoder option is fitted in, to select the location of the encoder feedback.
	• Set RFC Feedback Mode Pr 3.024 to Feedback to select encoder feedback. RFC Feedback Motor Control Feedback Select P1 Slot3
Increase the speed loop I gain.	Increase Speed Controller I Gain Ki Pr 3.011 to 1.00 s ² /rad.
	Speed Controller I Gain Ki 1.00 S ² /rad
Select the Auto-tune test mode.	Set Auto-tune Pr 0.013 to Full Stationary. The motor shaft will not rotate as a part of this test, however, as a precaution it should be treated as if will rotate.
	Auto-tune Full Stationary
Enable the drive.	Close the Enable or Safe Torque Off input switch to the drive. The pump software status changes to Off (Ready).
	Off (Ready) 0.00 psi 0.00 psi

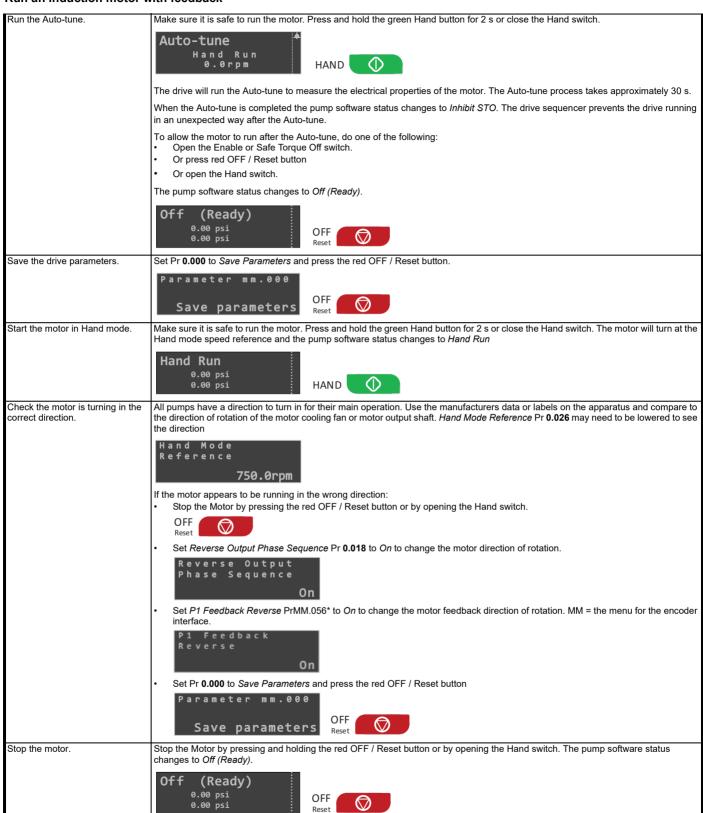
Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Run a permanent-magnet motor with feedback.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		•			-			

Run an induction motor with feedback

Before power up.	Open the Enable or Safe Torque Off, Hand and Auto mode switches so the drive powers up in the Inhibit STO state. Make sure that
	no items are preventing the application motor from turning e.g. a seized or blocked pump. Ensure an SI-Universal Encoder or SI-Encoder module has been fitted and connected to the motor encoder.
Power up.	After power, up the display indicates as shown below.
	Inhibit STO 0.00 psi 0.00 psi
Select RFC-A motor control mode	Set Motor Control Mode Pr 11.031 to RFC-A
for induction motors in closed loop.	Motor Control Mode RFC-A
	Set Pr 0.000 to 1253 for 50Hz regions, or 1254 for 60Hz regions. Parameter mm.000 1253
	 Press the red OFF / Reset button to change the mode. This selects closed loop sensorless control for an induction motor in closed loop motor. OFF Reset
Configure the motor name plate details.	 Set Rated Current Pr 0.006 to the motor rated current in Amps. Set Rated Speed Pr 0.007, the motor rated speed in rpm. Set Rated Voltage Pr 0.008, the motor rated voltage in Volts. Set Rated Power Factor Pr 0.009, the motor rated power factor, (cos phi or cos φ).
	MOT. 3 ↑ LS 80 L T N° 734570 BJ 002
Configure the motor thermal protection	If a normally closed motor thermal protection switch has been connected, (contacts closed = temperature OK, contacts open = temperature fault), set <i>Motor Thermal Protection Enable</i> Pr 0.017 to <i>On</i> . Otherwise leave Pr 0.017 set to <i>Off</i> .
procedur	Motor Thermal Protection Enable Off
Set the maximum reference clamp.	Maximum Reference Clamp Pr 0.022 normally matches the motor name plate speed as entered in Rated Speed Pr 0.007. Maximum Reference Clamp 1500.0 rpm
	It may be required when running to reduce this value if pump cavitation is suspected during operation.
Set the Hand mode reference speed.	Set Hand Mode Reference Pr 0.026. By default, this is half of the motor rated speed. Hand Mode Reference Reference 750.0rpm
Identify the encoder interface slot number.	To configure the motor encoder parameters, the physical slot that the SI-Universal Encoder or SI-Encoder option module has been fitted in must be identified. The diagram shows the slot numbers and the configuration parameter menus.
	Slot 3 Pr17 PPP
	PPP = 3 digit encoder parameter number


Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor		Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	--	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Run an induction motor with feedback

Configure the encoder interface	Set up the encoder interface parameters. MM = 15, 16 or 17 as identified in the previous step. • Ensure Menu Access Level Pr 0.001 is set to All Menus to allow access to the encoder option parameters.
	Menu Access
	Level All Menus
	Set P1Rotary Lines Per Revolution PrMM.034 to the number of lines or encoder counts per revolution.
	P1 Rotary Lines Per Revolution 1024
	 Set P1 Supply Voltage PrMM.036 to the supply voltage stated on the encoder 5 V, 8 V or 15 V.
	P1 Supply Voltage
	 Set P1 Comms Baud Rate PrMM0.37 to 2M Baud if the encoder is and EnDat or BiSS type. Leave at the default of 300 k for all other types P1 Comms Baud
	Rate 2M Baud
	Set P1 Device Type PrMM.038 to the correct value for the encoder fitted.
	P1 Device Type AB Servo
	Set P1 Auto-config select to Enabled.
	P1 Auto-config Select Enabled
	 Reset any encoder trips caused when changing the encoder type by pressing the red reset button. OFF Reset
Change to encoder feedback mode.	 First, set Motor Control Feedback Select Pr 3.026 to P1 Slot1, P1 Slot2 or P1 Slot3, depending on the option slot that the SI- Universal encoder option is fitted in, to select the location of the encoder feedback.
	Set RFC Feedback Mode Pr 3.024 to Feedback to select encoder feedback.
	RFC Feedback Motor Control Mode Feedback Select Feedback P1 Slot3
Increase the speed loop I gain.	Increase Speed Controller I Gain Ki Pr 3.011 to 1.00 s ² /rad.
	Speed Controller I Gain Ki 1.00 S ² /rad
	Set Auto-tune Pr 0.013 to Basic The motor shaft will not rotate as a part of this test, however, as a precaution it should be treated as if will rotate.
	Auto-tune Basic
Enable the drive.	Close the Enable or Safe Torque Off input switch to the drive. The pump software status changes to Off (Ready).
	Off (Ready) 0.00 psi 0.00 psi

ı					Getting								
	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
	information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
					the Motor								

Run an induction motor with feedback

Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	----------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

STEP 2: Running the drive in Auto mode

This section gives guidance on how to get running in Auto mode assuming the most common application, a single pump application running with closed process PID loop to control pressure.

It is assumed that the process feedback device is a 4-20 mA transducer which has been connected to terminal 4 and 5.

Running the drive in Auto mode

Action	Detail
Setup the process PID control feedback scaling.	Setup the PID Minimum Scaling Pr 0.030 and PID Maximum Scaling in Pr 0.031. By default, the feedback is configured in percent where the range is 0.00 % to 100.00 %, where 100 % = the feedback device maximum value e.g. for a 1 bar pressure sensor 100 % = 1 bar.
recaption scaling.	PID Feedback Min Scaling Scaling 35.00 psi 350.0 psi
	Note that all setpoints and feedback related parameters will use this scaling. The units of the feedback and setpoint may be scaled into any unit type.
Test the feedback device.	Make sure it is safe to run the motor. Press and hold the green Hand button for 2 s or close the Hand switch. The motor will turn at the Hand mode speed reference and the pump software status changes to <i>Hand Run</i> .
	Hand Run 0.00 psi 0.00 psi HAND
	Observe the PID Final Feedback Pr 0.067 and vary the Hand Mode Reference Pr 0.026. The PID Final Feedback Pr 0.067 should increase with an increase in Hand Mode Reference Pr 0.026. PID1 Feedback 43.21 %
	If the feedback does not respond in proportion to the speed e.g. remains at 0. Please check the configuration of the feedback device and wiring.
Find the frequency or speed where flow starts.	Observe the output of the application. Increase the <i>Hand Mode Reference</i> Pr 0.026 and note the value when output flow is detected. Hand Mode Reference Pr 0.026 and note the value when output flow is detected. Reference Pr 0.026 and note the value when output flow is detected.
	The resulting value should be entered as the <i>Positive Minimum Reference Clamp</i> Pr 0.023. Positive Minimum Reference Clamp 0.0 rpm
Stop the motor.	Stop the Motor by pressing and holding the red OFF / Reset button or by opening the Hand switch. The pump software status changes to Off (Ready). Off (Ready) 0.00 psi 0.00 psi Reset
Set the process PID setpoint.	Set process PID Setpoint 0 Pr 0.029 to the value required by the system design, e.g. A system is designed to run at a constant 0.5 bar pressure and the pressure transducer maximum is 1 bar so the process PID setpoint in percent units would be 50.00 %. PID Setpoint 0 50.00 psi
Set the wake threshold.	The wake threshold determines the feedback value, below which, the drive will start operating and the minimum working feedback level, e.g. if the setpoint pressure is 50.00 % and the wake threshold is 40.00 % the drive try to maintain its output between these values. Set the Wake Detection Feedback Threshold Pr 0.040.
	Wake Detect Fbck Threshold 40.00 psi
Set the sleep threshold.	The sleep threshold determines the frequency or speed below which the drive will stop during normal operation. Set the Sleep Detect Speed Threshold Pr 0.042 to a value in the order of 1 % to 5 % of motor rated frequency or speed above the <i>Positive Minimum Reference Clamp</i> Pr 0.023 value. Positive Minimum
	Reference Clamp 0.0 rpm
	Setting the sleep threshold less than the <i>Positive Minimum Reference Clamp</i> Pr 0.023 value disables the sleep threshold.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	0-4::4:	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			•	-			

Running the drive in Auto mode

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

5.6 Advanced menus

The advanced menus consist of groups or parameters appropriate to a specific function or feature of the drive. Menus 0 to 41 can be viewed on the KI-HOA Keypad RTC or HOA Keypad RTC.

The option module menus (S.mm.ppp) are only displayed if option modules are installed. Where S signifies the option module slot number and the mm.ppp signifies the menu and parameter number of the option module's internal menus and parameter.

Table 5-1 Advanced menu descriptions

Menu	Description
0	Commonly used basic set up parameters for quick / easy programming
1	Frequency / Speed reference
2	Ramps
3	Speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analog I/O, Temperature monitoring
8	Digital I/O
9	Programmable logic, motorized pot, binary sum, timers and scope
10	Status and trips
11	Drive set-up and identification, serial communications
12	Threshold detectors and variable selectors
14	User PID controller
15	Option module slot 1 set-up menu
16	Option module slot 2 set-up menu
17	Option module slot 3 set-up menu
18	General option module application menu 1
19	General option module application menu 2
20	General option module application menu 3
22	Menu 0 set-up
23	Not allocated
28	Reserved menu
29	Reserved for pump functionality
30	Reserved
Slot 1	Slot 1 option menus*
Slot 2	Slot 2 option menus*
Slot 3	Slot 3 option menus*

^{*}Only displayed when the option modules are installed.

5.6.1 KI-HOA Keypad RTC and HOA Keypad RTC

To enter the keypad set-up menu press and hold the escape button on the keypad from status mode. All the keypad parameters are saved to the keypad non-volatile memory when exiting from the keypad set-up menu.

To exit from the keypad set-up menu press the escape or or

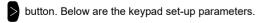


Table 5-2 Keypad set-up parameters

	Parameters	Range	Туре
Keypad.00	Language*	Classic English (0) English (1) German (2) French (3) Italian (4) Spanish (5) Chinese (6)	RW
Keypad.01	Show Units	Off (0), On (1)	RW
Keypad.02	Backlight Level	0 to 100 %	RW
Keypad.03	Keypad Date	01.01.10 to 31.12.99	RO
Keypad.04	Keypad Time	00:00:00 to 23:59:59	RO
Keypad.05	Show Raw Text Parameter Values	Off (0), On (1)	RW
Keypad.06	Software Version	00.00.00.00 to 99.99.99	RO
Keypad.07	Language version	00.00.00.00 to 99.99.99	RO
Keypad.08	Font version	0 to 1000	RO
Keypad.09	Show menu names	Off (0), On (1)	RW

NOTE

It is not possible to access the keypad parameters via any communications channel.

^{*} The languages available will depend on the keypad software version.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

5.6.2 Display messages

The following tables indicate the various possible mnemonics which can be displayed by the drive and their meaning.

Table 5-3 Drive status indications

Upper row string	Description	Drive output stage
Inhibit	The drive is inhibited and cannot be run. The Safe Torque Off signal is not applied to Safe Torque Off terminals or Pr 06.015 is set to 0. The other conditions that can prevent the drive from enabling are shown as bits in <i>Enable Conditions</i> (06.010)	Disabled
Ready	The drive is ready to run. The drive enable is active, but the drive inverter is not active because the final drive run is not active	Disabled
Stop	The drive is stopped / holding zero speed	Enabled
Run	The drive is active and running	Enabled
Supply Loss	Supply loss condition has been detected	Enabled
Deceleration	The motor is being decelerated to zero speed / frequency because the final drive run has been deactivated	Enabled
dc injection	The drive is applying dc injection braking	Enabled
Trip	The drive has tripped and no longer controlling the motor. The trip code appears in the lower display	Disabled
Under Voltage	The drive is in the under voltage state either in low voltage or high voltage mode	Disabled
Heat	The motor pre-heat function is active	Enabled
Phasing	The drive is performing a 'phasing test on enable'	Enabled

5.6.3 Alarm indications

An alarm is an indication given on the display by alternating the alarm string with the drive status string on the upper row and showing the alarm symbol in the last character in the upper row. Alarms strings are not displayed when a parameter is being edited, but the user will still see the alarm character on the upper row.

Table 5-4 Alarm indications

Alarm string	Description
Brake Resistor	Brake resistor overload. <i>Braking Resistor Thermal Accumulator</i> Pr 10.039 in the drive has reached 75.0 % of the value at which the drive will trip.
Motor Overload	Motor Protection Accumulator Pr 04.019 in the drive has reached 75.0 % of the value at which the drive will trip and the load on the drive is > 100 %.
Drive Overload	Drive over temperature. <i>Percentage Of Drive Thermal Trip Level</i> Pr 07.036 in the drive is greater than 90 %.
Auto Tune	The autotune procedure has been initialized and an autotune in progress.

Table 5-5 Option module and NV media card and other status indications at power-up

First row string	Second row string	Status							
Booting	Parameters	Parameters are being loaded							
Drive parameters are being loaded from a NV Media Card									
Writing To NV Card Data being written to NV Media Card									
Data is being written to a NV Media Card to ensure that its copy of the drive parameters is correct because the drive is in Auto or Boot mode									
Waiting For Power System Waiting for power stage									
The drive is after power-		sor in the power stage to respond							
Waiting For	Options	Waiting for an option module							
The drive is	waiting for the options	s modules to respond after power-up							
Uploading From	Options	Loading parameter database							
At power-up it may be necessary to update the parameter database held by the drive because an option module has changed or because an applications module has requested changes to the parameter structure. This may involve data transfer between the drive an option									

modules. During this period 'Uploading From Options' is displayed

|--|

5.7 Changing the operating mode

Changing the operating mode returns all parameters to their default value, including the motor parameters. *User security status* Pr **00.001** and *User security code* Pr **11.030** are not affected by this procedure).

Procedure

Use the following procedure only if a different operating mode is required:

- 1. Ensure the drive is not enabled, i.e. terminal 29 is open or Pr **06.015** is OFF (0)
- Enter either of the following values in Pr mm.000, as appropriate: 1253 (50 Hz AC supply frequency)
 1254 (60 Hz AC supply frequency)
- 3. Change the setting of Pr 29.157 as follows:

Parameter	00.004 (29.157) Motor Type	00.004 (29.157) <i>Motor Type</i>									
Short description	Use this to select the system mo	Jse this to select the system motor type. Reset drive to accept a new selection.									
Mode	Open-Loop, RFC-A, RFC-S)pen-Loop, RFC-A, RFC-S									
Minimum	0	Maximum	1								
Default	0	Units									
Туре	8 Bit Volatile	Update Rate	Background								
Display Format	Standard	Decimal Places	0								
Coding	RW, TE, BU										

This parameter simplifies setup and selection of the application motor. To action the motor selection a drive reset must be actioned e.g. by pressing the red reset button on the keypad.

The following options are available:

Motor type	Value	Description
Induction	0	When <i>Motor Type</i> Pr 29.157 changes to Induction and a reset is performed, the drive will change to open-loop mode for induction motors and the previous regional defaults will be applied.
Permanent- magnet	1	When <i>Motor Type</i> Pr 29.157 changes to Permanent-magnet and a reset is performed, the drive will change to RFC-S mode for servo motors and the previous regional defaults will be applied. By default the motor will be operating in sensorless mode i.e. no speed feedback device is required to run the motor.

NOTE

Entering 1253 or 1254 in Pr mm.000 will only load defaults if the setting of Pr 29.157 has been changed.

5.8 Saving parameters

When changing a parameter in Menu 0, the new value is saved when pressing the Enter button to return to parameter view mode from parameter edit mode.

If parameters have been changed in the advanced menus, then the change will not be saved automatically. A save function must be carried out.

Procedure

- 1. Select 'Save Parameters' in Pr mm.000 (alternatively enter a value of 1001 in Pr mm.000)
- 2. Either:
- Press the red reset button
- · Toggle the reset digital input, or
- Carry out a drive reset through serial communications by setting Pr 10.038 to 100

5.9 Restoring parameter defaults

Restoring parameter defaults by this method saves the default values in the drives memory. *User security status* (00.001) and *User security code* (11.030) are not affected by this procedure).

Procedure

- 1. Ensure the drive is not enabled, i.e. terminal 29 is open or Pr **06.015** is OFF (0)
- 2. Select 'Reset 50 Hz Defs' or 'Reset 60 Hz Defs' in Pr mm.000. (alternatively, enter 1233 (50 Hz settings) or 1244 (60 Hz settings) in Pr mm.000).
- 3 Fither
- Press the red reset button
- · Toggle the reset digital input
- Carry out a drive reset through serial communications by setting Pr 10.038 to 100

UL listing Functional Safety Product Mechanical Flectrical started Rasio NV Media Card Advanced Technica Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Moto

5.10 Parameter access level and security

The parameter access level determines whether the user has access to Menu 0 only or to all the advanced menus (Menus 1 to 41) in addition to Menu 0.

The User Security determines whether the access to the user is read only or read write.

Both the User Security and Parameter Access Level can operate independently of each other as shown in Table 5-6.

Table 5-6 Parameter access level and security

Menu Access Level (11.044)	Access level	User security	Menu 0 status	Advanced menu status	
0	Menu 0	Open	RW	Not visible	
U	Meriu 0	Closed	RO	Not visible	
1	All Menus	Open	RW	RW	
l	All Merius	Closed	RO	RO	
2	Read-only	Open	RO	Not visible	
2	Menu 0	Closed	RO	Not visible	
3	Bood only	Open	RO	RO	
3	Read-only	Closed	RO	RO	
4	Status only	Open	Not visible	Not visible	
4	Status Offiy	Closed	Not visible	Not visible	
5	No access	Open	Not visible	Not visible	
3	INO access	Closed	Not visible	Not visible	

The default settings of the drive are Parameter Access Level Menu 0 and user Security Open i.e. read / write access to Menu 0 with the advanced menus not visible.

5.10.1 Access Level

The drive provides a number of different levels of access that can be set by the user via *Menu Access Level* (11.044); these are shown in the table below.

Menu Access Level (Pr 11.044)	Description
Menu 0 (0)	All writable parameters are available to be edited but only parameters in Menu 0 are visible
All menus (1)	All parameters are visible and all writable parameters are available to be edited
Read- only Menu 0 (2)	Access is limited to Menu 0 parameters only. All parameters are read-only
Read-only (3)	All parameters are read-only however all menus and parameters are visible
Status only (4)	The keypad remains in status mode and no parameters can be viewed or edited
No access (5)	The keypad remains in status mode and no parameters can be viewed or edited. Drive parameters cannot be accessed via a comms/ fieldbus interface in the drive or any option module

5.10.2 Changing the User Security Level /Access

The security level is determined by the setting of Pr **00.001** or Pr **11.044**. The Security Level can be changed through the keypad even if the User Security Code has been set.

5.10.3 User Security Code

The User Security Code, when set, prevents write access to any of the parameters in any menu.

Setting User Security Code

Enter a value between 1 and 2147483647 in Pr 11.030 and press the

button; the security code has now been set to this value. In order to activate the security, the Security level must be set to desired level in Pr 00.001. When the drive is reset, the security code will have been

activated and the drive returns to Menu 0 and the symbol is displayed in the right hand corner of the keypad display. The value of Pr 11.030 will return to 0 in order to hide the security code.

Unlocking User Security Code

Select a parameter that need to be edited and press the button, the upper display will now show 'Security Code'. Use the arrow buttons

to set the security code and press the button. With the correct security code entered, the display will revert to the parameter selected in edit mode.

If an incorrect security code is entered, the following message 'Incorrect security code' is displayed, then the display will revert to parameter view mode.

Disabling User Security

Unlock the previously set security code as detailed above. Set Pr 11.030

to 0 and press the button. The User Security has now been disabled, and will not have to be unlocked each time the drive is powered up to allow read / write access to the parameters.

5.11 Displaying parameters with non-default values only

By selecting 'Show non-default' in Pr mm.000 (Alternatively, enter 12000 in Pr mm.000), the only parameters that will be visible to the user will be those containing a non-default value. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr mm.000 and select 'No action' (alternatively enter a value of 0). Please note that this function can be affected by the access level enabled, refer to section 5.10 *Parameter access level and security* on page 161 for further information regarding access level.

5.12 Displaying destination parameters only

By selecting 'Destinations' in Pr mm.000 (Alternatively enter 12001 in Pr mm.000), the only parameters that will be visible to the user will be destination parameters. This function does not require a drive reset to become active. In order to deactivate this function, return to Pr mm.000 and select 'No action' (alternatively enter a value of 0).

Please note that this function can be affected by the access level enabled, refer to section 5.10 *Parameter access level and security* on page 161 for further information regarding access level.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	()ntimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation		parameters	descriptions	Opania Lation	Operation	parameters	data	Diag.ioo.ioo	information
				the Motor								

6 Basic parameters

Menu 0 is used to bring together various commonly used parameters for basic easy set up of the drive. All the parameters in Menu 0 appear in other menus in the drive (denoted by $\{...\}$). Menu 22 can be used to configure the parameters in Menu 0.

6.1 Menu 0: Basic parameters

	Parameter			Range			Default		
	Description		OL	RFC-A	RFC-S	OL	RFC-A	RFC-S	
00.001	Menu access level	11.044	Menu 0 (0), All Menu Read only (3), Stat						
00.002	Parameter cloning	11.042	None (0), Load File 1	(1), Save File Boot (4)	1 (2), Auto (3),		None (0)		
00.003		0.000							
00.004	Motor type	29.157	Induction (0),	Permanent ma	ignet (1)	Ind	uction (0)	Permanent-magnet (1)	
00.005	Rated frequency	5.006	0.0 to 599.0			50 Hz: 50.0 Hz 60 Hz: 60.0 Hz			
00.006	Rated current	5.007		_CURRENT[M _CURRENT[M			0.000 A		
00.007	Rated speed	5.008	0 to 35940 rpm	0.00 to 33	3000.00 rpm	Std: 1500 rpm US: 1800 rpm	Std:1450 rpm US: 1750 rpm	Std:1500 rpm US:1800 rpm	
00.008	Rated voltage	5.009		LTAGE_SET[N LTAGE_SET[N			200V drive: 230 \ 400V drive 50Hz: 40 400V drive 60Hz: 46 575V drive: 575 \ 690V drive: 690 \	00 V 60 V /	
00.009 (Not RFC-S)	Rated power factor	5.010	0.000 to 1.0	000			0.850		
00.010	Number or motor poles	5.011	Automatic (0)) to 480 (240)	Poles	Autom	atic (0) Poles	8 (4) Poles	
00.011 (Not RFC-S)	Low frequency voltage boost	5.015	0.0 to 25.0	%			1.0 %		
00.012 (OL only)	Low load power saving	5.013	OFF (0) or ON (1)			ON (1)		•	
00.013 (RFC modes only)	Autotune	5.012		None (0), Basic (1), Improved (2)	None (0) Stationary(1) Full Stationary(5)	None (0)			
00.014 (RFC-S mode only)	RFC low speed mode	5.064	Injection (0), Current Test (3), Current				Current (2)		
00.015 (RFC-S mode only)	Low speed sensor- less mode current	5.071			0.0 to 1000.0%			100.0 %	
00.016	Symmetrical current limit	4.007	VM_MOTOR1_C VM_MOTOR1_C			0.0 %			
00.017	Motor thermal protection enable	29.087	OFF	(0) or ON (1)		OFF (0)			
00.018	Reverse output phase sequence	5.042	OFF	(0) or ON (1)			OFF (0)		
00.019 (RFC-S mode only)	Sensor-less mode filter	3.079			4 (0), 8 (1), 16 (2), 32 (3), 64 (4) ms			4 (0) ms	
00.020		0.000							
00.021	Pump control mode	29.011	Mul	np (0), Cascad Iti leader (2)			Single Pump (0)		
00.022	Maximum reference clamp	1.006	VM_NEGATIVE VM_NEGATIVE			Std: 50 US: 60		00.0 rpm 00.0 rpm	
00.023	Positive minimum reference clamp	1.004	VM_SPEED	_freq_ref[i)_freq_ref	[MAX]	0.0 Hz	0.0	rpm	
00.024	Control input mode	29.012	Input (0), Input & Key &	pad (1), Ctrl W Input (3)	/rd (2), Ctrl Wrd		Input & Keypad (1)	
00.025	Hand mode reference select	29.016	Digital Speed	(0), Analog Sp	peed (1)		Digital Speed (0)		
00.026	Hand mode frequency/speed reference	1.022		_FREQ_REF[I _FREQ_REF		Std:25 Hz US:30 Hz			
00.027	General acceleration rate 1	2.011		EL_RATE[MIN EL_RATE[MA]		1.0 s	1.0 s 1.000 s		
00.028	General deceleration rate 1	2.021		EL_RATE[MIN EL_RATE[MA		1.0 s	1.0 s 1.000 s		
00.029	PID setpoint 0	29.022	0.00	to 327.67 psi			0.00 psi		

162

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization		Media Card Operation	Advanced parameters	Technical data	Diagnostic	UL listing information		
		ameter			OL	Range	RFC-	_	OL		Default RFC-A		RFC-S		
00.000		ription back min	00.004			RFC-A		5	0.00 psi						
00.030		aling	29.031		0.00	0 to 327.67 p	SI								
00.031	sca	lback max aling	29.032		0.00	0 to 327.67 p	si		100.00 psi						
00.032		back filter onstant	29.033		0.0	00 to 327.67 s	3				1.00 s				
00.033		lback loss tion	29.048		Ignore (0), T	rip (1), Fixed	Speed (2)				Trip (1)				
00.034	trip th	back high reshold	29.041		0.00	0 to 327.67 p	si				0.00 psi				
00.035	de	dback low elay	29.042		0.0	0 to 6553.5 s					5.0 s				
00.036	m	dback low ode	29.043	Di	isabled (0), Th	nreshold (1), l	Bandwidth (2)			Disabled (0)			
00.037		dback low shold	29.044		0.00	0 to 327.67 p	si				2.00 psi				
00.038			0.000												
	Wake	detect				0.4- 007.07	-:				4.00:				
00.040		threshold tect delay	29.049			0 to 327.67 p 0 to 6553.5 s	SI				1.00 psi 5.0 s				
00.041	Sleep de	tect speed shold	29.051	0.	.0 to 60.0		to 3000.00		25.0		0.03	750.0			
00.043		tect delay	29.052		0.	0 to 6553.5 s			5.0 s						
00.044		r of auto- attempts	10.034	None	None (0), 1 (1), 2 (2), 3 (3), 4 (4), 5 (5), Infinite (6)				5 (5)						
00.045		set delay	10.035	1.0 to 600.0 s 10.0 s											
00.046	Pipe fi	ill mode	29.075	Disab	led (0), Feedb			า (2)	Std: 25 H	1- 1	Disabled (0) d: 750 rpm			
00.047		reference	1.024		VM_SPEED_FREQ_REF[MIN] to VM_SPEED_FREQ_REF[MAX]				US: 30 Hz US: 900 rpm						
00.048		maximum me	29.077		0.0 to 6553.5 s						0.0 s				
00.049		threshold	29.076		0.00	0 to 327.67 p	si		0.00 psi						
00.050	detection per	l low load threshold cent	29.057		0.0	% to 100.0 %	6		1.0 %						
00.051	detecti	l low load on delay	29.058			0 to 6553.5 s			0.0 s						
00.052	m	l low load ode	29.059	Disab	oled (0), Alarm	n Only (1), Tri Output (3)	p (2), Lower	PID	Disabled (0)						
00.053	PID redu	l low load output uction	29.060		0.0	00 % to 100 %	b				50.00 %				
00.054		l low load t delay	29.061		0.9	0 to 6553.5 s					5.0 s				
00.055	thre	detection shold	29.069	0.	.0 to 60.0	0.0	to 3000.0		0.0 Hz	:		0.0 rpm			
00.056	ba	detection and	29.070	0.	.0 to 60.0	0.0	to 3000.0		5.0			150.0			
00.057	de	detection elay	29.071		0.	0 to 6553.5 s					5.0 s				
00.058	settlin	setpoint g delay	29.072		0.0	0 to 6553.5 s					1.0 s				
00.059		setpoint uction	29.073	0.00 to 2.55 psi 0.06 psi											
00.060		cle mode	29.127	Disabled (0), Alarm Only (1), Trip (2), Inc Setpoint (3) Alarm Only (1)					(1)						
00.061		cle starts hour	29.128	I	0 to 255				5						
00.062			0.000												
00.063	PID 1 nr	oportional	0.000												
00.064	g	ain	14.010		0.000 to 4.000				2.000						
00.065		egral gain eference	14.011 14.020		0.000 to 4.000 +100.00 %				1.000						
00 066	ו וטוה ו	21010100	17.020		±100.00 % +100.00 %										
00.066 00.067		edback	14.021		±100.00 % +/-100%										

Safety information		echanical stallation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optim	nization		edia Card eration	Advance paramete			Diagnostics	UL listing information
	Parame				Range				Default						
	Descripti	ion		OL RFC-A RFC-S						OL	-	RFC-/	A	R	FC-S
00.069	Output frequency 5.001			REI	VM_SPEED_FREQ_ REF[MIN] to VM_SPEED_FREQ_ REF[MAX] Hz										
	Speed feed	lback	3.002		VM_SPEED[MIN] to VM_SPEED[MAX]										
00.070	Percentage	load	4.020		VM_USER_CURRENT[MIN] to VM_USER_CURRENT[MAX] %										
00.071	Output por	wer	5.003	VM_	POWER[MII	N] to VM_PC)WER[MAX] k	W						
00.072	Analog inp current loop		7.028		OF	F (0) or ON	(1)								
00.073	Operating s	status	29.003	F	Inhibit STO (0), Off (Ready) (1), Hand Run (2), Waking (3), Pipe Fill (4), Auto Run (5), Auto Run Leader (6), Auto Run Assist (7), Pre sleep (8), Sleeping (9),Cleaning (10), Level Stop (11),Timer Stop (12), Hand Timeout (13), Over cycle (14), Fbck Loss Run (15) Dry Well Run(16) Dry Well Stop(17) Auto Stop Assist(18), Trip (19), Under VOltage (20)					Inhibit STO (0)					
00.074	NV Media (Action Sta		11.078	Card D	None (0), Active (1), Card Slot 1 (2), Card Slot 2 (3), Card Slot 3 (4), Card Slot 4 (5), Card Product (6), Card User Prog (7), Card Busy (8), Card Data Exists (9), Card Option (10), Card Read Only (11), Card Error (12), Card No Data (13), Card Full (14), Card File Error (15), Card Rating (16), Card File Data (17), Card Derivative (18)										
00.075	PID final fee	dback	29.036		-327.68 to 327.67 psi							0.00) psi		
00.076			0.000												
00.077	Derivative so version		29.001		0 to 99999999						•			•	
00.078	Trip 0		10.020		0 to 255										
00.079	Trip 1		10.021		0 to 255										
080.00	Trip 2		10.022		0 to 255										

^{*}Following a rotating autotune Pr **00.009** {05.010} is continuously written by the drive, calculated from the value of Stator Inductance (Pr **05.025**). To manually enter a value into Pr **00.009** {05.010}, Pr **05.025** will need to be set to 0. Please refer to the description of Pr **05.010** in the Parameter Reference Guide for further details.

RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination
IP	IP address	Mac	Mac address	Date	Date parameter	Time	Time parameter						

Note

Parameter numbers shown in brackets (...) are the equivalent Menu 0 parameters. Some Menu 0 parameters appear twice since their function depends on the operating mode.

The Range - RFC-A / S column applies to both RFC-A and RFC-S. For some parameters, this column applies to only one of these modes, this is indicated accordingly in the Default columns.

In some cases, the function or range of a parameter is affected by the setting of another parameter. The information in the lists relates to the default condition of any parameters affected in this way.

Parameter	00.001 (11.044) Menu Access L	00.001 (11.044) Menu Access Level									
Short description	Defines the menu access level w	Defines the menu access level within the drive									
Mode	Open-Loop, RFC-S, RFC-A	Dpen-Loop, RFC-S, RFC-A									
Minimum	0	Maximum 5									
Default		Units									
Туре	8 Bit Volatile	Update Rate	Background read								
Display Format	Standard	Standard Decimal Places 0									
Coding	RW, TE, ND, PT										

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

Value	Text
0	Menu 0
1	All Menus
2	Read-only Menu 0
3	Read-only
4	Status Only
5	No Access

Security

The drive provides a number of different levels of security that can be set by the user via *Menu Access Level* (11.044); these are shown in the table below.

Security Level	Description	Menu Access Level (11.044)
Menu 0	All writable parameters are available to be edited but only parameters in Menu 0 are visible	0
All menus	All writable parameters are visible and available to be edited.	1
Read-only Menu 0	All parameters are read-only. Access is limited to Menu 0 parameters only.	2
Read-only	All parameters are read-only however all menus and parameters are visible.	3
Status only	The keypad remains in status mode and no parameters can be viewed or edited	4
No access	The keypad remains in status mode and no parameters can be viewed or edited. Drive parameters cannot be accessed via serial comms.	5

When security has been set up the drive can either be in the locked or unlocked state. In the locked state the security level that has been set up applies. In the unlocked state the security is not active, but when the drive is powered down and powered up again the drive will be in the locked state. The drive may be relocked without powering down by selecting the required security level with the *Menu Access Level* (11.044) and initiating a drive reset

Security can be set up as follows:

- 1. The *User Security Code* (11.030) should be set to the desired security unlock code (not zero). For security to remain set after power down then a parameter save should be performed to retain the set value.
- 2. If no further action is taken when the drive is powered down and then powered up read-only security will be set up and locked.
- 3. If at any time the *Menu Access Level* (11.044) is set to a value corresponding the one of the security levels shown in the table above and a drive reset is performed the security level is changed to that level. The desired security level is automatically saved and retained after power down, the keypad state changes to status mode and security is locked. (The security level that is active, provided *User Security Code* (11.030) has been saved as a non-zero value, is shown in *Security Status* (11.085).)

When security is set up and locked:

- 1. Parameter access is restricted as shown in the table above.
- 2. User Security Code (11.030) reads as zero except in parameter edit mode. Therefore it is not possible to read the value of the security code when any level of security is active and locked.

Security can be unlocked as follows:

- 1. If read-only security is set and locked then any attempt to edit any read/write parameter causes "Security code" to be displayed on the first row of the display. When the Up or Down keys are pressed the second row shows the code being adjusted. On setting the code the user presses the Enter key. If the correct code has been entered then the drive switches to Parameter edit mode on the parameter the user selected to edit, but if the correct code has not been entered the notification "Incorrect security code" is displayed for 2 s and the drive returns to Parameter view mode.
- 2. If Status only or No access security is set and locked then any attempt to leave status mode causes the security code to be requested as per the process described above. The security code entered must be correct for the keypad state machine to switch to the Parameter view mode. It is then possible to access all parameters normally.

Security can be cleared as follows:

- 1. Security must be unlocked.
- The User Security Code (11.030) should be set to zero. For security to remain cleared after power down then a parameter save should be performed.

At any time *Menu Access Level* (11.044) can be changed between 0 and 1 to restrict access to Menu 0 alone or to all menus. If the change is made by a keypad the new value becomes active on leaving parameter edit mode. It should be noted that Menu *Access Level* (11.044) is a volatile parameter and that the actual state of the security system is stored in *Security Status* (11.085) and *Menu Access Status* (11.086), which are both power-down save parameters. Therefore the security status will be stored when the drive goes into the under-voltage state. If the drive is already in the under-voltage state the security state should be saved by writing 1001 to *Parameter mm.000* (mm.000) and initiating a reset

			the Motor	·			·				
Parameter 00.002 (1			0.002 (11.042) Parameter Cloning								
Short description Can be used to initiate a data transfer to or from an NV media card											
Mode Open-Loop, RFC-S, RFC-A											
Minimum	0			Maximum		4					
Default	0			Units							
Туре	8 Bit	User Save		Update Rate		Background	d write		•		
Display Format	Stan	dard		Decimal Place	ces	0			•		
Coding	RW,	TE, NC			•				•		

Functional

descriptions

Optimization

NV Media Card

Operation

Advanced

parameters

Technical

data

Diagnostics

Value	Text
0	None
1	Read
2	Program
3	Auto
4	Boot

^{*} Only a value of 0 or 3 in this parameter is saved.

Parameter Cloning (11.042) can be used to initiate data transfer to or from an NV media card as described below. The required action is only initiated if the parameter value has been changed before a drive reset is initiated. This ensures that if Auto or Boot mode are selected that a write is not performed to the card on every drive reset. If Read (1) or Program (2) are successful this parameter is reset to zero, but if Auto (3) or Boot (4) are successful in creating File 001 then this parameter is not reset to zero so that the drive remains in Auto or Boot mode. If any of these actions are not successful then this parameter is not modified, and must be modified by the user before another attempt is made to initiate the required action.

1: Read

Safety

information

Product

information

Mechanical

installation

Flectrical

installation

started /

Running

paramete

If a parameter difference file with file identification number 1 exists on the NV media card then setting this parameter to 1 and initiating a drive reset transfers the parameter data to the drive (i.e. the same action as writing 6001 to *Parameter mm.000 (mm.000)*). When the action is complete this parameter is automatically reset to zero.

2: Program

Setting this parameter to 2 and initiating a drive reset transfers the parameter data from the drive to a parameter difference file with file identification number 1. This is the same action as writing 3001 to *Parameter mm.000 (mm.000)*. When the action is complete this parameter is automatically reset to zero.

3: Auto

Setting this parameter to 3 and initiating a drive reset performs the same action as Program (2) and selects automatic back-up mode. See File System, SD and SMART Card document for more details.

4: Boot

The action is the same as Auto (3) except the file saved to the card is "bootable". See File System, SD and SMART Card document for more details.

Parameter	00.004 (29.157) <i>Motor Type</i>								
Short description	Use this to select the system mo	tor type. Reset drive to acce	ept a new selection.						
Mode	Open-Loop, RFC-S, RFC-A	Open-Loop, RFC-S, RFC-A							
Minimum	0	0 Maximum 1							
Default	0	Units							
Туре	8 Bit Volatile	Update Rate	Background						
Display Format	Standard	Decimal Places	0						
Coding	RW, TE, BU	RW, TE, BU							

This parameter simplifies setup and selection of the application motor. To action the motor selection a drive reset must be actioned e.g. by pressing the red reset button on the keypad.

The following options are available:

Motor type	Value	Description
Induction	0	When Motor Type (29.157) changes to Induction and a reset is performed, the drive will change to open-loop mode for induction motors and the previous regional defaults will be applied.
Permanent- magnet	1	When Motor Type (29.157) changes to Permanent-magnet and a reset is performed, the drive will change to RFC-S mode for servo motors and the previous regional defaults will be applied. By default the motor will be operating in sensorless mode i.e. no speed feedback device is required to run the motor.

UL listing

information

information	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information	
Parameter		00.0	00.005 (05.006) Rated Frequency										
Short description Se			Set to the rated frequency of the motor										
Mode	Mode		DL, RFC-A										
Minimum	1	0.0	0.0 Maximum					599.0					
Default	Default Std: 50 Units Units		50		Hn	ite		Hz					
Dolauit				112									
Type		16 B	it User Sav	9	Up	date Rate		Background Read					

Functional

NV Media Card

1

Advanced Technical

UL listing

Rated Frequency (05.006) and Rated Voltage (05.009) define the frequency to voltage characteristic applied to the motor. See Open-loop Control Mode (05.014) for more details. Rated Frequency (05.006), Rated Speed (05.008) and Number Of Motor Poles (05.011) are used to calculate the rated slip of the motor for slip compensation.

Decimal Places

Rated slip (Hz) = Rated Frequency (05.006) - (Pole pairs x Rated Speed (05.008) / 60)

where:

Display Format

Coding

Safety

Product

Mechanical

Standard RW

Pole pairs = the numeric value of *Number Of Motor Poles* (**05.011**) (i.e. 3 for a 6 pole motor)

If slip compensation is required *Rated Speed* (**05.008**) should be set to the motor nameplate value, which should give the correct compensation for a hot motor provide the nameplate value is correct. Slip compensation can be used throughout the speed range of the motor, i.e. below base speed and in the flux weakening region, to correct the motor speed to minimise the change of speed with load. *Rated Speed* (**05.008**) can be set to a value that is higher than synchronous speed to deliberately introduce speed droop, which can be used to aid load sharing with mechanically coupled motors. Slip compensation is disabled under the following conditions:

- 1. Rated Speed (05.008) = 0
- 2. Rated Speed (05.008) = Rated Frequency (05.006) x 60 / Pole pairs, i.e. synchronous speed.
- 3. Enable Slip Compensation (05.027) = 0

It should be noted that *Rated Speed* (05.008) is used to calculate the rotor time constant of the motor which is then used to determine the flux build-up time at the start of the catch a spinning motor algorithm. If spinning start is required (i.e. *Catch A Spinning Motor* (06.009) ≥1) then *Rated Speed* (05.008) should be set up correctly for the motor. If slip compensation is not required it can be disabled by setting *Enable Slip Compensation* (05.027) to 0.

It is possible to use the drive as a power supply with independent control of output voltage and frequency. The frequency is controlled with the normal frequency reference system and the voltage is controlled with *Rated Voltage* (05.009). To do this *Rated Frequency* (05.006) must be set to zero. However, *Rated Frequency* (05.006) is used in calculating the rated slip above rated frequency which would result in a very high slip frequency. To avoid this slip compensation is disabled if *Rated Frequency* (05.006) = 0.

Parameter	00.006 (05.007) Rated Current	00.006 (05.007) Rated Current							
Short description	Set to the rated current rated of	the motor							
Mode	Open-Loop, RFC-S, RFC-A	Open-Loop, RFC-S, RFC-A							
Minimum	VM_RATED_CURRENT[MIN]	VM_RATED_CURRENT[MIN]							
Default	0.000	Units	A						
Туре	32 Bit User Save	Update Rate	Background read						
Display Format	Standard	Standard Decimal Places 0							
Coding	RW								

Rated Current (05.007) is used as follows:

Function	Details
Motor thermal protection	Defines the motor rated current.
Motor pre-heat	Motor pre-heat is set up as a percentage of rated current.
Motor control	Used in the motor control algorithm.
Current limits	Current limits are set up as a percentage of rated torque producing current.

Safety information	Product information		nanical Illation	Electrical installation	Getting started / Running the Motor	Basic parameter	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Parameter 00.007 (05.008) Rated Speed													
Short de	scription		Set to	the rated	speed of t	he motor							
Mode			Open	n-Loop, RF0	C-S, RFC-	Α							
Minimum	Minimum Open-Loop: 0 RFC-S & RFC-A: 0.00			N	Maximum Open-Loop: 35940 RFC-S & RFC-A: 33000.00								
Default			See 6	exceptions	below	u	Units rpm						
Туре		32 Bit User Save		u	pdate Rate		Background read						
Display I	Display Format Standard		D	Decimal Places Open-Loop: 0 RFC-A: 2									
Coding RW													

Default Value										
Open-Loop	RFC-A	RFC-S								
Std: 1500	Std: 1450.00	Std: 1500.00								
US: 1750	US: 1750.00	US: 1800.00								

Getting started /

Set this to the motor name plate rated speed in rpm.

Rated Speed (05.008) is used in conjunction with Number Of Motor Poles (05.011) to define the rated frequency and this is used as described in the table below.

Function	Details
Sensorless control thresholds	The thresholds for changes from low speed starting mode to high speed normal operation and vice versa.
Flux controller gain	Rated frequency is to define the gain of the flux controller.

The units for Rated Speed (05.008) are rpm.

Parameter	00.008 (05.009) Rated Voltage							
Short description	Set to the rated voltage of the mo	Set to the rated voltage of the motor						
Mode	Open-Loop, RFC-S, RFC-A							
Minimum	VM_AC_VOLTAGE_SET[MIN]	VM_AC_VOLTAGE_SET[MIN]						
Default	See exceptions below	Units	Volts					
Туре	16 Bit User Save	Update Rate	4 ms read					
Display Format	Standard	Standard Decimal Places 0						
Coding	RW, VM	RW, VM						

Voltage	Region	Default Value
200 V	All	230
400 V	50 Hz	400
400 V	60 Hz	460
575 V	All	575
690 V	All	690

Open-Loop

Rated Frequency (05.006) and Rated Voltage (05.009) define the frequency to voltage characteristic applied to the motor. See Open-loop Control Mode (05.014) for more details.

Safetv	Product	Mechanical	Electrical	Getting started /	Basic	Functional	NV Media Card	Advanced	Technical		UL listina
information	information	installation	installation		parameters		Operation	parameters	data	Diagnostics	information
				the Motor		·	·	·			

RFC-S

Set this to the motor name plate rated voltage in Volts.

The Rated Voltage (05.009) is the maximum continuous voltage that is applied to the motor. Some headroom must be allowed if high performance is required at higher speeds. It should be noted that this limit is not applied unless Enable High Speed Mode (05.022) is set to 1.

Rated Voltage (05.009) is used as described in the table below.

RFC-A

The *Rated Voltage* (05.009) is the maximum continuous voltage that is applied to the motor. Normally this should be set to the motor nameplate value. If the drive is supplied through its own diode rectifier the maximum possible output voltage is just below the supply voltage level, and so the output voltage will not reach *Rated Voltage* (05.009) if this is equal to or above the supply voltage. If high transient performance is required at higher speeds then *Rated Voltage* (05.009) should be set to 95% of the minimum d.c. link voltage divided by $\sqrt{2}$ to allow some headroom for the drive to control the motor current. If the drive is fed through its own diode rectifier the minimum d.c. link voltage is approximately supply voltage x $\sqrt{2}$.

In some cases it may be necessary to set the *Rated Voltage* (05.009) to a value other than the motor nameplate value. If this is the case the *Rated Frequency* (05.006) and Rated Speed (05.008) should be set up as follows:

K = Rated Voltage (05.009) / motor rated voltage

Rated Frequency (05.006) = motor rated frequency x K

Rated Speed (05.008) = motor rated speed + [(K - 1) x motor rated frequency x 60 / (number of motor poles / 2)]

The Rated Voltage (05.009), Rated Frequency (05.006) and Number Of Motor Poles (05.011) are used during the auto-tuning process to determine the flux level required in the motor for normal operation. Therefore if the Rated Voltage (05.009) is set to a value other than the nameplate value and the above adjustment is not applied the motor may be under or over-fluxed

Parameter	00.009 (05.010) Rated Power Factor								
Short description	Set to the rated power factor of the	Set to the rated power factor of the motor. This value can be measured by the drive during a rotating autotune.							
Mode	Open-Loop, RFC-A	Open-Loop, RFC-A							
Minimum	0.000	0.000 Maximum 1.000							
Default	0.850	Units							
Туре	16 Bit User Save	Update Rate	Background read/write						
Display Format	Standard	Decimal Places	3						
Coding	RW								

Set this to the motor name plate rated power factor. Normally this is a value in the region of 0.6 to 0.95 and is commonly represented by Cos ϕ or Cos Phi or PF.

Rated Power Factor (05.010) is the true power factor of the motor under rated conditions, i.e. the cosine of the angle between the motor voltage and current. If Stator Inductance (05.025) is set to a non-zero value then the stator inductance is used to calculate the rated magnetising current for the motor and the rated power factor can be calculated by the drive. Therefore if Stator Inductance (05.025) is non-zero Rated Power Factor (05.010) is continuously set to the calculated value of rated power factor by the drive. If Stator Inductance (05.025) is set to zero then Rated Power Factor (05.010) is used to estimate the rated magnetising current which is an approximation and not as accurate. Stator Inductance (05.025) can be measured by the drive during auto-tuning and this is the preferred option, however, if it is not possible to obtain the value for Stator Inductance (05.025) then Rated Power Factor (05.010) should be set to the motor nameplate value.

Parameter	00.010 (05.011) Number Of Mot	00.010 (05.011) Number Of Motor Poles						
Short description	Set to the number of poles of the	motor						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0	Maximum	240					
Default	4	Units	Poles					
Туре	8 Bit User Save	Update Rate	Background read					
Display Format	Standard	Standard Decimal Places 0						
Coding	RW, BU	RW, BU						

Open-Loop

The default setting of this parameter is "Automatic" which uses the following fomula to work out the correct setting:

Pole pairs = 60 x Rated Frequency (05.006) / Rated Speed (05.008) rounded down to the nearest integer.

When setting Number Of Motor Poles (05.011) via the keypad or Connect, it must be set to the number of motor poles e.g. for a 1500 rpm motor the number of poles is 4.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--	----------------------------	---------------------	-------------------	-------------	------------------------	--

When setting *Number Of Motor Poles* (**05.011**) via communications, it must be set to the number of motor pole pairs, i.e. number of motor poles / 2, e.g. for a 1500 rpm motor the number of motor pole pairs is 2.

* The units relate to the numeric value of the parameter and not the text string.

RFC-A

* The units relate to the numeric value of the parameter and not the text string.

The numeric value in *Number Of Motor Poles* (**05.011**) should be set to the number of motor pole pairs (i.e. number of motor poles / 2). The text strings associated with *Number Of Motor Poles* (**05.011**) show the number of motor poles (i.e. the parameter value x 2). If a linear position feedback device is used Number Of Motor Poles (**05.011**) should be set to 1 (2 Poles).

If Number Of Motor Poles (05.011) = 0 (Automatic) the number of motor poles are calculated automatically as given below.

Pole pairs = 60 x Rated Frequency (05.006) / Rated Speed (05.008) rounded down to the nearest integer.

During an autotune when position feedback is being used, the drive will check to ensure that the combination of motor poles and position feedback resolution have been set up correctly, and will produce an Autotune 7 trip if this is not the case. The Autotune 7 trip will not occur if *Number Of Motor Poles* $(05.011) \ge 6$ (i.e. 12 poles).

RFC-S

* The units relate to the numeric value of the parameter and not the text string.

The numeric value in *Number Of Motor Poles* (**05.011**) should be set to the number of motor pole pairs (i.e. number of motor poles / 2). The text strings associated with *Number Of Motor Poles* (**05.011**) show the number of motor poles (i.e. the parameter value x 2). If a linear position feedback device is used *Number Of Motor Poles* (**05.011**) should be set to 1 (2 Poles).

If Number Of Motor Poles (05.011) = 0 (Automatic) the number of motor poles = 3 (6 Poles).

During an autotune when position feedback is being used, the drive will check to ensure that the combination of motor poles and position feedback resolution have been set up correctly, and will produce an Autotune 7 trip if this is not the case. The Autotune 7 trip will not occur if *Number Of Motor Poles* (05.011) \geq 6 (i.e. 12 poles).

Parameter	00.011 (05.015) Low Frequency	00.011 (05.015) Low Frequency Voltage Boost						
Short description	Defines the level of voltage boos	st at 0Hz when using a fixed	V to F relationship					
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0.0	0.0 Maximum 25.0						
Default	1.0	Units	%					
Туре	8 Bit User Save	Update Rate	Background read					
Display Format	Standard	Standard Decimal Places 1						
Coding	RW, BU							

Open-Loop

The default value for this parameter depends on the frame size of the drive as follows:

- 3.0 % up to frame size 06 drives,
- 2.0 % for frame size 07 and frame size 08 drives
- 1.0 % for larger sizes

See Open-loop Control Mode (05.014).

RFC-A

The default value of 1 % is suitable for most Pump systems where the torque required to start is relatively small. For a waste water system where ragging or a build up of material inside the pump is likely, an increased percentage can be used to get the pump started e.g. 2 % or 3 %.

During auto-tune test 2 the drive uses the Open-loop mode control strategy with fixed voltage boost. Low Frequency Voltage Boost (05.015) is used to define the level of low voltage boost used during the test. See Open-loop Control Mode (05.014) in Open-loop mode for more details.

Value	Text	Value	Text
0	1 %	5	25 %
1	2 %	6	50 %
2	3 %	7	100 %
3	6 %		
4	12 %		

See Minimal Movement Phasing Test Mode (05.013).

170

Safety information i	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-------------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.012 (05.013) Low Load Power Saving							
Short description	Set to On to enable power saving	Set to On to enable power saving at low load						
Mode	Open-Loop	Open-Loop						
Minimum	0	0 Maximum 1						
Default	0	Units						
Туре	1 Bit User Save	Update Rate	Background read					
Display Format	Standard Decimal Places 0							
Coding	RW							

Low load power saving is intended for applications where power loss should be kept to a minimum under low load conditions, but dynamic performance is not important. The reduction in power loss under low load conditions is achieved by increasing the rated frequency used to derive the frequency to voltage characteristic of the drive with reduced load. If Low Load Power Saving (05.013) = 0 then Rated Frequency (05.006) is used directly to define the output voltage characteristic. If Low Load Power Saving (05.013) = 1 then a modified value of rated frequency is used when |Percentage Load (04.020)|

rated frequency = Rated Frequency (05.006) x [2 - |Percentage Load (04.020)| / 70.0%]

For higher load levels Rated Frequency (05.006) is used directly.

Parameter	00.013 (05.012) Auto-tune	00.013 (05.012) Auto-tune						
Short description	Defines the auto-tune test to be	performed						
Mode	RFC-S, RFC-A							
Minimum	0	0 Maximum RFC-A: 2						
			RFC-S: 5					
Default	0	Units						
Туре	8 Bit Volatile	Update Rate	Background read					
Display Format	Standard	Standard Decimal Places 0						
Coding	RW, TE, NC							

RFC-A (for induction motors)

Value	Text	Description
0	None	
1	Basic	Autotune to set basic control parameters
2	Improved	Rotating autotune for improved performance

The following describes how an auto-tune test can be initiated and normal operation can be resumed after the test for RFC-A mode:

- An auto-tune test cannot be initiated if the drive is tripped or the drive inverter is active, i.e. *Drive Healthy* (10.001) = 0 or *Drive Active* (10.002) =
 The inverter can be made inactive by ensuring that the Final drive enable is inactive, or the Final drive run is inactive and Hold Zero Speed (06.008) = 0.
- 2. An auto-tune test is initiated by setting Auto-tune (05.012) to a non-zero value and making the Final drive enable and the Final drive run active.
- 3. All tests that move the motor will move the motor in the forward direction if Reverse Select (01.012) = 0 or the reverse direction if Reverse Select (01.012) = 1.
- 4. If the auto-tune sequence is completed successfully the Final drive enable is set to the inactive state and *Auto-tune* (**05.012**) is set to zero. The Final drive enable can only be set to the active state again by removing the enable and reapplying it. The enable can be removed by setting *Drive Enable* (**06.015**) = 0, or by setting bit 0 of the *Control Word* (**06.042**) to 0 provided *Control Word Enable* (**06.043**) = 1, or by making *Hardware Enable* (**06.029**) = 0.
- 5. If a trip occurs during the auto-tune sequence the drive will go into the trip state and *Auto-tune* (05.012) is set to zero. As in 4. above the enable must be removed and re-applied before the drive can be restarted after the trip has been reset. However, care should be taken because if the auto-tune was not completed the drive parameters that should have been measured and set up will still have their original values.
- 6. If the Final drive enable is made active, the Final drive run is inactive and *Hold Zero Speed* (06.008) = 1 the drive would normally be in the Stop state (i.e. the inverter is active, but the frequency or speed reference is 0).

The following describes the effects of the auto-tune test on the drive parameters for RFC-A mode:

- 1. All auto-tune tests rely on the motor being stationary when the test is initiated to give accurate results.
- 2. If Select Motor 2 Parameters (11.045) = 0 then the parameters associated with motor map 1 are updated as a result of the test, and if Select Motor 2 Parameters (11.045) = 1 the parameters associated with motor map 2 are updated.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--	----------------------------	---------------------	-------------------	-------------	------------------------	--

^{8.} When each stage of the test is completed the results written to the appropriate parameters and these parameters saved in the drive non-volatile memory. If *Parameter Cloning* (11.042) is set to 3 or 4 the parameters are also written to a non-volatile media card fitted in the drive.

The table below shows the parameters required for motor control indicating which should be set by the user and which can be measured with an auto-tune test.

Parameter	Required for	Measured in test
Rated Frequency (05.006)	Basic control	User set-up
Rated Current (05.007)	Basic control	User set-up
Rated Speed (05.008)	Basic control	User set-up
Rated Voltage (05.009)	Basic control	User set-up
Rated Power Factor (05.010)	Basic control	2
Number Of Motor Poles (05.011)	Basic control	User set-up
Stator Resistance (05.017)	Basic control	1, 2
Transient Inductance (05.024)	Basic control	1, 2
Stator Inductance (05.025)	Improved performance	2
Saturation Breakpoint 1 (05.029)	Improved performance with flux weakening	2
Saturation Breakpoint 3 (05.030)	Improved performance with flux weakening	2
Maximum Deadtime Compensation (05.059)	Basic control	1, 2
Current At Maximum Deadtime Compensation (05.060)	Basic control	1, 2
Saturation Breakpoint 2 (05.062)	Improved performance with flux weakening	2
Saturation Breakpoint 4 (05.063)	Improved performance with flux weakening	2
Motor And Load Inertia (03.018)	Speed controller set-up and torque feed-forwards	3, 4
Inertia Times 1000 (04.033)	Speed controller set-up and torque feed-forwards	3, 4
Current Controller Kp Gain (04.013)	Basic control	1, 2
Current Controller Ki Gain (04.014)	Basic control	1, 2

^{*}Torque feedback is provided in Percentage Torque (04.026).

1: Basic

This test measures the basic control parameters without moving the motor.

- 1. A stationary test is performed to measure Stator Resistance (05.017), Transient Inductance (05.024), Maximum Deadtime Compensation (05.059) and Current At Maximum Deadtime Compensation (05.060). If Enable Stator Compensation (05.049) = 1 then Stator Base Temperature (05.048) is made equal to Stator Temperature (05.046).
- 2. Stator Resistance (05.017) and Transient Inductance (05.024) are used to set up Current Controller Kp Gain (04.013) and Current Controller Ki Gain (04.014). This is only performed once during the test, and so the user can make further adjustments to the current controller gains if required.

2: Improved

This test measures the parameters for improved performance by rotating the motor.

- 1. Auto-tune 1 test is performed.
- A rotating test is performed in which the motor is accelerated with the currently selected ramps up to a frequency of Rated Frequency (05.006) x 2/3, and the frequency is maintained at that level for up to 40 seconds. Stator Inductance (05.025) is measured and this value is used in conjunction with other motor parameters to calculate Rated Power Factor (05.010). Saturation Breakpoint 1 (05.029), Saturation Breakpoint 3 (05.030), Saturation Breakpoint 2 (05.062) and Saturation Breakpoint 4 (05.063) are measured.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

The table below shows the trips that can occur during an auto-tune test:

Trip	Reason
Autotune Stopped	The final drive enable or the final drive run were removed before the test was completed.
Resistance.001	The measured value of Stator Resistance (05.017) exceeded a value of (VFS / $\sqrt{2}$) / Full Scale Current Kc (11.061), where VFS is the full scale d.c. link voltage.
Resistance.002	It has not been possible to measure the drive inverter characteristic to define Maximum Deadtime Compensation (05.059) and Current At Maximum Deadtime Compensation (05.060).
Autotune 1.001	The position feedback did not change when position feedback is being used.
Autotune 1.002	The motor did not reach the required speed.
Autotune 2.001	Position feedback direction is incorrect when position feedback is being used.
Autotune 2.002	A SINCOS encoder with comms is being used for position feedback and the comms position is rotating in the opposite direction to the sine wave based position.
Autotune 3.001	The measured inertia exceeds the parameter range.
Autotune 3.003	The mechanical load test has failed to identify the inertia.
Autotune 7	The motor poles or the position feedback resolution have been set up incorrectly where position feedback is being used. The trip will not occur if <i>Number Of Motor Poles</i> (05.011) ≥ 6 (i.e. 12 poles).

If Sensorless Mode Active (03.078) = 1 then trips Autotune 1, Autotune 2 and Autotune 7 are disabled.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

RFC-S (for permanent magnet motor)

Value	Text	Description
0	None	
1	Stationary	Autotune for sensorless operation
5	Full Stationary	Autotune for operation with a feedback device

The following describes how an auto-tune test can be initiated and normal operation can be resumed after the test for RFC-S mode:

An auto-tune test cannot be initiated if the drive is tripped or the drive inverter is active, i.e. *Drive Healthy* (10.001) = 0 or *Drive Active* (10.002) = 1. The inverter can be made inactive by ensuring that the Final drive enable is inactive, or the Final drive run is inactive and *Hold Zero Speed* (06.008) = 0

An auto-tune test is initiated by setting Auto-tune (05.012) to a non-zero value and making the Final drive enable and the Final drive run active.

All tests that move the motor will move the motor in the forward direction if *Reverse Select* (01.012) = 0 or the reverse direction if *Reverse Select* (01.012) = 1.

If the auto-tune sequence is completed successfully the Final drive enable is set to the inactive state and *Auto-tune* (**05.012**) is set to zero. The Final drive enable can only be set to the active state again by removing the enable and re-applying it. The enable can be removed by setting *Drive Enable* (**06.015**) = 0, or by setting bit 0 of the *Legacy Control Word* (**06.042**) to 0 provided *Legacy Control Word Enable* (**06.043**) = 1, or by making *Hardware Enable* (**06.029**) = 0.

If a trip occurs during the auto-tune sequence the drive will go into the trip state and *Auto-tune* (05.012) is set to zero. As in 4 above the enable must be removed and re-applied before the drive can be restarted after the trip has been reset. However, care should be taken because if the auto-tune was not completed the drive parameters that should have been measured and set up will still have their original values.

If the Final drive enable is made active, the Final drive run is inactive and *Hold Zero Speed* (**06.008**) = 1 the drive would normally be in the Stop state (i.e. the inverter is active, but the frequency or speed reference is 0).

The following describes the effects of the auto-tune test on the drive parameters for RFC-S mode:

All auto-tune tests rely on the motor being stationary when the test is initiated to give accurate results.

When each stage of the test is completed, the results are written to the appropriate parameters and these parameters saved in the drive non-volatile memory. If *Parameter Cloning* (11.042) is set to 3 or 4 the parameters are also written to a non-volatile media card fitted in the drive.

The table below shows the parameters required for motor control indicating which should be set by the user and which can be measured with an auto-tune test.

Parameter	Required for	Measured in test
Rated Current (05.007)	Basic control	User set-up
Rated Speed (05.008)	Basic control	User set-up
Rated Voltage (05.009)	Basic control	User set-up
Number Of Motor Poles (05.011)	Basic control	User set-up
Stator Resistance (05.017)	Basic control	1, 5
Ld (05.024)	Basic control	1, 5
Maximum Deadtime Compensation (05.059)	Basic control	1, 5
Current At Maximum Deadtime Compensation (05.060)	Basic control	1, 5
Current Controller Kp Gain (04.013)	Basic control	1, 5
Current Controller Ki Gain (04.014)	Basic control	1, 5
Volts Per 1000rpm (05.033)	Basic control	Not currently measured
Inverted Saturation Characteristic (05.070)	Sensorless control using current injection mod	Not currently measured
Phase Offset At Defined Iq Current (05.077)	Sensorless control using current injection mod	Not currently measured
Low Speed Sensorless Mode Current (05.071)	Sensorless control using current injection mod	Not currently measured
No-load Lq (05.072)	Sensorless control and high performance current control	1, 5
Lq At The Defined Iq Current (05.078)	Sensorless control	Not currently measured
Lq At The Defined Id Current (05.084)	Sensorless control	Not currently measured
Position Feedback Phase Angle (03.025)	Basic control with position feedback	1, 5

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--	----------------------------	---------------------	-------------------	-------------	------------------------

1: Stationary (for sensorless permanent-magnet motors)

This test can be used to measure all the necessary parameters for basic control.

- 1. A test is performed to locate the flux axis of the motor. If *Minimal Movement Phasing Test Angle* (05.016) = 0 then motor inductance measurement is used and the motor should not move, otherwise a minimal movement method is used. See *Minimal Movement Phasing Test Mode* (05.013) for details. If sensorless control is being used (i.e. *Sensorless Mode Active* (03.078) = 1) then inductance measurement is always used.
- 2. A stationary test is performed to measure Stator Resistance (05.017), Maximum Deadtime Compensation (05.059) and Current At Maximum Deadtime Compensation (05.060).
- 3. If Enable Stator Compensation (05.049) = 1 then Stator Base Temperature (05.048) is made equal to Stator Temperature (05.046).
- 4. A stationary test is performed to locate the flux axis of the motor again in case the motor has moved during the previous test.
- 5. If sensorless mode is not selected (i.e. Sensorless Mode Active (03.078) = 0) then the position feedback phasing angle measured during stage 1 of this test is compared with the value measured during this stage of the test. If there is a difference of 30° or more then a Autotune 1.6 trip is initiated. Otherwise Position Feedback Phase Angle (03.025) is set up for the position from the position feedback interface selected with Motor Control Feedback Select (03.026). Whether inductance measurement or minimal movement was used to locate the flux Minimal Movement Phasing Test Angle (05.016), Minimal Movement Phasing Test Current (05.015) and Minimal Movement Phasing Test Mechanical Load Phase (05.019) are saved. If inductance measurement is used then the values are set to their default levels. If minimal movement is used then the values are set as a result of the test.
- 6. A stationary test is performed to measure Ld (05.024) and No-load Lq (05.072).
- 7. Stator Resistance (05.017) and Ld (05.024) are used to set up Current Controller Kp Gain (04.013) and Current Controller Ki Gain (04.014). This is only performed once during the test, and so the user can make further adjustments to the current controller gains if required.

It should be noted that because this is a stationary or minimal movement test, it is not possible to check the direction of the position feedback. If the motor power connection phase sequence is incorrect so that the position feedback counts in reverse when the drive applies a phase sequence U-V-W to operate in the forward direction then when the drive is enabled after the auto-tune the motor will jump thought 90° electrical and stop with a current in the motor defined by the current limits. This can be corrected by changing the drive output phase sequence with *Reverse Output Phase Sequence* (05.042) and then repeating the auto-tuning. This will make the motor rotate correctly in the direction defined by the position feedback rotation. If the position feedback direction is correct the motor will then rotate under control in the required direction, but if the position feedback direction is incorrect the motor will then rotate under control in the wrong direction.

When using any type of encoder with digital commutation signals (i.e. AB Servo) the absolute position is not fully defined until the motor has moved by between 1 and 2 electrical revolutions (i.e. between 120° and 240° mechanical for a 6 pole motor). This means that *Position Feedback Phase Angle* (03.025) can only be measured correctly using motor inductance measurement (i.e. *Minimal Movement Phasing Test Angle* (05.016) = 0). Also if *Position Feedback Phase Angle* (03.025) is measured for a motor using this type of position feedback using a stationary test when the motor has not moved since power-up, or after the position feedback is re-initialised, there can be an error of +/-30° in the result. When the motor subsequently moves, the drive synchronises more accurately to the commutation signal edges and adjusts *Position Feedback Phase Angle* (03.025) to be correct and then saves the value in the drive. If a stationary auto-tune is performed and the motor is not moved by at least 2 electrical revolutions before powering down again this process is not carried out and the auto-tune should be repeated. When an encoder with digital commutation signals is used there is always an error of up to 30° in the phasing angle during starting until the motor has rotated by 1/3 of an electrical revolution. It should be noted that the +/-30° error in the phasing angle can increase this error to 60° and reduce the possible torque by up to 50 %. Once the motor has rotated by 2 electrical revolutions full torque will be available.

The stationary test cannot be used with commutation only type devices, and test 2 below should be used instead.

If inductance measurement is being used to locate the flux axis of the motor (see *Minimal Movement Phasing Test Mode* (**05.013**)) and the motor inductance is very high (i.e. low speed motor with high pole number), or the inductance is moderately high and the drive has a much higher power rating than the motor, then the drive may find it difficult to locate the flux axis. If this is a problem and position feedback is being used then the minimal movement method can be performed instead.

5: Full Stationary (for permanent-magnet motors with a feedback device)

This test is intended to measure as many parameters as possible without rotating the motor. *Minimal Movement Phasing Test Mode* (05.013) should to be set to indicate whether the motor is free or constrained. The test is carried out as follows:

- 1. The stationary test described above is performed using inductance measurement.
- 2. If Stage 1 is successful the test is now complete. If position feedback is being used and the test has failed because the saturation characteristic of the motor cannot be measured (Inductance.004), the position feedback phasing angle is different by more than 30° between the first and second time the motor flux is located (Autotune 1.006), or the motor is not salient enough to use inductance measurement to locate the motor flux (Inductance.003) then the stationary test is repeated using minimal movement instead of inductance measurement to locate the motor flux. If Minimal Movement Phasing Test Angle (05.016) has a value of zero when the test is started Minimal Movement Phasing Test Angle (05.016) is set to an angle equivalent to at least 75 counts from the position feedback device if it is a rotary device and is connected to the P1 position feedback interface on the drive, subject to a minimum of 0.05° if the motor is constrained or 1.0° if the motor is free to rotate. The table below shows how the angle is calculated, subject to a maximum of 0.5° if the motor is constrained or 5.0° if it is free to rotate. If the device is not included in the table, is a linear device or is not connected to the P1 interface then the minimum values are used. If Minimal Movement Phasing Test Angle (05.016) is non-zero when the test is started then this value is used. If position feedback is not being used or any other trips occurred during the first stationary test the test is aborted and the drive is tripped.
- 3. If Stage 2 is successful the test is now complete.

NOTE

Further stages will be added to this test in the future, and so it should not be assumed that the test will be complete after the stages given above in future software versions.

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running the Motor	parameters	descriptions	Оршпігацоп	Operation	parameters	data	Diagnostics	information

Position feedback type	Calculation of minimal movement phasing test angle
AB, FD, FR, AB Servo, FD Servo, FR Servo	6750 / P1 Rotary Lines Per Revolution (03.034)
SC, SC Hiperface, SC EnDat, SC SSI, SC Servo, SC SC	6750 / (P1 Rotary Lines Per Revolution (03.034) x 256)
Resolver	5°
EnDat, SSI, BiSS	27000 / 2 ^{(P1} Comms Bits (03.035) - P1 Rotary Turns Bits (03.033))

Trip	Reason
Autotune Stopped	The final drive enable or the final drive run were removed before the test was completed.
Resistance.001	The measured value of Stator Resistance (05.017) exceeded a value of $(V_{FS} / \sqrt{2}) / Full Scale Current Kc (11.061)$, where V_{FS} is the full scale d.c. link voltage.
Resistance.002	It has not been possible to measure the drive inverter characteristic to define Maximum Deadtime Compensation (05.059) and Current At Maximum Deadtime Compensation (05.060).
Autotune 1.001	The position feedback did not change when position feedback is being used.
Autotune 1.002	The motor did not reach the required speed.
Autotune 1.003	The required commutation signal edge could not be found with commutation signal only position feedback.
Autotune 1.004	The required angular movement did not occur during a minimal movement test.
Autotune 1.005	The fine location of the motor flux during a minimal movement test failed.
Autotune 1.006	The phasing offset angle is measured twice during a stationary auto-tune and the two values were not within 30 degrees.
Autotune 1.007	The motor was rotating when a minimal movement test was performed to find the phasing offset angle on enable.
Autotune 1.009	During the final stage of the minimal movement phasing test with a constrained motor it was not possible to achieve the required movement.
Autotune 2.001	Position feedback direction is incorrect when position feedback is being used.
Autotune 2.002	A SINCOS encoder with comms is being used for position feedback and the comms position is rotating in the opposite direction to the sine wave based position.
Autotune 3.001	The measured inertia exceeds the parameter range.
Autotune 3.003	The mechanical load test has failed to identify the inertia.
Autotune 3.002	A position feedback device with commutation signals is being used (i.e. AB Servo, FD Servo, FR Servo, SC Servo) and the commutation signals changed in the wrong direction.
Autotune 4	A position feedback device with commutation signals is being used (i.e. AB Servo, FD Servo, FR Servo, SC Servo) and U signal did not change.
Autotune 5	A position feedback device with commutation signals is being used (i.e. AB Servo, FD Servo, FR Servo, SC Servo) and V signal did not change.
Autotune 6	A position feedback device with commutation signals is being used (i.e. AB Servo, FD Servo, FR Servo, SC Servo) and W signal did not change.
Autotune 7	The motor poles or the position feedback resolution have been set up incorrectly where position feedback is being used. The trip will not occur if <i>Number Of Motor Poles</i> (05.011) ≥ 6 (i.e. 12 poles).
Inductance.003	The difference between the d and q axis inductance is not large enough to correctly determine the location of the motor flux. If position feedback is being used the measured value for <i>Position Feedback Phase Angle</i> (03.025) may not be reliable. Also the measured values of <i>Ld</i> (05.024) and <i>No-load Lq</i> (05.072) may not correspond to the d and q axis respectively. The test is completed and all the parameters saved to non-volatile memory in the drive, but the user should note that the measured results may not be correct. It should be noted that this trip is not produced if sensorless mode is selected and active (i.e. <i>Sensorless Mode Active</i> (03.078) = 1).
Inductance.004	During auto-tune test 1 when position feedback is being used (i.e. Sensorless Mode Active (03.078) = 0), the direction of the flux in the motor must be detected by the change of inductance with different currents. This trip is initiated if the

If Sensorless Mode Active (03.078) = 1 then trips Autotune 1, Autotune 2 and Autotune 7 are disabled.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
IIIIOIIIIatioii	iiiioiiiiatioii	ilistaliation	ilistaliation	the Motor	parameters	descriptions		Operation	parameters	uata		IIIIOIIIIatioii

Parameter	00.014 (05.064) RFC Low Speed Mode									
Short description	Defines the low speed mode of the drive when position feedback is not being used									
Mode	RFC-S									
Minimum	0 Maximum 5									
Default	2	Units								
Туре	8 Bit User Save	Update Rate	Background read							
Display Format	Standard Decimal Places 0									
Coding	RW, TE									

If sensorless mode is being used and is active (i.e. *Sensorless Mode Active* (03.078) = 1) and the motor is operating at low speed then a low speed algorithm must be used to control the motor. The change between the low speed and normal operation algorithms is related to the drive output frequency. An upper threshold is provided for the change from low speed to normal operation, and a lower threshold is provided for the change back from normal to low speed operation as given in the table below. These values are a percentage of *Rated Speed* (05.008). If high saliency control is being used (*Active Saliency Torque Mode* (05.066) = 2) then the lower threshold is always 15 % and the upper threshold is 20 %.

Switching Frequency (05.037)	Lower Threshold	Upper Threshold
2 kHz	5 %	10 %
3 kHz	5 %	10 %
4 kHz	5 %	10 %
6 kHz	10 %	15 %
8 kHz	10 %	15 %
12 kHz	15 %	20 %
16 kHz	15 %	20 %

RFC Low Speed Mode (05.064) is used to select the algorithm to be used as described below. The following should be noted:

- 1. Current modes should not be used for motors with high saliency.
- 2. Torque control can be used with the "Injection" starting method in the same way as with position feedback. However if torque control is to be used in an application where the other starting methods are used then the following should be considered: Torque control should not be enabled until the low speed algorithm is no longer active and the motor speed must not drop to a level where the low speed mode will become active again while torque control is active. This means that the motor must be started in speed control and torque control should only be selected when the speed is high enough. To stop the motor the drive can simply be disabled or the run command should be removed for the drive to stop the motor. Removing the run causes the drive to switch from torque control to speed control, and so the motor speed can be reduced back down though the range where the low speed algorithm is active.

0: Injection

A high frequency signal is injected into the motor to detect the motor flux axis. For this to operate correctly the motor must remain salient while the low speed mode is active. The no-load inductance parameters are checked by the drive on enable and if the motor is not sufficiently salient then a Inductance trip is initiated. See the details of this trip for the inductances required. Generally the q axis inductance falls as the q axis current is increased, i.e. the motor is loaded. While low speed operation is active the drive will apply a current limit defined by *Low Speed Sensorless Mode Current* (05.071) to prevent the q axis inductance from falling to a level that would cause the motor to become non-salient. It will be necessary to limit the bandwidth of the speed controller to a level of 10 Hz or less for stable operation particularly at low speeds. Provided these conditions are met this method can be used in the same way as control with position feedback, but the control performance is limited.

1 or 2: Current

This method, which applies a rotating current vector at the frequency defined by the speed reference, can be used with any motor with no saliency or moderate saliency. It should only be used with motors where more of the torque is produced in conjunction with the magnet flux rather than from saliency torque. This mode does not provide the same level of control at low speed as injection mode, but it can be used with a motor that is not salient. The following should be considered:

- 1. Only speed control can be used when low speed mode operation is active.
- 2. A current specified by Low Speed Sensorless Mode Current (05.071) is applied when low speed mode is active. This current should be sufficient to start the motor with the highest expected load. If the motor has some saliency with no-load applied, and a suitable saturation characteristic, the drive can detect the rotor position and apply the current at the correct angle to avoid starting transient. If the motor is non-salient as defined by the conditions for Inductance trip then the drive will not attempt to detect the rotor position and the current will be applied at an arbitrary angle. This could cause a starting transient if the level of current applied is high, and so Low Speed Sensorless Mode Current (05.071) should not be set to a higher level than necessary. To minimise the movement as a result of applying the current, it is increased over the period defined by Sensorless Mode Current Ramp (05.063) in the form of a squared characteristic (i.e. it is increased with a low rate of change at the beginning and the rate of change is gradually increased).
- 3. It is not possible to measure the motor inertia using auto-tuning with Auto-tune (05.012) = 4.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

- 4. As the level of current when low speed mode is active is not dependent on the applied load, but is as defined by Low Speed Sensorless Mode Current (05.071), and so the motor may become too hot if low speed mode is active for a prolonged period of time.
- 5. Generally Low Speed Sensorless Mode Current (05.071) should be set to a level higher than the expected maximum load, and can be set to a much higher level than the load if the saliency and saturation characteristic allow the position of the rotor to be detected on starting. However, Low Speed Sensorless Mode Current (05.071) should be matched more closely to the expected load under the following conditions: the load inertia is high compared to the motor inertia, or there is very little damping/loss in the load system, or where the q axis inductance of the motor changes significantly with load.

3: Current no test

The "Current" method is used, but no attempt is made to determine the position of the rotor before applying the current. This can be selected for example, if the motor does not have a suitable saturation characteristic to allow the rotor position to be determined during starting, or if faster starting is required. The initial current vector angle will be at an arbitrary position with respect to the actual rotor position. As the vector sweeps round it must make the rotor start to rotate. If the ramp rate is too high the rotor may not keep up with the current vector and the motor may not start. If this is the case then the ramp rate should be reduced and/or the current used to start the motor should be increased.

4: Current step

The current starting modes normally provide a smooth transition between the low speed current mode and normal running at higher speeds. If the drive accelerates very rapidly and only spends short periods of time in each mode the transition smoothing can malfunction. "Current step" mode is similar to "Current no test" mode except that the transition smoothing is disabled. It is not advisable to use this mode unless it is necessary as torque transients will occur when changing between low speed and normal running operation.

5: Current only

The "Current" method is used, but no attempt is made to determine the position of the rotor before applying the current. The system remains in this starting mode at all speeds and does not change to the normal operating algorithms. This provides a very basic open-loop control method, that is not recommended for most applications. Flux weakening is not possible, and so this method will not operate correctly when the motor voltage approaches the maximum voltage available from the drive.

The current applied to the motor is always the level defined by Low Speed Sensorless Mode Current (05.071) and the frequency is defined by the frequency reference. The following should be noted:

It is possible that the motor may become unstable especially on light load.

The current in the motor will always be at the level defined by Low Speed Sensorless Mode Current (05.071) whatever the load. Care should be taken not to overheat the motor.

The speed feedback provided is derived from the reference, and so it does not necessarily represent the actual speed of the motor.

Parameter	00.015 (05.071) Low Speed Sensorless Mode Current									
Short description	Current reference applied in low speed current mode or maximum current limit for low speed injection mode									
Mode	RFC-S									
Minimum	0.0 Maximum 1000.0									
Default	100.0	Units	%							
Туре	16 Bit User Save	Update Rate	Background read							
Display Format	Standard Decimal Places 0									
Coding	RW									

RFC Low Speed Mode (05.064) is used to select the algorithm to be used as described below. The following should be noted:

- 1. Current modes should not be used for motors with high saliency.
- 2. Torque control can be used with the "Injection" starting method in the same way as with position feedback. However if torque control is to be used in an application where the other starting methods are used then the following should be considered: Torque control should not be enabled until the low speed algorithm is no longer active and the motor speed must not drop to a level where the low speed mode will become active again while torque control is active. This means that the motor must be started in speed control and torque control should only be selected when the speed is high enough. To stop the motor the drive can simply be disabled or the run command should be removed for the drive to stop the motor. Removing the run causes the drive to switch from torque control to speed control, and so the motor speed can be reduced back down though the range where the low speed algorithm is active.

0: Injection

A high frequency signal is injected into the motor to detect the motor flux axis. For this to operate correctly the motor must remain salient while the low speed mode is active. The no-load inductance parameters are checked by the drive on enable and if the motor is not sufficiently salient then a Inductance trip is initiated. See the details of this trip for the inductances required. Generally the q axis inductance falls as the q axis current is increased, i.e. the motor is loaded. While low speed operation is active the drive will apply a current limit defined by *Low Speed Sensorless Mode Current* (05.071) to prevent the q axis inductance from falling to a level that would cause the motor to become non-salient. It will be necessary to limit the bandwidth of the speed controller to a level of 10 Hz or less for stable operation particularly at low speeds. Provided these conditions are met this method can be used in the same way as control with position feedback, but the control performance is limited.

Safetv	Product	Mechanical	Electrical	Getting started /	Basic	Functional	NV Media Card	Advanced	Technical		UL listina
information	information	installation	installation		parameters		Operation	parameters	data	Diagnostics	information
				the Motor		·	·	·			

1 or 2: Current

This method, which applies a rotating current vector at the frequency defined by the speed reference, can be used with any motor with no saliency or moderate saliency. It should only be used with motors where more of the torque is produced in conjunction with the magnet flux rather than from saliency torque. This mode does not provide the same level of control at low speed as injection mode, but it can be used with a motor that is not salient. The following should be considered:

- 1. Only speed control can be used when low speed mode operation is active.
- 2. A current specified by Low Speed Sensorless Mode Current (05.071) is applied when low speed mode is active. This current should be sufficient to start the motor with the highest expected load. If the motor has some saliency with no-load applied, and a suitable saturation characteristic, the drive can detect the rotor position and apply the current at the correct angle to avoid starting transient. If the motor is non-salient as defined by the conditions for Inductance trip then the drive will not attempt to detect the rotor position and the current will be applied at an arbitrary angle. This could cause a starting transient if the level of current applied is high, and so Low Speed Sensorless Mode Current (05.071) should not be set to a higher level than necessary. To minimise the movement as a result of applying the current, it is increased over the period defined by Sensorless Mode Current Ramp (05.063) in the form of a squared characteristic (i.e. it is increased with a low rate of change at the beginning and the rate of change is gradually increased).
- 3. It is not possible to measure the motor inertia using auto-tuning with Auto-tune (05.012) = 4.
- 4. As the level of current when low speed mode is active is not dependent on the applied load, but is as defined by Low Speed Sensorless Mode Current (05.071), and so the motor may become too hot if low speed mode is active for a prolonged period of time.
- 5. Generally Low Speed Sensorless Mode Current (05.071) should be set to a level higher than the expected maximum load, and can be set to a much higher level than the load if the saliency and saturation characteristic allow the position of the rotor to be detected on starting. However, Low Speed Sensorless Mode Current (05.071) should be matched more closely to the expected load under the following conditions: the load inertia is high compared to the motor inertia, or there is very little damping/loss in the load system, or where the q axis inductance of the motor changes significantly with load.

3: Current no test

The "Current" method is used, but no attempt is made to determine the position of the rotor before applying the current. This can be selected for example, if the motor does not have a suitable saturation characteristic to allow the rotor position to be determined during starting, or if faster starting is required. The initial current vector angle will be at an arbitrary position with respect to the actual rotor position. As the vector sweeps round it must make the rotor start to rotate. If the ramp rate is too high the rotor may not keep up with the current vector and the motor may not start. If this is the case then the ramp rate should be reduced and/or the current used to start the motor should be increased.

4: Current step

The current starting modes normally provide a smooth transition between the low speed current mode and normal running at higher speeds. If the drive accelerates very rapidly and only spends short periods of time in each mode the transition smoothing can malfunction. "Current step" mode is similar to "Current no test" mode except that the transition smoothing is disabled. It is not advisable to use this mode unless it is necessary as torque transients will occur when changing between low speed and normal running operation.

5: Current only

The "Current" method is used, but no attempt is made to determine the position of the rotor before applying the current. The system remains in this starting mode at all speeds and does not change to the normal operating algorithms. This provides a very basic open-loop control method, that is not recommended for most applications. Flux weakening is not possible, and so this method will not operate correctly when the motor voltage approaches the maximum voltage available from the drive.

The current applied to the motor is always the level defined by Low Speed Sensorless Mode Current (05.071) and the frequency is defined by the frequency reference. The following should be noted:

It is possible that the motor may become unstable especially on light load.

The current in the motor will always be at the level defined by Low Speed Sensorless Mode Current (05.071) whatever the load. Care should be taken not to overheat the motor

The speed feedback provided is derived from the reference, and so it does not necessarily represent the actual speed of the motor.

information	information		llation	installation	Running the Motor	parameters	descriptions	Optimization	Operation Operation	parameters	data	Diagnostics	information
Parameter 00.016 (04.007) Symmetrical Current Limit													
Short de	scription		Defin	es the sym	metrical cu	urrent limit							
Mode			Open	-Loop, RF0	C-A, RFC-	S							
Minimum			VM_MOTOR1_CURRENT_LI MIT[MIN]			_LI Ma	ıximum		VM_MOTOR1_CURRENT_LIMIT[MAX]				
Default			0.0			Un	its		%				

4 ms read

1

The Motoring Current Limit (04.005) limits the current when the motor is being accelerated away from standstill. The Regenerating Current Limit (04.006) limits the current when the motor is being decelerated towards standstill. If the Symmetrical Current Limit (04.007) is below the Motoring Current Limit (04.005) then it is used instead of the Motoring Current Limit (04.005). If the Symmetrical Current Limit (04.007) is below the Regenerating Current Limit (04.006) then it is used instead of the Regenerating Current Limit (04.006).

Update Rate

Decimal Places

The maximum possible current limit (VM_MOTOR1_CURRENT_LIMIT [MAX]) varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.

Parameter	00.017 (29.087) Motor Thermal Protection Enable									
Short description	Off = Disabled, On = Enabled. Selectes whether the motor temperature monitoring input is enabled or not									
Mode	Open-Loop, RFC-A, RFC-S									
Minimum	0 Maximum 1									
Default	0	Units								
Туре	1 Bit User Save	Update Rate	Background							
Display Format	Standard Decimal Places 0									
Coding	RW									

When set to On(1), to the Motor Thermal Protection Input (29.086) is enabled.

16 Bit User Save

Standard

RW, VM

When set to Off(0), to the Motor Thermal Protection Input (29.086) is disabled.

See Motor Thermal Protection Input (29.086).

Type

Coding

Display Format

Parameter	00.018 (05.042) Reverse Output Phase Sequence									
Short description	Set to 1 to reverse the sequence on the output phases									
Mode	Open-Loop, RFC-A, RFC-S									
Minimum	0 Maximum 1									
Default	0	Units								
Туре	1 Bit User Save	Update Rate	Background read							
Display Format	Standard Decimal Places 0									
Coding	RW									

If Reverse Output Phase Sequence (05.042) = 0 the output phase sequence is U-V-W when Output Frequency (05.001) is positive and W-V-U when Output Frequency (05.001) is negative. If Reverse Output Phase Sequence (05.042) = 1 the output phase sequence is reversed so that the phase sequence in W-V-U for positive frequencies and U-V-W for negative frequencies.

180

Safety information		chanical Electrical installation			ctional optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	----------------------------------	--	--	----------------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.021 (29.011) Pump Control Mode					
Short description	This sets the control mode for the	e drive e.g. Single pump, Ca	ascade etc			
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S				
Minimum	0 Maximum 4					
Default	0	Units				
Туре	8 Bit User Save	Update Rate	Background			
Display Format	Standard	Decimal Places	0			
Coding	RW, TE, BU					

This defines the type of system that the drive is being applied to. The following table shows the options available:

Mode	Value	Description
Single Pump (Simplex)	0	This is for a single pump installation running from a local Hand mode reference or in Auto mode using the main process PID controller to maintain a setpoint e.g. pressure or flow or level. Alternatively, if PID control isn't required in Auto mode, the drive can run from a fixed speed reference. Single Pump is the default control mode.
Cascade (Duty Assist)	1	This is for a single leader pump drive with up to 4 cascaded assist pumps powered by soft starters. The soft starters are commanded with simple digital I/O from the leader pump drive; the leader drive may require an SI-I/O option to Handle the assist control signals, e.g. when Assist Control Mode (29.106) = Full I/O. The application may run from a local Hand mode reference or in Auto mode using the main process PID controller to maintain a setpoint e.g. pressure or flow or level. Alternatively, if PID control isn't required in Auto mode, the drive can run from a fixed speed reference.
Multi-leader (Multiplex)	2	This is for a multi-leader pump installation where up to 3 pumps, controlled by F600 pump drives, are in the system. The role of leader drive is cycled between the pump drives, after a user set time, to even out pump wear. The leader drive requests assist pumps over an Ethernet network; each drive requires an SI-Ethernet option with >=V01.07.03.03 firmware to facilitate the control. The application may run from a local Hand mode reference or in Auto mode using the main process PID controller to maintain a setpoint e.g. pressure or flow or level. Alternatively, if PID control isn't required in Auto mode, the drive can run from a fixed speed reference. This has improved redundancy compared to the other modes where any drive can assume the role of leader in the event of a fault. In the event of a faulty PID feedback transducer, the leader can use the feedback from another drive via the Ethernet connection between drives.

Parameter	00.022 (01.006) Maximum Refe	00.022 (01.006) Maximum Reference Clamp				
Short description	Defines the maximum value for t	he reference				
Mode	Open-Loop, RFC-A, RFC-S					
Minimum	VM_POSITIVE_REF_CLAMP 1[MIN]					
Default	See exceptions below	Units	OL: rpm RFC-A: Hz RFC-S: Hz			
Туре	32 Bit User Save	Update Rate	Background read			
Display Format	Standard Decimal Places 1					
Coding	RW, VM					

Default Value					
OL	RFC-A	RFC-S			
50.0 Hz	1500.0 rpm				
60.0 Hz	1800.0 rpm				

Maximum Reference Clamp (01.006) provides a limit on the maximum frequency or speed. This is normally set to the rated frequency or speed for the Pump motor.

Pump Drive F600 User Guide 181

Safety Product Mechanical Electrical started / Running the Motor Safety Product Information Info	()ntimization	Advanced Technical parameters data	Diagnostics	UL listing information
--	---------------	------------------------------------	-------------	------------------------

Parameter	00.023 (01.004) Positive Minimu	00.023 (01.004) Positive Minimum Reference Clamp				
Short description	Sets the positive minimum refere	Sets the positive minimum reference clamp.				
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S				
Minimum	VM_SPEED_FREQ_REF[MIN]	VM_SPEED_FREQ_REF[MIN]				
Default	0.0	Units	OL: Hz RFC-A: rpm RFC-S: rpm			
Туре	32 Bit User Save	Update Rate	4 ms read			
Display Format	Standard	Standard Decimal Places 1				
Coding	RW, VM	RW, VM				

For Pump systems, this may be used to set the minimum positive frequency or speed that the Pump or fan can run at that will affect the main process PID feedback, (*PID Final Feedback* (29.036) or PID *Final Feedback Percent* (29.035)). Most fans and pumps don't give an appreciable output until up to 50% of their rated frequency or speed is reached.

When a Pump Cleaning / deragging cycle is running this is not used to permit the motor to turn backwards.

Parameter	00.024 (29.012) Control Input M	00.024 (29.012) Control Input Mode				
Short description	Selects how the system will be s	tarted and stopped				
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S				
Minimum	0 Maximum 3					
Default	1	Units				
Туре	8 Bit User Save	Update Rate	Background			
Display Format	Standard	Decimal Places	0			
Coding	RW, TE, BU					

This selects how the system will respond to control inputs. The following table shows the options available:

Mode	Value	Description
Input	0	In this mode the control logic is supplied to local bit type inputs such as <i>Hand Select Input</i> (29.013) or <i>Auto Select Input</i> (29.015). The user is intended to direct digital inputs to all bit type input parameters to be controlled.
Input & Keypad (Default)	1	In this mode the control logic to apply either a Hand or Auto or to stop the system can come from either the Keypad HAND, OFF and AUTO buttons or from the digital inputs directed to <i>Hand Select Input</i> (29.013) or <i>Auto Select Input</i> (29.015). In this mode of control the keypad can be used to start and stop the drive, but will be overridden by <i>Hand Select Input</i> (29.013) or <i>Auto Select Input</i> (29.015) if they are used. When the keypad is overridden, any selections made by it are reset. To activate Hand or Auto controls on the keypad press and hold the required function key for 2 s. The Off key operates with a short press. All other local bit type control inputs are handled the same as <i>Input</i> .
Ctrl Wrd	2	In this mode, control inputs are exclusively handled by 1 (29.151) and 2 (29.152) i.e. the local bit type inputs are ignored. This intended for PLC control, where most PLCs have hardware I/O to Handle devices such as flow switches.
Ctrl Wrd & Input	3	In this mode, control inputs may be asserted via 1 (29.151) and 2 (29.152) or by the equivalent local boolean inputs such as the Flow Switch Input (29.066). This intended for HMI control, where most HMIs don't have hardware I/O, and the Pump Drive F600 I/O is used for devices like flow switches, but the HMI is used to select Hand or Auto mode.

Safety information		chanical Electrical installation			ctional optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	----------------------------------	--	--	----------------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.025 (29.016) Hand Mode Reference Select					
Short description	Selects the reference type used to	to define the Hand mode sp	eed.			
Mode	Open-Loop	Open-Loop				
Minimum	0 Maximum 1					
Default	0	Units				
Туре	8 Bit User Save	Update Rate	Background			
Display Format	Standard	Decimal Places	0			
Coding	RW, TE					

This selects where the frequency or speed reference comes from when Hand mode is selected. When set to Digital Speed, Pr1.022 sets the reference. When set to Analog Speed, by default, a 0 to 10V signal is applied to analog input 2 T6. See the following table.

Mode	Value	Description
0	Digital Speed	In this mode when Hand is selected, the motor speed or frequency reference is provided by <i>Hand Mode Reference</i> (01.022).
1	Analog Speed	In this mode when Hand is selected, the motor speed or frequency reference is provided by a drive analog input Hand Mode Analog Reference (01.036). The default is via T6 Analog input 2.

Parameter	00.026 (01.022) Hand Mode Re	00.026 (01.022) Hand Mode Reference						
Short description	Defines the value for Hand mode	e reference 2						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	VM_SPEED_FREQ_REF[MIN]	VM_SPEED_FREQ_REF[MIN]						
Default	See exceptions below	Units						
Туре	32 Bit User Save	Update Rate	4 ms read					
Display Format	Standard	Standard Decimal Places 1						
Coding	RW, VM							

Default Value							
OL RFC-A RFC-S							
25.0 Hz	750	.0 rpm					
30.0 Hz	900.0 rpm						

This defines the speed or frequency reference used when running in Hand mode and when *Hand Mode Reference Select* (29.016) = Digital Speed. See *Hand Select Input* (29.013).

Safety information	Product information		anical llation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Paramet	Parameter 00.027 (02.011) General Acceleration Rate												
Short de	scription		Defin	Defines the general acceleration rate									
Mode			Open	-Loop, RF0	C-A, RFC-	S							
Minimum	ı		VM_A	VM_ACCEL_RATE[MIN] Maximum				VM_ACCEL_RATE[MAX]					
Default			OL: 1 RFC-	.0 A \ RFC-S: 1.000				s / Pr 1.006	(Default)				

4 ms read OL: 1

RFC-A\RFC-S: 3

This defines the acceleration rate in Hand and Auto, exept when a pump cleaning or de-ragging cycle is running.

32 Bit User Save

Standard

RW. VM

The units of General Acceleration Rate (02.011), Cleaning Phase 1 Acceleration Rate (02.012), Cleaning Phase 2 Acceleration Rate (02.013) and Cleaning Phase 3 Acceleration Rate (02.014) are s / Ramp rate frequency or s / Ramp rate speed. See Ramp Rate Units (02.039) for the definition of Ramp rate frequency and Ramp rate speed.

Update Rate

Decimal Places

Selecting a ramp rate that has been set to zero in Open-loop mode disables the ramp system so that the *Post Ramp Reference* (02.001) follows the *Pre-ramp Reference* (01.003) without any delay for acceleration or deceleration. It should be noted that this also disables the standard ramp d.c. link voltage controller and the frequency based current limits.

Parameter	00.028 (02.021) General Decel	00.028 (02.021) General Deceleration Rate					
Short description	Defines the general deceleration	n rate					
Mode	Open-Loop						
Minimum	VM_ACCEL_RATE[MIN]	VM_ACCEL_RATE[MIN]					
Default	OL: 1.0 RFC-A \ RFC-S: 1.000	Units	s / Pr1.006 (Default)				
Туре	32 Bit User Save	Update Rate	4 ms read				
Display Format	Standard	Decimal Places	OL: 1 RFC-A \ RFC-S: 3				
Coding	RW, VM						

This defines the acceleration rate in Hand and Auto, exept when a pump cleaning or de-ragging cycle is running.

The units of General Acceleration Rate (02.011), Cleaning Phase 1 Acceleration Rate (02.012), Cleaning Phase 2 Acceleration Rate (02.013) and Cleaning Phase 3 Acceleration Rate (02.014) are s / Ramp rate frequency or s / Ramp rate speed. See Ramp Rate Units (02.039) for the definition of Ramp rate frequency and Ramp rate speed.

Selecting a ramp rate that has been set to zero in Open-loop mode disables the ramp system so that the *Post Ramp Reference* (02.001) follows the *Pre-ramp Reference* (01.003) without any delay for acceleration or deceleration. It should be noted that this also disables the standard ramp d.c. link voltage controller and the frequency based current limits.

184

Type

Coding

Display Format

Safety Productinformation information	Mechanical n installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
---------------------------------------	------------------------------	-------------------------	--	---------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.029 (29.022) PID Setpoint 0						
Short description	PID setpoint 0 which is used as t	PID setpoint 0 which is used as the main setpoint, set in user feedback units					
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S					
Minimum	0.00	Maximum 327.67					
Default	0.00	Units	user feedback units				
Туре	16 Bit User Save	Update Rate	Background				
Display Format	Standard	Decimal Places	2				
Coding	RW						

PID Setpoint 0 (29.022) is the main process PID setpoint. PID Setpoint 0 (29.022) is selected by default because the PID setpoint select inputs, PID Setpoint Select Input 0 (29.026) and PID Setpoint Select Input 1 (29.027) are set to Off(0) by default.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	00.030 (29.031) PID Feedback	00.030 (29.031) PID Feedback Minimum Scaling					
Short description	Defines the minimum scaling val	ue for the analogue PID fee	dback i.e. the user feedback units				
Mode	Open-Loop, RFC-A, RFC-S						
Minimum	0.00	Maximum 327.67					
Default	0.00	Units	user feedback units				
Туре	16 Bit User Save	Update Rate	Background				
Display Format	Standard	Decimal Places	2				
Coding	RW						

PID Feedback Minimum Scaling (29.031) defines the minimum value for the main process PID feedback provided by a transducer connected to Analog input 1 T5. PID Feedback Minimum Scaling (29.031) is used in combination with PID Feedback Maximum Scaling (29.032) to define to feedback scaling.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	00.031 (29.032) PID Feedback Maximum Scaling					
Short description	Defines the maximum scaling va	lue for the analogue PID fee	edback i.e. the user feedback units			
Mode	Open-Loop, RFC-A, RFC-S					
Minimum	0.01	Maximum 327.67				
Default	100.00	Units	user feedback units			
Туре	16 Bit User Save	Update Rate	Background			
Display Format	Standard	Decimal Places	2			
Coding	RW					

PID Feedback Maximum Scaling (29.032) defines the maximum value for the main process PID feedback provided by a transducer connected to Analog input 1 T5. PID Feedback Minimum Scaling (29.031) is used in combination with PID Feedback Maximum Scaling (29.032) to define to feedback scaling.

The units of this parameter (user feedback units) are defined by pr29.184.

information	information	installation	installation	Running the Motor	parameters	descriptions	Ориппаний	Operation	parameters	data	Diagnostics	information
Parameter 00.032 (29.033) PID Feedback Filter Time Constant						stant						
Short de	scription	Set	s the PID fee	edback filt	er time cons	stant in sec	onds					
Mode		Ор	Open-Loop, RFC-A, RFC-S									
Minimum	1	0.0	0.00			eximum		327.67				
Default		1.0	0		Ur	nits		s				
Туре		16	16 Bit User Save			date Rate		4 ms				
Display F	Display Format Standard			De	cimal Plac	es	2					
Coding RW												

Functional

NV Media Card

Advanced

Technical

UL listing

This is the time constant in seconds for the low pass filter used to condition the value from the feedback transducer connected to Analog input 1 T5.

For a step change in feedback value, after 5x the filter time constant the input and output of the filter will be approximately equal e.g. if the time constant is 1 s, after a step change in feedback, after 5 s the output will approximately match the input.

The input to the filter is PID Feedback Percent (29.034) and the output from the filter is PID Final Feedback Percent (29.035).

Parameter	00.033 (29.048) PID Feedback	00.033 (29.048) PID Feedback Loss Action					
Short description	Sets the PID feedback filter time	constant in seconds					
Mode	Open-Loop						
Minimum	0	Maximum	2				
Default	1	Units					
Туре	8 Bit User Save	Update Rate	Background				
Display Format	Standard	Decimal Places	0				
Coding	RW, TE, BU						

This chooses the action of the software when there is a total loss of PID feedback as indicated by *Analog Input 1 Current Loop Loss* (**07.028**) = On(1). The table below shows the options available:

Mode	Value	escription			
Ignore	0	Ignore the feedback loss - do nothing.			
Trip	1	Trip the drive, (PID Feedbk Loss).			
Fixed Speed	Fixed Speed 2 Run at a fixed speed defined by PID Disabled / Feedback Loss Reference (01.023).				

Parameter	00.034 (29.041) PID Feedback	00.034 (29.041) PID Feedback High Trip Threshold					
Short description	Defines the upper limit for the P	ID feedback in user feedbac	k units before a trip				
Mode	Open-Loop, RFC-A, RFC-S						
Minimum	0.00	Maximum 327.67					
Default	0.00	Units	user feedback units				
Туре	16 Bit User Save	16 Bit User Save Update Rate Background					
Display Format	Standard	Decimal Places	2				
Coding	RW						

When set to 0, the main process PID high trip mechanism is disabled.

When set >0, this defines the threshold above which a PID Feedbk High trip is actioned.

The units of this parameter (user feedback units) are defined by pr29.184.

Safety

Mechanical

started /

Safety information	Product Mechanical information	Electrical starte installation Runni the Mo	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	--------------------------------	---	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Parameter	00.035 (29.042) PID Feedback Low Delay							
Short description	The filter delay applied when det	The filter delay applied when detecting if the feedback is low						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0.0	0.0 Maximum 6553.5						
Default	5.0	Units	s					
Туре	16 Bit User Save	Update Rate	Background					
Display Format	Standard	Standard Decimal Places 1						
Coding	RW, BU	RW, BU						

This defines the continuous time in seconds that the feedback may be low for without actioning a feedback low drive trip. This acts as a filter for transient feedback conditions that prevents false detection of a main process PID feedback low condition.

This parameter is only used when PID Feedback Low Mode (29.043) = Threshold or Bandwidth.

The function of this parameter is defined by the feedback type and scaling, *PID Feedback Minimum Scaling* (29.031) and *PID Feedback Maximum Scaling* (29.032), e.g. if the feedback transducer connected to Analog input 1 is a pressure sensor then this is an under-pressure detection delay.

Parameter	00.036 (29.043) PID Feedback Low Mode							
Short description	Selects the method used to dete	Selects the method used to detect feedback low						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0	0 Maximum 2						
Default	0	Units						
Туре	8 Bit User Save	Update Rate	Background					
Display Format	Standard Decimal Places 0							
Coding	RW, TE, BU							

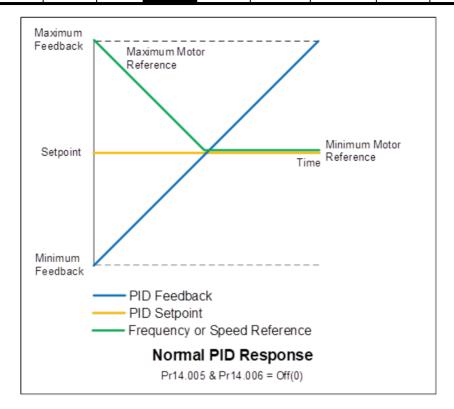
PID Feedback Low Mode (29.043) selects which mode to use when generating a feedback low indication and trip. The table below shows the options available:

Mode	Value	Description				
Disabled	0	No feedback low trip.				
Threshold	1	f the main process PID feedback, <i>PID Final Feedback</i> (29.036), falls below the <i>PID Feedback Low Threshold</i> (29.044) or <i>PID Feedback Low Delay</i> (29.042) seconds, and the motor output frequency or speed is in the <i>Maximum Drive</i> Reference Band (29.083), then a PID Low drive trip is actioned. Status indication via <i>PID Feedback Low Output</i> (29.047) is also available.				
Bandwidth	2	If the main process PID feedback, PID Final Feedback (29.036), falls below the PID At Setpoint Band (29.045) for PID Feedback Low Delay (29.042) seconds, and the motor output frequency or speed is in the Maximum Drive Reference Band (29.083), then a PID Feedbk Low trip is actioned. The detection band follows the current PID setpoint dynamically. Status indication via PID Feedback Low Output (29.047) is also available.				

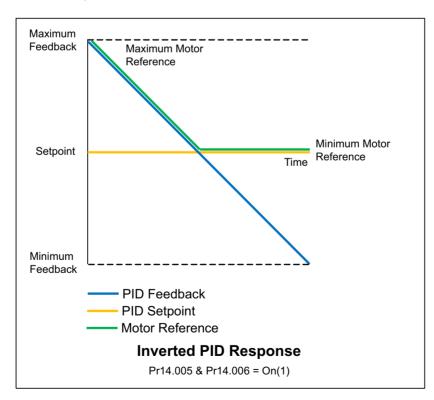
,	chanical chanical Electrical started / Running the Motor	Basic Functional descriptions Optimization	NV Media Card Operation Advanced parameters	Technical data Diagnostic	S UL listing information
---	--	--	---	---------------------------	--------------------------

Parameter	00.037 (29.044) PID Feedback Low Threshold								
Short description	Sets the PID feedback low threst	Sets the PID feedback low threshold in user feedback units							
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S							
Minimum	0.00	0.00 Maximum 327.67							
Default	2.00	Units	user feedback units						
Туре	16 Bit User Save	Update Rate	Background						
Display Format	Standard Decimal Places 2								
Coding	RW	RW							

This defines the PID feedback low threshold, used when PID Feedback Low Mode (29.043) = Bandwidth.


If the main process PID feedback, PID Final Feedback (29.036), falls below the PID Feedback Low Threshold (29.044) for PID Feedback Low Delay (29.042) seconds then a PID Low drive trip is actioned and a PID low indication is given via PID Feedback Low Output (29.047).

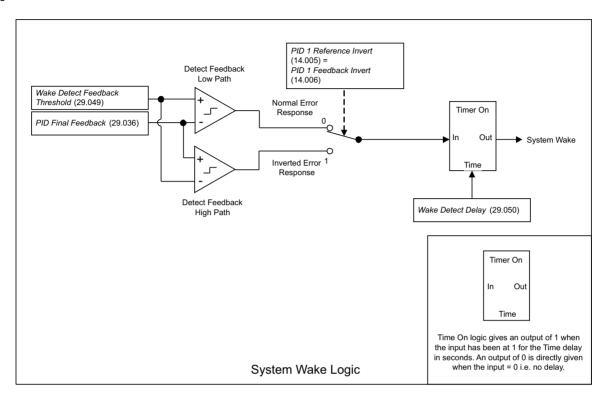
The units of this parameter (user feedback units) are defined by pr29.184.


Parameter	00.040 (29.049) Wake Detect F	00.040 (29.049) Wake Detect Feedback Threshold						
Short description	Sets the system wake threshold	in user feedback units						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0.00	0.00 Maximum 327.67						
Default	1.00	Units	user feedback units					
Туре	16 Bit User Save	Update Rate	Background					
Display Format	Standard	Standard Decimal Places 2						
Coding	RW	RW						

If the PID is running with a normal error response, (PID1 Reference Invert (14.005) and PID1 Feedback Invert (14.006) = Off(0)), Wake Detect Feedback Threshold (29.049) defines the main process PID feedback level, PID Final Feedback (29.036), below which the system will wake when the system is running in Auto mode, and defines the minimum working feedback level for the system. For example, a pumping system with a pressure feedback device gives a high PID output with a low pressure, and a low PID output with high pressure. In this scenario when the feedback is above the setpoint the setpoint the motor reference will reduce down to the minimum. In order to wake the system the PID Feedback must be below the wake threshold.

In a Cascade or Multi-leader system the Wake Detect Feedback Threshold (29.049) is used in combination with the Add Assist Band (29.123) to decide when to start an assist i.e. both the add assist and wake thresholds must be satisfied to start an assist.

If the PID is running with an inverse error response, (*PID1 Reference Invert* (14.005) and *PID1 Feedback Invert* (14.006) = On(1)), *Wake Detect Feedback Threshold* (29.049) defines the main process PID feedback level, *PID Final Feedback* (29.036), above which the system will wake when the system is running in Auto mode. For example, cooling system with a temperature feedback device gives a high PID output with a high temperature, and a low PID output with low temperature. In this scenario when the feedback is below the setpoint the motor reference will reduce down to the minimum. In order to wake the system the PID Feedback must be above the wake threshold.



				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation		parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

The units of this parameter (user feedback units) are defined by pr29.184.

NOTE

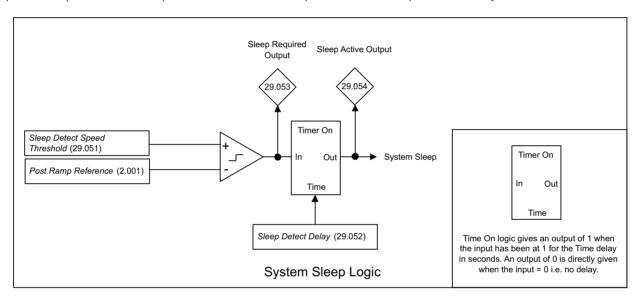
If the main process PID has been disabled via PID1 Enable (14.008), then the wake threshold is ignored and the system will wake when started in Auto mode

Parameter	00.041 (29.050) Wake Detect De	00.041 (29.050) Wake Detect Delay						
Short description	Sets the system wake detection	Sets the system wake detection delay time						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0.0	0.0 Maximum 6553.5						
Default	5.0	Units	s					
Туре	16 Bit User Save	Update Rate	Background					
Display Format	Standard	Standard Decimal Places 1						
Coding	RW, BU	RW, BU						

This defines the continuous time in seconds that the main process PID feedback, PID Final Feedback (29.036), must be above the Wake Detect Feedback Threshold (29.049) before the system is automatically started. Wake Detect Delay (29.050) filters out any intermittent wake conditions.

Note that if the main process PID has been disabled via PID1 Enable (14.008), then the wake threshold is ignored and the system will wake when started in Auto mode.

See Wake Detect Feedback Threshold (29.049).


Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
momation	imormation	motanation	motanation	the Motor	paramotoro	docomptiono		Operation	paramotoro	data		miomation

Parameter	00.042 (29.051) Sleep Detect Sp	00.042 (29.051) Sleep Detect Speed Threshold							
Short description	Sets the speed threshold where t	Sets the speed threshold where the system should go to sleep							
Mode	Open-Loop, RFC-A, RFC-S								
Minimum	0.0 Maximum 60.0								
Default	25.0	25.0 Units OL: Hz							
			RFC-x: rpm						
Туре	32 Bit User Save	Update Rate	Background						
Display Format	Standard Decimal Places 1								
Coding	RW		RW						

This defines the drive output frequency or speed below which the system will sleep. This must be set to a value greater than or equal to the *Minimum Reference Clamp* (01.007) to ensure the system will sleep in Auto mode.

If the system must never automatically sleep but still control using the PID then set *Sleep Detect Speed Threshold* (29.051) to a lower value than *Minimum Reference Clamp* (01.007). Note that other conditions like Dry Well Low Load or No Flow can still stop the system automatically.

The system will tend to reach this threshold if there is no output demand from the pump e.g. in a pump system if a pump output valve is closed the motor speed will drop because the main process PID can reach the setpoint with a reduced speed where the system will enter this threshold.

Parameter	00.043 (29.052) Sleep Detect Delay								
Short description	Sets the system sleep detection	Sets the system sleep detection delay time							
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S							
Minimum	0.0 Maximum 6553.5								
Default	5.0	Units	s						
Туре	16 Bit User Save	Update Rate	Background						
Display Format	Standard Decimal Places 1								
Coding	RW, BU	RW, BU							

This defines the continuous time in seconds that the motor frequency or speed must be below the Sleep Detect Speed Threshold (29.051) before the system is automatically stopped. Sleep Detect Delay (29.052) filters out any intermittent sleep conditions.

See Sleep Detect Speed Threshold (29.051).

			the Motor	·		,	,			
Parameter 00.044 (10.034) Number Of Auto-reset Attempts										
Short description	Set to	Set to the number of required auto-reset attempts								
Mode	Open-	Open-Loop, RFC-A, RFC-S								
Minimum	0			Maximum		6				
Default	Default 5									
Туре	Type 8 Bit User Save					Background	d read			
Display Format	Stand	Standard Decimal Places 0								
Coding	D\M T	DW TE								

Functional

descriptions

Optimization

NV Media Card

Operation

Advanced

parameters

Technical

data

Diagnostics

III listing

information

Value	Text
0	None
1	1
2	2
3	3
4	4
5	5
6	Infinite

Product

information information

Safety

Flectrical

installation

started /

Running

Mechanical

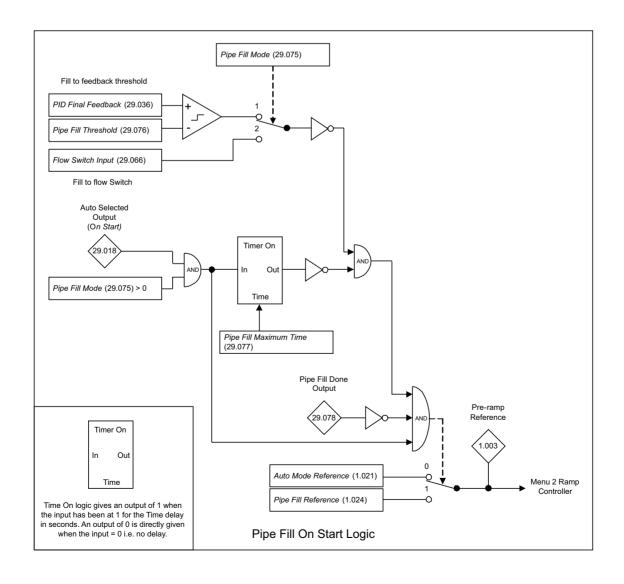
installation

If Number Of Auto-reset Attempts (10.034) = 0 then no auto-reset attempts are made. Any other value will cause the drive to automatically reset following a trip for the number of times programmed after a delay defined by Auto-reset Delay (10.035) subject to the minimum reset time allowed for the type of trip. Note that for some trips the minimum is 10 s. The auto-reset count is only incremented when the trip is the same as the previous trip otherwise it is reset to 0. When the auto-reset count reaches the programmed value, any further trip of the same value will not cause an auto-reset. If the number of auto-reset attempts defined by Number Of Auto-reset Attempts (10.034) has not been reached and there has been no trip for 5 minutes then the auto-reset count is cleared. Auto reset will not occur after any trips with priority levels 1, 2 or 3 as defined in Trip 0 (10.020). When a manual reset occurs the auto-reset counter is reset to zero.

If Number Of Auto-reset Attempts (10.034) = 6 the auto-reset counter is held at zero, and so there is no limit on the number of auto-reset attempts.

Parameter	00.045 (10.035) Auto-reset Delay							
Short description	Set to the required auto-reset de	lay						
Mode	Open-Loop, RFC-A, RFC-S	Dpen-Loop, RFC-A, RFC-S						
Minimum	1.0	1.0 Maximum 600.0						
Default	10.0	Units	s					
Туре	16 Bit User Save	Update Rate	Background read					
Display Format	Standard Decimal Places 1							
Coding	RW	RW						

If Number Of *Auto-reset Attempts* (10.034) = 0 then no auto-reset attempts are made. Any other value will cause the drive to automatically reset following a trip for the number of times programmed after a delay defined by *Auto-reset Delay* (10.035) subject to the minimum reset time allowed for the type of trip. Note that for some trips the minimum is 10s. The auto-reset count is only incremented when the trip is the same as the previous trip otherwise it is reset to 0. When the auto-reset count reaches the programmed value, any further trip of the same value will not cause an auto-reset. If the number of auto-reset attempts defined by *Number Of Auto-reset Attempts* (10.034) has not been reached and there has been no trip for 5 minutes then the auto-reset count is cleared. Auto reset will not occur after any trips with priority levels 1, 2 or 3 as defined in *Trip 0* (10.020). When a manual reset occurs the auto-reset counter is reset to zero.


If Number Of Auto-reset Attempts (10.034) = 6 the auto-reset counter is held at zero, and so there is no limit on the number of auto-reset attempts.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

Parameter	00.046 (29.075) Pipe Fill Mode								
Short description	Used to disable pipe fill or choose the feedback type that indicates when the pipe is full								
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S							
Minimum	0 Maximum 2								
Default	0	Units							
Туре	8 Bit User Save	Update Rate	Background						
Display Format	Standard Decimal Places 0								
Coding	RW, TE, BU	·	·						

This defines the operating mode of the automated pipe fill routine. The following options are available:

Mode	Value	Description
Disabled	0	The pipe fill routine is disabled.
Feedback Level	1	Pipe Fill Reference (01.024) will be applied until Pipe Fill Threshold (29.076) is reached by the main process PID feedback. In the event that the Pipe Fill Threshold (29.076) isn't reached the Pipe Fill Maximum Time (29.077) will elapse stopping the automatic pipe filling routine.
Flow Switch	2	Pipe Fill Reference (01.024) will be applied until the Flow Switch Input (29.066) = On(1). In the event that the Flow Switch Input (29.066) isn't set to On(1) the Pipe Fill Maximum Time (29.077) will elapse stopping the automatic pipe filling routine.

information	information	install	lation installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
Parameter 00.047 (01.024) Pipe Fill Reference												
Short de	scription		Defines the value for pipe fill reference 4									
Mode			Open-Loop, RFC-A, RFC-S									
Minimum	1	VM_SPEED_FREQ_REF[MIN]										
Default			See exceptions	below	Un	nits		OL: Hz				
								RFC-x: rpm				
Туре		32 Bit User Save			Up	date Rate 4 ms read						
Display Format Standard Decimal Places 1												
Coding		RW										

Functional

NV Media Card Advanced Technical

UL listing

Default Value								
Open-Loop	RFC-A	RFC-S						
25.0	75	0.0						
30.0	90	0.0						

Getting started /

This defines the speed or frequency reference used when the automated pipe filling routine is running. See Pipe Fill Mode (29.075).

Parameter	00.048 (29.077) Pipe Fill Maximum Time									
Short description	This defines the maximum time t	This defines the maximum time that the pipe fill function will run for								
Mode	Open-Loop, RFC-A, RFC-A	Dpen-Loop, RFC-A, RFC-A								
Minimum	0.0 Maximum 6553.5									
Default	0.0	Units	s							
Туре	16 Bit User Save	Update Rate	Background							
Display Format	Standard Decimal Places 1									
Coding	RW, BU									

This defines the maximum time in seconds that the pipe filling routine will run for in the event that pipe filled isn't detected by either feedback detection or flow switch detection.

See Pipe Fill Mode (29.075).

Product

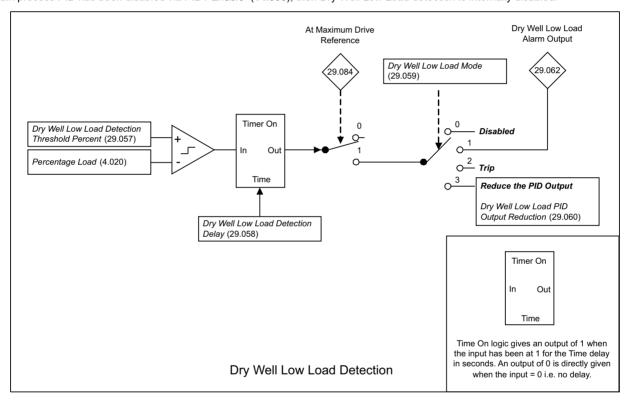
Safety

Parameter	00.049 (29.076) Pipe Fill Threshold									
Short description	Sets the feedback threshold in us	Sets the feedback threshold in user feedback units when the pipe is considered filled								
Mode	Open-Loop, RFC-A, RFC-A	Dpen-Loop, RFC-A, RFC-A								
Minimum	0.0 Maximum 327.67									
Default	0.0	Units	user feedback units							
Туре	16 Bit User Save	Update Rate	Background							
Display Format	Standard Decimal Places 2									
Coding	RW									

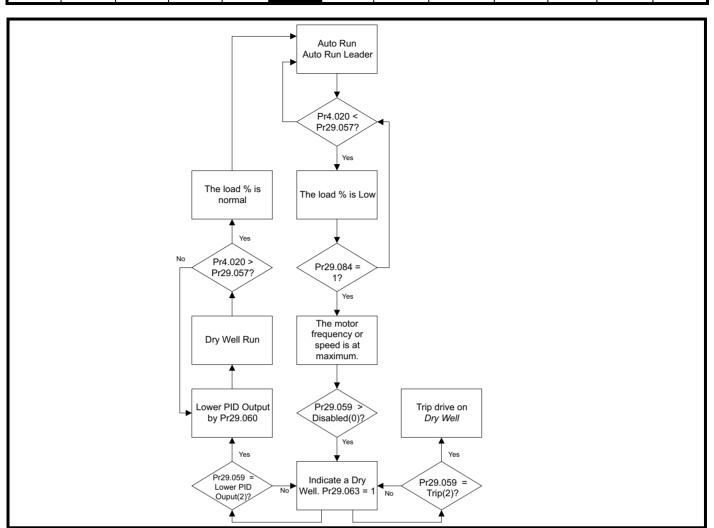
This defines main PID feedback threshold above which the pipe is considered to be filled when Pipe Fill Mode (29.075) = Feedback Level. Pipe Fill Threshold (29.076) is compared against PID Final Feedback (29.036).

The units of this parameter (user feedback units) are defined by pr29.184.

See Pipe Fill Mode (29.075).


Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional		NV Media Card	Advanced	Technical		UL listina
information	information	installation	installation				()ptimization	Operation	parameters	data	Diagnostics	information
				the Motor		·		'				

Parameter	00.050 (29.057) Dry Well Low Load Detection Threshold Percent								
Short description	Sets the percentage PID output I	Sets the percentage PID output level below which Dry Well is detected							
Mode	Open-Loop	Dpen-Loop							
Minimum	0.0 Maximum 100.0								
Default	1.0	Units	%						
Туре	16 Bit User Save	Update Rate	Background						
Display Format	Standard Decimal Places 1								
Coding	RW, BU	RW, BU							


This defines the load percentage below which a dry well low load condition is detected. *Dry Well Low Load Detection Threshold Percent* (29.057) is compared against *Percentage Load* (04.020). To complete the dry well low load detection logic the motor frequency or speed must be within the *Maximum Drive Reference Band* (29.083).

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then Dry Well Low Load detection is internally disabled.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	5	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Parameter	00.051 (29.058) Dry Well Low Lo	00.051 (29.058) Dry Well Low Load Detection Delay								
Short description	Sets the dry well / low load detec	Sets the dry well / low load detection delay								
Mode	Open-Loop, RFC-A, RFC-S									
Minimum	0.0	6553.5								
Default	5.0	Units	s							
Туре	16 Bit User Save	Update Rate	Background							
Display Format	Standard	Decimal Places	1							
Coding	RW, BU									

This defines the continuous time in seconds that the load level must be below the *Dry Well Low Load Detection Threshold Percent* (29.057) and the motor frequency or speed must be within the *Maximum Drive Reference Band* (29.083) to detect a dry well low load condition. *Dry Well Low Load Detection Delay* (29.058) filters out any intermittent Dry Well Low Load conditions.

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then Dry Well Low Load detection is internally disabled.

Safety Product Mechanical Electrical si information information installation R	Getting started / Running the Motor Basic parameters descriptions Functional descriptions descriptions	. I Diagnostics I	UL listing information
---	--	-------------------	------------------------

Parameter	00.052 (29.059) Dry Well Low L	00.052 (29.059) Dry Well Low Load Mode								
Short description	Selects the action taken when dr	Selects the action taken when dry well / low load is detected								
Mode	Open-Loop, RFC-A, RFC-S									
Minimum	0	Maximum	3							
Default	0	Units								
Туре	8 Bit User Save	Update Rate	Background							
Display Format	Standard	Decimal Places	0							
Coding	RW, TE, BU									

Mode	Value	Description			
Disabled	0	The Dry Well Low Load detection system is disabled.			
Alarm Only 1 1		a Dry Well Low Load condition is detected, an alarm is raised where <i>Dry Well Low Load Alarm Output</i> 19.062) = On(1).			
Trip	2	If a Dry Well Low Load condition is detected, a Dry Well trip is actioned.			
Lower PID Output 3		If a Dry Well Low Load condition is detected, the PID output is lowered by the <i>Dry Well Low Load PID Output Reduction</i> (29.060) value thereby limiting potential damage to the pump. When the load value is above the <i>Dry Well Low Load Detection Threshold Percent</i> (29.057), the PID output is restored. <i>Operating Status</i> (29.003) = Dry Well Run when the PID output has been reduced due to a dry well condition.			

If a Dry Well condition is detected in a Cascade system, *Pump Control Mode* (29.011) = Cascade the Soft Starters will be stopped to prevent pump wear. The Soft Starters will automatically restart when the Dry Well condition has finished.

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then Dry Well Low Load detection is internally disabled.

Parameter	00.053 (29.060) Dry Well Low Lo	00.053 (29.060) Dry Well Low Load PID Output Reduction								
Short description	A percentage to lower the PID ou	A percentage to lower the PID output by during Dry Well / Low Load								
Mode	Open-Loop, RFC-A, RFC-S									
Minimum	0.00	Maximum	100.00							
Default	50.00	Units	%							
Туре	16 Bit User Save	Update Rate	Background							
Display Format	splay Format Standard		2							
Coding	RW	RW								

When *Dry Well Low Load Mode* (29.059) = Lower PID Output, if a Dry Well Low Load condition is detected, the PID output is lowered by the *Dry Well Low Load PID Output Reduction* (29.060) value thereby limiting potential damage to the pump. When the load value is above the *Dry Well Low Load Detection Threshold Percent* (29.057), the PID output is restored.

Operating Status (29.003) = Dry Well Run when Dry Well Low Load PID Output Reduction (29.060) has been used to reduce the PID output due to a dry well condition.

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then Dry Well Low Load detection is internally disabled.

mormation	iniormation	Installation	Installation	the Motor		descriptions		Operation	parameters	uala		imormation
Paramete	er	00.0	00.054 (29.061) Dry Well Low Load Restart Delay									
Short de	description When the drive trips due to low load this is the minimum restart time											
Mode	Mode Open-Loop, RFC-A, RFC-S											
Minimum	n	0.0			М	aximum		6553.5				
Default		5.0			U	nits		s				
Туре	Type 16 Bit User Save				U	pdate Rate		Background				
Display Format Standard				D	ecimal Plac	ces	1					
Coding RW. BU												

Functional

Optimization

NV Media Card

Advanced

Technical

UL listing

Diagnostics

The defines the minimum time in seconds after the drive has been tripped due to a Dry Well Low Load condition before it can be restarted. This prevents the system from automatically resetting and attempting to run again without there being sufficient time to allow the well or tank to fill again. This is only used when *Dry Well Low Load Mode* (29.059) = Trip.

NOTE

Safety

Product

Mechanical

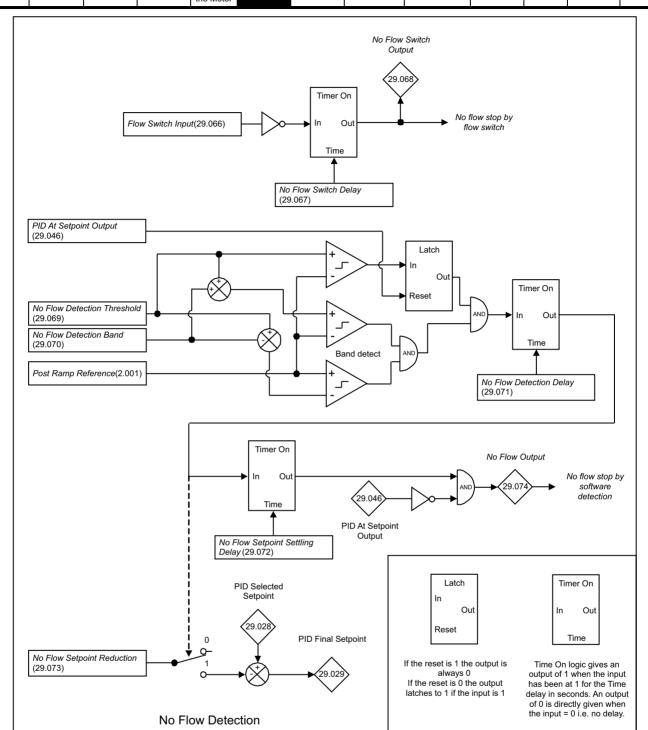
Electrical

started /

Basic

If the main process PID has been disabled via PID1 Enable (14.008), then Dry Well Low Load detection is internally disabled.

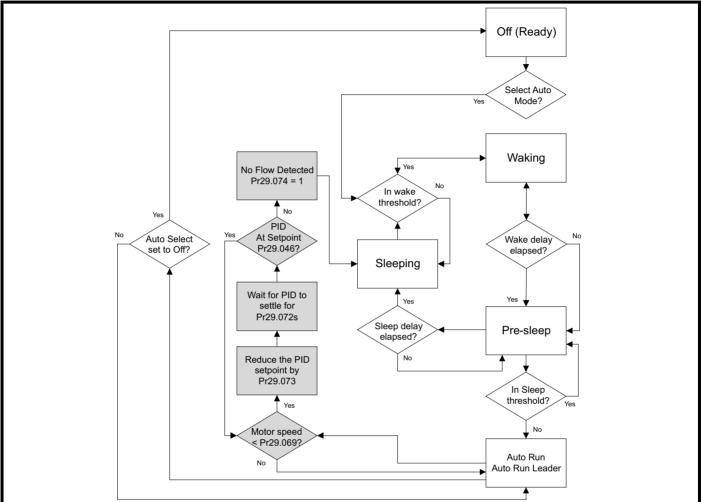
Parameter	00.055 (29.069) No Flow Detec	00.055 (29.069) No Flow Detection Threshold								
Short description	Sets the speed / frequency belo	Sets the speed / frequency below which no flow will be detected								
Mode	Open-Loop, RFC-A, RFC-S									
Minimum	n 0.0 Maximum		Open-Loop: 60.0 RFC-A \ RFC-S: 3000.0							
Default	0.0 Units		OL: Hz RFC-x: rpm							
Туре	32 Bit User Save	Update Rate	Background							
Display Format	Standard	Standard Decimal Places 1								
Coding	RW									


When No Flow Detection Threshold (29.069) is > 0, software detection of no flow is enabled. This defines the frequency or speed threshold below which software based no flow is detected. This must be set to the greater of the Positive Minimum Reference Clamp (01.004) OR the Sleep Detect Speed Threshold (29.051) + No Flow Detection Band (29.070). In the event of a closed pump discharge, the main process PID feedback will rise causing the motor frequency or speed to dip below this level.

When No Flow Detection Threshold (29.069) = 0, software detection of no flow is disabled.

NOTE

If the main process PID has been disabled via *PID1 Enable* (14.008), then then no flow detection when running in Auto mode is disabled. In the event that a no flow is detected, *Operating Status* (29.003) will transition to Sleeping and the motor will stop.


UL listing Safety Product Mechanical Electrical Functional NV Media Card Technical started / Basic Advanced Optimization Diagnostics information Running the Motor information information installation installation parameters descriptions Operation parameters data

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor				·				

The No Flow by software detection scheme is made up of four stages:

- 1. Is the motor frequency or speed is < No Flow Detection Threshold (29.069)? If yes, move to the next step.
- 2. Is the motor frequency or speed within the No Flow Detection Band (29.070) for No Flow Detection Delay (29.071) seconds? If yes, move to the next step.
- 3. Reduce the main process PID setpoint by No Flow Setpoint Reduction (29.073) and wait for the No Flow Setpoint Settling Delay (29.072) to elapse. Is the PID is unable to follow the new setpoint? If yes, move to the next step.
- 4. Stop the system and set No Flow Output (29.074) to On(1). If the feedback is within the PID At Setpoint Output (29.046) window, move to step 1.

Parameter	00.056 (29.070) No Flow Detecti	00.056 (29.070) No Flow Detection Band								
Short description	A time that the now flow conditio	A time that the now flow condition must be detected for before taking action.								
Mode	Open-Loop									
Minimum	0.0	Maximum	6553.5							
Default	5.0	Units	s							
Туре	16 Bit User Save	Update Rate	Background							
Display Format	Standard	Decimal Places	1							
Coding	RW, BU									

This defines the frequency or speed band used by the software no flow detection scheme. It is recommended to set this to 10 % of the *Maximum Reference Clamp* (01.006). In the event of a closed pump discharge, the PID feedback will rise causing the motor frequency or speed to dip into this hand

This is only used when No Flow Detection Threshold (29.069) is > 0. See No Flow Detection Threshold (29.069) for details on the no flow by software detection process.

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then then no flow detection when running in Auto mode is disabled.

In the event that a no flow is detected, Operating Status (29.003) will transition to Sleeping and the motor will stop.

See No Flow Detection Threshold (29.069).

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
momation	imormation	motanation	motanation	the Motor	paramotoro	docomptiono		Operation	paramotoro	data		miomation

Parameter	00.057 (29.071) No Flow Detect	00.057 (29.071) No Flow Detection Delay								
Short description	A time that the now flow conditio	A time that the now flow condition must be detected for before taking action.								
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S								
Minimum	0.0	Maximum	6553.5							
Default	5.0	Units	s							
Туре	16 Bit User Save	Update Rate	Background							
Display Format	Standard	Decimal Places	1							
Coding	RW, BU									

This defines the continuous time in seconds that the motor frequency or speed must be below the *No Flow Detection Threshold* (29.069) to complete stage 1 of the no flow by software detection scheme. *No Flow Detection Delay* (29.071) filters out any intermittent No Flow conditions.

This is only used when No Flow Detection Threshold (29.069) is > 0. See No Flow Detection Threshold (29.069) for details on the no flow by software detection process.

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then then no flow detection when running in Auto mode is disabled.

In the event that a no flow is detected, Operating Status (29.003) will transition to Sleeping and the motor will stop.

See No Flow Detection Threshold (29.069).

Parameter	00.058 (29.072) No Flow Setpo	00.058 (29.072) No Flow Setpoint Settling Delay							
Short description	A settling delay applied after the	A settling delay applied after the setpoint had been reduced by the no flow software detection							
Mode	Open-Loop	Open-Loop							
Minimum	0.0	Maximum	6553.5						
Default	1.0	Units	s						
Туре	16 Bit User Save	Update Rate	Background						
Display Format	Standard	Decimal Places	1						
Coding	RW, BU								

This defines the continuous time in seconds that the no flow by software detection scheme will wait after applying the *No Flow Setpoint Reduction* (29.073) before checking if the main process PID is able to track the change in setpoint. If the main process PID isn't able to track the change in setpoint a no flow by software detection stop is actioned and *No Flow Output* (29.074) is set to On(1).

This is only used when No Flow Detection Threshold (29.069) is > 0. See No Flow Detection Threshold (29.069) for details on the no flow by software detection process.

NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then then no flow detection when running in Auto mode is disabled.

In the event that a no flow is detected, Operating Status (29.003) will transition to Sleeping and the motor will stop.

See No Flow Detection Threshold (29.069).

the Motor	Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------	-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.059 (29.073) No Flow Setpoi	00.059 (29.073) No Flow Setpoint Reduction							
Short description	Used to reduce the setpoint in user feedback units when no flow is detected								
Mode	Open-Loop, RFC-A, RFC-S								
Minimum	0.00	Maximum	2.55						
Default	0.06	Units	user feedback units						
Туре	8 Bit User Save	Update Rate	Background						
Display Format	Standard	Decimal Places	2						
Coding	RW, BU								

This defines the main process PID setpoint reduction value used in stage 2 of detecting no flow by software. After applying the *No Flow Setpoint Reduction* (29.073) and waiting for the *No Flow Setpoint Settling Delay* (29.072) to elapse, the software will check to see if the main process PID hasn't been able to track the change in setpoint; if it hasn't then software no flow is detected and the system will stop.

This is only used when No Flow Detection Threshold (29.069) is > 0. See No Flow Detection Threshold (29.069) for details on the no flow by software detection process.

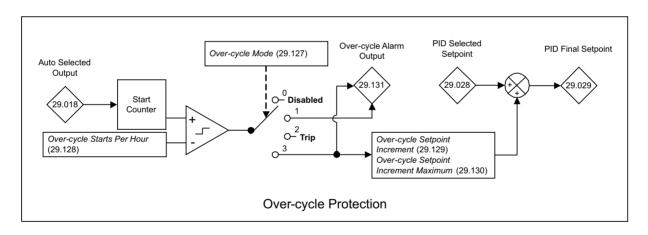
NOTE

If the main process PID has been disabled via PID1 Enable (14.008), then then no flow detection when running in Auto mode is disabled.

The units of this parameter (user feedback units) are defined by pr29.184.

In the event that a no flow is detected, Operating Status (29.003) will transition to Sleeping and the motor will stop.

See No Flow Detection Threshold (29.069).


Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional		NV Media Card	Advanced	Technical		UL listina
information	information	installation	installation				()ptimization	Operation	parameters	data	Diagnostics	information
				the Motor		·		'				

Parameter	00.060 (29.127) Over-cycle Mod	00.060 (29.127) Over-cycle Mode							
Short description	Sets what the system will do when the over-cycle starts per hour limit is reached								
Mode	Open-Loop, RFC-A, RFC-S								
Minimum	0	Maximum	3						
Default	1	Units							
Туре	8 Bit User Save	Update Rate	Background						
Display Format	Standard	Decimal Places	0						
Coding	RW, TE, BU								

This defines the over-cycle protection mode used by Single Pump, and when the drive is a Leader in a Cascade or Multi-Leader system. Soft Starter Assist over-cycle is always enabled and is handled separately; See Assist Starts Per Hour (29.120) and Assist Over-cycle Mode (29.121).

The following over-cycle modes are available:

Mode	Value	Description
Disabled	0	Over-cycle protection is disabled.
Alarm Only	1	When the Over-cycle Starts Per Hour (29.128) has been reached the system will indicate an alarm via the Over-cycle Alarm Output (29.131)
Trip	2	When the Over-cycle Starts Per Hour (29.128) has been reached the system will trip Over-cycle.
Inc Setpoint	3	When the Over-cycle Starts Per Hour (29.128) has been reached the system will indicate an alarm via the Over-cycle Alarm Output (29.131) and the PID setpoint will be increased by the Over-cycle Setpoint Increment (29.129) in order to keep the system running. The maximum amount that the PID setpoint can be increased by is set by Over-cycle Setpoint Increment Maximum (29.130). An alarm is given via the Over-cycle Alarm Output (29.131) when Over-cycle Setpoint Increment Maximum (29.130) is reached. This helps prevent the system from going to sleep as often thereby reducing the number of starts per hour. An alternative to this is to use PID1 Pre-sleep Boost Level (14.028) and PID1 Pre-Sleep Maximum Boost Time (14.029).

Parameter 00.061 (29.128) Over-cycle Starts Per Hour Short description Sets the maximum number of starts per hour thrshold for the over-cycle protection Mode Open-Loop Minimum 0 Maximum 255 Default 5 Units Starts		Safety information	Product information		nanical Illation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Mode Open-Loop Minimum 0 Maximum 255		Parameter 00.061 (29.128) Over-cycle Starts Per Hour													
Minimum 0 Maximum 255		Short description Sets the maximum number of starts per hour thrshold for the over-cycle protection													
		Mode	ode Open-Loop												
Default 5 Units Starts		Minimum			0			Ma	ximum		255				
	Default				5			Un	its		Starts				

Background

0

Sets the maximum number of starts per hour threshold for the over-cycle detection system. The internal count of starts is reset every hour. See Over-cycle Mode (29.127) for more details.

Update Rate

Decimal Places

Parameter	00.064 (14.010) PID1 Proportion	00.064 (14.010) PID1 Proportional Gain							
Short description	Defines the Kp gain used for PID1								
Mode	Open-Loop, RFC-A, RFC-S								
Minimum	0.000	Maximum	4.000						
Default	2.000	Units							
Туре	16 Bit User Save	Update Rate	Background read						
Display Format	Standard	Decimal Places	3						
Coding	RW								

PID1 is used as the main process PID controller by the Pump software.

8 Bit User Save

Standard

RW. BU

PID1 Proportional Gain (14.010) is the main process PID1 loop proportional gain. The default value of 2.000 is a good starting point for most applications. CT Scope may be used to tune the main process PID loop once the drive is operational to refine the performance according to the applications needs.

See PID1 Output (14.001).

Type

Coding

Display Format

Parameter	00.065 (14.011) PID1 Integral G	00.065 (14.011) PID1 Integral Gain						
Short description	Defines the Ki gain used for PID	Defines the Ki gain used for PID1						
Mode	Open-Loop, RFC-A, RFC-S							
Minimum	0.000	Maximum	4.000					
Default	2.000	Units						
Туре	16 Bit User Save	Update Rate	Background read					
Display Format	Standard	Decimal Places	3					
Coding	RW							

PID1 is used as the main process PID controller by the Pump software.

PID1 Integral Gain (14.011) is the main process PID1 loop integral gain. The default value of 1.000 is a good starting point for most applications. CT Scope may be used to tune the main process PID loop once the drive is operational to refine the performance according to the applications needs. See PID1 Output (14.001).

Safety information	Product Mecha information install	nanical Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--------------------------------------	---------------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.066 (14.020) PID1 Reference						
Short description	Displays the value of the reference for PID1						
Mode	Open-Loop, RFC-A, RFC-S						
Minimum	-100.00	Maximum	100.00				
Default		Units	%				
Туре	16 Bit Volatile	Update Rate	4 ms write				
Display Format	Standard	Decimal Places	2				
Coding	RO, ND, NC, PT						

PID1 is used as the main process PID controller by the Pump software.

PID1 Reference (14.020) indicates the level of the PID1 reference, which is the sum of the parameter pointed to by PID1 Reference Source (14.003) and PID1 Digital Reference (14.025), multiplied by PID1 Reference Scaling (14.023), in percent units.

Reference

The reference section for the PID controllers is shown in the introduction. The pre-sleep boost control is only included in PID controller 1. The reference sections are always active even if the PID controller itself is disabled or the reference sources are not routed to valid parameters. If a reference source is not a valid parameter or is 0.000 then the value is taken as zero.

The reference is the sum of the reference source, the *PID1 Digital Reference* (14.025) and the *PID1 Pre-sleep Boost Level* (14.028) when it is active. The result is multiplied by *PID1 Reference Scaling* (14.023) and then limited to +/-100.00 %. The reference can then be inverted if required (*PID1 Reference Invert* (14.005) = 1) and then a slew rate limit is applied with *PID1 Reference Slew Rate* (14.007). This limits the maximum rate of change so that a change from 0.00 to 100.00 % takes the time given in *PID1 Reference Slew Rate* (14.007).

Parameter	00.067 (14.021) PID1 Feedback	00.067 (14.021) PID1 Feedback							
Short description	Displays the value of the feedba	Displays the value of the feedback for PID1							
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S							
Minimum	-100.00	Maximum	100.00						
Default		Units	%						
Туре	16 Bit Volatile	Update Rate	4 ms write						
Display Format	Standard	Decimal Places	2						
Coding	RO, ND, NC, PT								

PID1 is used as the main process PID controller by the Pump software.

PID1 Feedback (14.021) indicates the level of the PID1 feedback, which is the sum of the parameter pointed to by PID1 Feedback Source (14.004) and PID1 Digital Feedback (14.026), multiplied by PID1 Feedback Scaling (14.024), in percent units.

Feedback

The feedback section for the PID controllers is shown in the introduction. The feedback sections are always active even if the PID controller itself is disabled or the feedback sources are not routed to valid parameters. If a feedback source is not a valid parameter or is 0.000 then the value is taken as zero.

The feedback is the sum of the feedback source and the *PID1 Digital Feedback* (14.026). The result is multiplied by *PID1 Feedback Scaling* (14.024) and then limited to +/-100.00 %. A square root function can be applied (*PID1 Feedback Square Root Enable 1* (14.060) = 1) and the feedback can then be inverted if required (*PID1 Feedback Invert* (14.006) = 1). The square root function is defined as follows.

Square root function output = Sign(Input) x 100.00 % x $\sqrt{(|Input| / 100.00 \%)}$

where Sign(Input) = 1 if Input ≥ 0 or -1 otherwise

The square root function is useful in applications where the PID controller is operating with air flow as its reference and feedback and the motor is controlling a fan. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant x $\sqrt{\text{Pressure the square root function can be used in the conversion.}$

Parameter 00.068 (14.001) PID1 Output Short description Displays the output for Main Process PID1 Mode Open-Loop Minimum -100.00 Maximum 100.00 Default Units %	Safety information	Product information		nanical illation	I ()ntimization I I I I I I I I I I I I I I I I I I I							UL listing information		
Mode Open-Loop Minimum -100.00 Maximum 100.00	Parameter 00.068 (14.001) PID1 Output													
Minimum -100.00 Maximum 100.00	Short de	scription		Displays the output for Main Process PID1										
	Mode			Open	n-Loop									
Default Units %	Minimum	า		-100.	-100.00 Maximum 100.00									
	Default			Units %										

4 ms write

2

Update Rate

Decimal Places

PID1 is used as the main process PID controller by the Pump software.

Standard

16 Bit Volatile

RO. ND. NC. PT

Controller

Codina

Type

Display Format

The controller section for the PID controllers is shown in the introduction. The structure of PID controller 1 shown in the introduction is when PID1 Mode Selector (14.059) = 0, PID1 Feedback Output Scaling (14.058) = 1.000, and PID1 Feedback Square Root Enable 2 (14.062) = 0. The additional features provided by these parameters are not available for PID controller 2, and so this controller always has the structure shown. If the combined enable is inactive then all internal states are held at zero and the destination parameter will be defined by PID1 Feed-forwards Reference (14.019) alone. If the enable is active the PID controller is active even if the destination is not routed to a valid parameter or to 0.000. It should be noted that if either of the enable sources is routed to 0.000 or to a non-valid parameter the source value is taken as 1, therefore with default settings, PID1 Enable Source 1 (14.009) = 0.000 and PID1 Enable Source 2 (14.027) = 0.000, the PID controller can be enabled by simply setting PID1 Enable (14.008).

PID1 Error (14.022) is the difference between the reference and feedback produced by the reference and feedback systems described in the previous sections. The PID controller output is defined as follows:

 $PID1 \ Output \ (14.001) = PID1 \ Error \ (14.022) \times [Kp + Ki/s + sKd/(0.064 s + 1)]$

Kp = PID1 Proportional Gain (14.010)

Ki = PID1 Integral Gain (14.011)

Kd = PID1 Differential Gain (14.012)

Therefore:

- 1. If PID1 Error (14.022) = 100.00% the proportional term gives a value of 100.00 % if PID1 Proportional Gain (14.010) = 1.000.
- 2. If PID1 Error (14.022) = 100.00% the integral term gives a value that increases linearly by 100.00 % per second if PID1 Integral Gain (14.011) = 1 000
- 3. If *PID1 Error* (14.022) increases linearly by 100.00 % per second the differential term gives a value of 100.00% if *PID1 Differential Gain* (14.012) = 1.000. (A filter with a time constant of 64 ms is provided on the differential gain to reduce the noise produced by this term.)

The output may be limited to a range that is less than the maximum range of PID1 Output (14.001) using PID1 Output Upper Limit (14.013) and PID1 Output Lower Limit (14.014). If PID1 Output Lower Limit (14.014) > PID1 Output Upper Limit (14.013) then the output is held at the value defined by PID1 Output Upper Limit (14.013). If PID1 Symmetrical Limit Enable (14.018) = 1 then the lower limit = -(PID1 Output Upper Limit (14.013)). If the output reaches either of these limits the integral term accumulator is frozen until the output moves away from the limit to prevent integral wind-up. The integral hold function can also be enabled by the user by setting PID1 Integral Hold (14.017) = 1.

PID1 Output Scaling (14.015) can be used to scale the output, which is limited to a range from -100.00 % to 100.00 % after this function. The output is then added to PID1 Feed-forwards Reference (14.019) and is again limited to the range from -100.00 % to 100.00 % before being routed to the destination defined by PID1 Destination (14.016).

Parameter	00.069 (05.001) Output Frequency							
Short description	Displays the frequency applied to	Displays the frequency applied to the motor						
Mode	Open-Loop							
Minimum	VM_SPEED_FREQ_REF[MIN]							
Default		Units	Hz					
Туре	32 Bit Volatile	Update Rate	4 ms write					
Display Format	Standard	Decimal Places	1					
Coding	RO, FI, VM, ND, NC, PT							

If Enable Frequency Slaving (03.013) = 0 the Output Frequency (05.001) is the sum of the Post Ramp Reference (02.001) and the motor slip compensation frequency. If Enable Frequency Slaving (03.013) = 1 the Output Frequency (05.001) is given directly by the Frequency Slaving Demand (03.001).

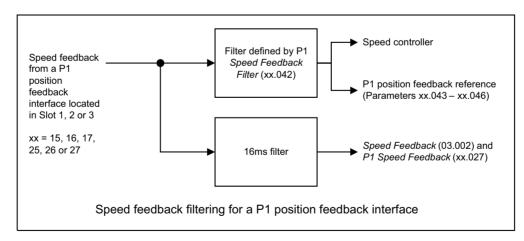
Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Parameter	00.069 (03.002) Speed Feedbad	00.069 (03.002) Speed Feedback						
Short description	Displays the speed feedback from	Displays the speed feedback from the selected feedback source						
Mode	RFC-A, RFC-S							
Minimum	VM_SPEED[MIN]							
Default		Units	rpm					
Туре	32 Bit Volatile	Update Rate	4 ms write					
Display Format	Standard	Decimal Places	1					
Coding	RO, FI, VM, ND, NC, PT							

The speed feedback can be selected with *Motor Control Feedback Select* (03.026) to be taken from a position feedback interface in a position feedback category option module. It is also possible to selected sensorless speed feedback with *RFC Feedback Mode* (03.024). *Speed Feedback* (03.002) shows the level of the speed feedback selected for the speed controller.

The FI attribute is set for this parameter, so display filtering is active when this parameter is viewed with one of the drive keypads. The value held in the drive parameter (accessible via comms or an option module) does not include this filter, but is a value that is obtained over a sliding 16 ms period to limit the ripple. The speed feedback includes quantisation ripple given by the following equation in rpm:

Ripple in Speed Feedback (03.002) = 60 / 16 ms / Position resolution


The ripple for a linear system is given by the following equation in mm/s:

Ripple in Speed Feedback (03.002) = Pole pitch in mm / 16 ms / Position resolution

The position resolution for each type of feedback device is defined in the table below.

Position feedback device	Position resolution
AB, AB Servo	4 x lines per revolution or pole pitch
FD, FR, FD Servo, FR Servo	2 x lines per revolution or pole pitch
SC, SC Hiperface, SC EnDat, SC SSI, SC Servo	1024 x sine waves per revolution or pole pitch
EnDat, SSI, BiSS	Comms bits per revolution or pole pitch
Resolver	See P1 Resolver Excitation (03.066)

For example the ripple in Speed Feedback (03.002) when a 4096 line AB type encoder is used is 0.23 rpm. It should be noted that no filtering is applied to the speed feedback used by the speed controller or for the position feedback reference system unless the feedback filter for that particular interface is activated by putting a non-zero value in the appropriate set up parameter (i.e. P1 Feedback Filter (xx.042) for the P1 drive position feedback interface). The diagram below shows the filtering applied to the speed feedback when this is taken from the P1 drive position feedback interface.

The speed feedback ripple seen by the speed controller and the position feedback reference is given by the following equations when the filter set up value *P1 Feedback Filter* (**xx.042**) = 0.

Ripple for a rotary system in rpm = 60 / Speed controller sample time / Position resolution

 $\label{eq:resolvent} \mbox{Ripple for a linear system in mm/s = Pole pitch in mm / Speed controller sample time / Position resolution}$

The speed controller sample time is 250 µs. If the filter set up value is non-zero the ripple is given by:

Ripple for a rotary system in rpm = 60 / Filter time / Position resolution

Ripple for a linear system in mm/s = Pole pitch in mm / Filter time / Position resolution

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation		parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

The description so far covers the P1 drive position feedback interface. Similar filtering is provided with the P2 drive position feedback interface and with position feedback interfaces in position feedback category option modules.

It is not advisable to use the speed feedback filter unless it is specifically required for high inertia applications with high controller gains, or if commutation signals alone are used for feedback, because the filter has a non-linear transfer function. It is preferable to use the current demand filters (*Current Reference Filter 1 Time Constant* (04.012) or *Current Reference Filter 2 Time Constant* (04.023)) as these are linear first order filters that provide filtering on noise generated from both the speed reference and the speed feedback. It should be noted that any filtering included within the speed controller feedback loop, either on the speed feedback or the current demand, introduces a delay and limits the maximum bandwidth of the controller for stable operation.

The speed ripple seen by the speed controller can be quite high in some cases, for example with a 4096 line encoder the speed ripple is 14.6 rpm with a sample time of 250 µs. This causes high frequency torque ripple and acoustic motor noise. These effects increase with the level of speed feedback ripple and with the gains used in the speed controller. Therefore high speed feedback ripple usually limits the maximum possible gain settings for the speed controller, and so a position feedback device with high position resolution is usually required for a system with high dynamic performance or stiffness. It should be noted that the ripple caused by feedback quantisation and does not define speed feedback resolution. The speed controller accumulates all pulses from the position feedback, and so the speed controller resolution is not limited by the feedback, but by the resolution of the speed reference.

Parameter	00.070 (04.020) Percentage Loa	00.070 (04.020) Percentage Load						
Short description	Shows the level of torque produc	Shows the level of torque producing current as a percentage of rated torque producing current for the motor						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	VM_USER_CURRENT[MIN]							
Default		Units	%					
Туре	16 Bit Volatile	Update Rate	Background write					
Display Format	Standard	Decimal Places	1					
Coding	RO, FI, VM, ND, NC, PT							

Percentage Load (04.020) gives the Iq, Torque Producing Current (04.002) as a percentage of the rated torque producing current for the motor. Positive values indicate motoring and negative values represent regenerating.

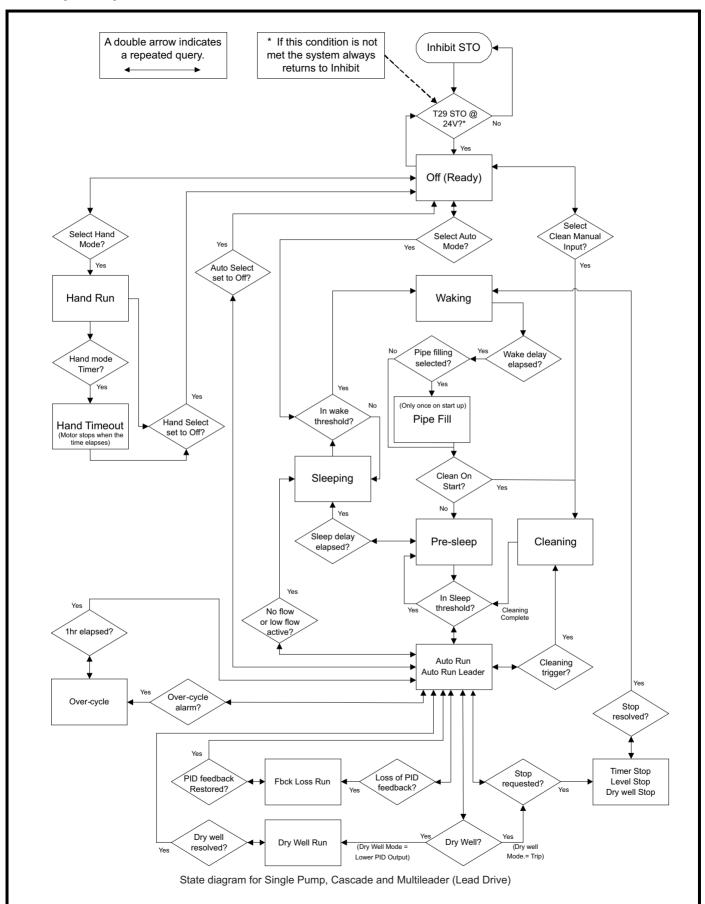
Parameter	00.071 (05.003) Output Power	00.071 (05.003) Output Power						
Short description	Displays the power flowing via th	Displays the power flowing via the a.c. terminals of the drive						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	VM_POWER[MIN] Maximum VM_POWER[MAX]							
Default		Units	kW					
Туре	32 Bit Volatile	Update Rate	4 ms write					
Display Format	Standard	Decimal Places	3					
Coding	RO, FI, VM, ND, NC, PT							

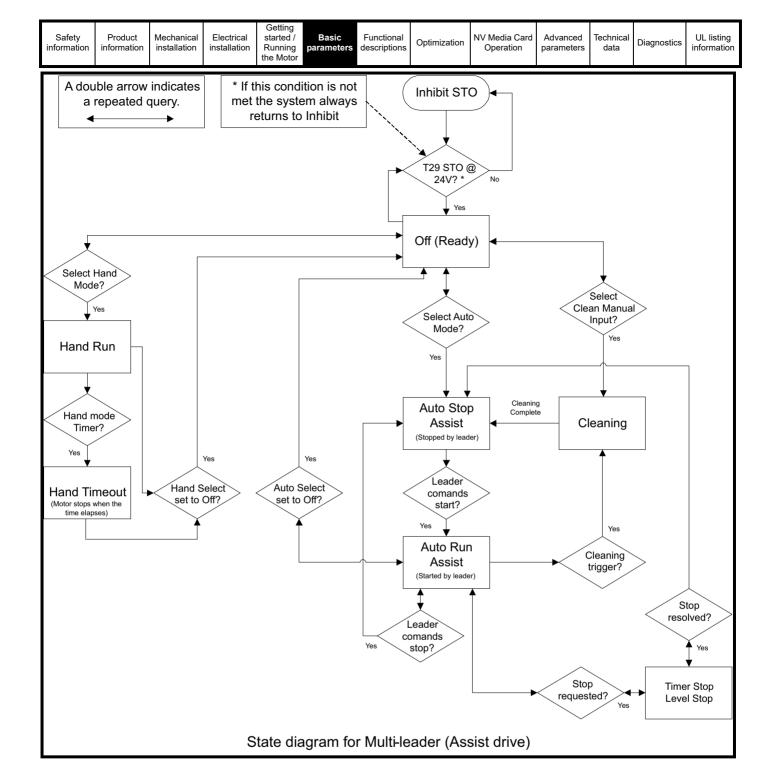
The Output Power (05.003) is the power flowing via the a.c. terminals of the drive. The power is derived as the dot product of the output voltage and current vectors, and so this is correct even if the motor parameters are incorrect and the motor model does not align the reference frame with the flux axis of a motor in RFC-A mode. For Open-loop, RFC-A and RFC-S modes a positive value of power indicates power flowing from the drive to motor. For Regen mode a positive value of power indicates power flowing from the supply to the regen drive.

Parameter	00.072 (07.028) Analog Input 1	00.072 (07.028) Analog Input 1 Current Loop Loss						
Short description	Displays when analog input 1 fal	Displays when analog input 1 falls below 3mA						
Mode	Open-Loop, RFC-A, RFC-S	Open-Loop, RFC-A, RFC-S						
Minimum	0 Maximum 1							
Default		Units						
Туре	1 Bit Volatile	Update Rate	Background write					
Display Format	Standard	Decimal Places	0					
Coding	RO, ND, NC, PT							

By default, analog input 1 T5 is routed to the Pump software analog feedback input parameter *PID Feedback Percent* (29.034). This parameter provides feedback to the Pump and Fan software on the integrity of the main process PID feedback device current loop.

If Analog Input 1 Mode (07.007) is set to any of the 4-20 mA or 20-4 mA modes and the current falls below 3 mA then Analog Input 1 Current Loop Loss (07.028) is set to one. If the current is more than 3 mA or any other mode is selected then Analog Input 1 Current Loop Loss (07.028) is set to zero.


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						


Parameter	00.073 (29.003) Operating Statu	00.073 (29.003) Operating Status						
Short description	Indicates which operating state the	Indicates which operating state the drive is in						
Mode	Open-Loop, RFC-A, RFC-S							
Minimum	0 Maximum 18							
Default	0	Units						
Туре	8 Bit Volatile	Update Rate	Background					
Display Format	Standard	Decimal Places	0					
Coding	RW, PR, TE, NC, PT, BU							

This parameter indicates the operating status of the pump software. This forms an important diagnostic aid which tells the user what the system is doing at any moment and why e.g. if the pump has gone to sleep or stopped the operating status will indicate why. The following table shows all of the status values:

Mode	Value	Description
Inhibit STO	0	The drive is inhibited i.e. the STO input on drive terminal T29 is at 0 V. To enable the drive to move to the Off (Ready) state, apply 24 V to drive terminal T29.
Off (Ready)	1	The drive is hardware enabled and is waiting for a command to run i.e. Off.
Hand Run	2	The drive is running in Hand mode from a fixed speed reference.
Waking	3	The drive is in the process of waking i.e. the Wake Detect Delay (29.050) is timing.
Pipe Fill	4	The automated pipe filling routine is running.
Auto Run	5	The drive is running in Single Pump control in Auto mode
Auto Run Leader	6	The drive is running in Cascade or Multi-leader control in Auto mode as a Leader.
Auto Run Assist	7	The drive is running in Multi-leader control in Auto mode as an Assist
Pre-sleep	8	The drive is in pre-sleep i.e. the output frequency or speed is less than Sleep Detect Speed Threshold (29.051) and the Sleep Detect Delay (29.052) is counting down. This is shown for a short period when starting in Auto mode while the PID output builds up.
Sleeping	9	The drive is in Auto mode but has gone to sleep. The system enters Sleeping when the motor speed or frequency value satisfies the Sleep Detect Speed Threshold (29.051), if no flow from a flow switch, no flow by software detection or low flow is detected.
Cleaning	10	The drive is running the cleaning or de-ragging routine.
Level Stop	11	The system has stopped due to the high level switch being reached. See Level Switch High Input (29.079). This many be overridden by Hand or Manual Clean operation.
Timer Stop	12	The system has stopped because the timer switch input is not set to On indicating a timer shut-down period. See Time Schedule Run Input Enable (29.055) and Time Schedule Run Input (29.056). This many be overridden by Hand or Manual Clean operation.
Hand Timeout	13	The system was stopped while running in Hand mode after the Hand Mode Timeout (29.017) elapsed. To reset this deselect and reselect Hand mode.
Over-cycle	14	The system has detected an over-cycle condition. The drive has started too many times in this hour. See Over-cycle Mode (29.127) and Over-cycle Starts Per Hour (29.128).
Fbck Loss Run	15	Analog Input 1 Current Loop Loss (07.028) = On(1) indicating that there is a current loop loss for the main process PID feedback, and PID Feedback Loss Action (29.048) = Fixed Speed where the drive is running with
Dry Well Run	16	A dry well low load condition has been detected and the drive is running with a reduced reference as defined by Dry Well Low Load PID Output Reduction (29.060). This state can only be reached when Dry Well Low Load
Dry Well Stop	17	A dry well low load condition has been detected and the drive has tripped on Dry Well, where Dry Well Low Load Mode (29.059) = Trip. When this happens the drive will remain stopped in the Dry Well Stop state until the
Auto Stop Assist	18	This indicates that the drive is an assist in a multi-leader system, Auto has been selected but the system leader has not commanded this assist to run.
Trip	19	Indicates when the drive has tripped.
Under voltage	20	Indicates when the DC bus voltage is less than the selected under voltage threshold (06.065), Low Under Voltage Threshold (06.066) and Low Under Voltage Threshold Select (06.067)

The following state diagrams show the interactions between the states.

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running the Motor	parameters	descriptions	Оршпігацоп	Operation	parameters	data	Diagnostics	information

Parameter	00.074 (11.078) NV Media Card	0.074 (11.078) NV Media Card Action Status									
Short description	Shows the status of an action or	Shows the status of an action on an NV media card initiated with parameter mm.000.									
Mode	Open-Loop, RFC-A, RFC-S	pen-Loop, RFC-A, RFC-S									
Minimum	0	Maximum	18								
Default		Units									
Туре	8 Bit Volatile	Update Rate	Background Write								
Display Format	Standard	Decimal Places	0								
Coding	RO, TE, ND, NC, PT										

Value	Text	Value	Text	Value	Text
0	None	7	Card User Prog	14	Card Full
1	Active	8	Card Busy	15	Card File Error
2	Card Slot 1	9	Card Data Exists	16	Card Rating
3	Card Slot 2	10	Card Option	17	Card File Data
4	Card Slot 3	11	Card Read Only	18	Card Derivative
5	Card Slot 4	12	Card Error	14	Card Full
6	Card Product	13	Card No Data		

This parameter shows the status of any action on an NV media card that is initiated by setting a value in parameter mm.000. When the action starts this parameter changes to Active (1) and if the action completes successfully it changes back to None (0). If however, the action fails this parameter changes to another value to show the cause. Non-critical failures, i.e. an error that is detected when writing to a card, do not cause drive trips as these may disable the drive and disturb the wider system, and so this parameter is a way to find the cause of a non-critical error.

Parameter	00.075 (29.036) PID Final Feedb	00.075 (29.036) PID Final Feedback									
Short description	The final PID feedback in user fe	he final PID feedback in user feedback units									
Mode	Open-Loop, RFC-A, RFC-S)pen-Loop, RFC-A, RFC-S									
Minimum	-327.68	Maximum	327.67								
Default	0.00	Units	user feedback units								
Туре	16 Bit Volatile	Update Rate	Background								
Display Format	Standard	Decimal Places	2								
Coding	RW, PR, NC										

This parameter is the output of the main process PID feedback filter, (see PID Feedback Filter Time Constant (29.033)), and scaled in to feedback units via PID Feedback Minimum Scaling (29.031) and PID Feedback Maximum Scaling (29.032).

PID Final Feedback (29.036) = PID Feedback Minimum Scaling (29.031) + (PID Final Feedback Percent (29.035) * (PID Feedback Maximum Scaling (29.032) - PID Feedback Minimum Scaling (29.031)) / 100).

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	00.077 (29.001) Pump Software	00.077 (29.001) Pump Software Version									
Short description	This is the version of the Pump D	This is the version of the Pump Drive F600 software									
Mode	Open-Loop, RFC-A, RFC-S)pen-Loop, RFC-A, RFC-S									
Minimum	00.00.00.00	Maximum	99.99.99								
Default	0	Units									
Туре	32 Bit Volatile	Update Rate	Background								
Display Format	Display Format Version		0								
Coding	RW, PR, ND, NC, PT										

This parameter indicates the pump software version number in the format ww.xx.yy.zz e.g. 01.00.00.00.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor		Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	----------------------------	-------------------------	--	--	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	00.078 (10.020) Trip 0	00.078 (10.020) Trip 0									
Short description	Shows the current or last trip to h	Shows the current or last trip to have occurred									
Mode	Open-Loop, RFC-A, RFC-S	pen-Loop, RFC-A, RFC-S									
Minimum	0 Maximum		255								
Default		Units									
Туре	8 Bit Power Down Save	Update Rate	Write on trip								
Display Format	Standard	Decimal Places	0								
Coding	RO, TE, ND, NC, PT, BU										

Refer to Table 12-4 Serial communications look up table on page 488 for full list of trips and descriptions.

Trip 0 (10.020) to Trip 9 (10.029) store the most recent 10 trips that have occurred where Trip 0 (10.020) is the most recent and Trip 9 (10.029) is the oldest. When a new trip occurs it is written to Trip 0 (10.020) and all the other trips move down the log, with oldest being lost. The date and time when each trip occurs are also stored in the date and time log, i.e. Trip 0 Date (10.041) to Trip 9 Time (10.060). The date and time are taken from Date (06.016) and Time (06.017). Some trips have sub-trip numbers which give more detail about the reason for the trip. If a trip has a sub-trip number its value is stored in the sub-trip log, i.e. Trip 0 Sub-trip Number (10.070) to Trip 9 Sub-trip Number (10.079). If the trip does not have a sub-trip number then zero is stored in the sub-trip log.

Trip categories and priorities

Trips are grouped into the categories given in the table below. A trip can only occur when the drive is not tripped, or if it is already tripped and the new trip has a higher priority than the active trip (i.e. lower priority number). Unless otherwise stated a trip cannot be reset until 1.0 s after it has been initiated.

Priority	Category	Trips	Comments
1	Internal faults	HF01 - HF26	These are fatal problems that cannot be reset. All drive features are inactive after any of these trips occur. If a basic keypad is fitted it will show the trip, but the keypad will not function. These trips are not stored in the trip log.
1	Stored HF trip	Stored HF	This trip cannot be cleared unless 1299 is entered into Parameter mm.000 (mm.000) and a reset is initiated.
2	Non-resettable trips	Trip numbers 218 to 247, Slot1 HF, Slot2 HF, Slot3 HF or Slot4 HF	These trips cannot be reset.
3	Volatile memory failure	EEPROM Fail	This can only be reset if Parameter mm.000 (mm.000) is set to 1233 or 1244, or if <i>Load Defaults</i> (11.043) is set to a non-zero value.
4	Internal 24V power supply	PSU 24V	
5	Non-volatile media trips	Trip numbers 174, 175 and 177 to 188	These trips are priority 6 during power-up.
5	Position feedback interface power supply	Encoder 1	This trip can override <i>Encoder 2</i> to <i>Encoder 6</i> trips.
6	Trips with extended reset times	OI ac, OI Brake, and OI dc	These trips cannot be reset until 10 s after the trip was initiated.
6	Phase loss and d.c. link power circuit protection	Phase Loss and OHt dc bus	The drive will attempt to stop the motor before tripping if a Phase Loss.000 trip occurs unless this feature has been disabled (see <i>Action On Trip Detection</i> (10.037). The drive will always attempt to stop the motor before tripping if an <i>OHt dc bus</i> occurs.
6	Standard trips	All other trips	

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running the Motor	parameters	descriptions	Оршпігацоп	Operation	parameters	data	Diagnostics	information

Internal faults

Trips {HF01} to {HF26} are internal faults that do not have trip numbers. If one of these trips occurs, the main drive processor has detected an irrecoverable error. All drive functions are stopped and the trip message will be displayed on the drive keypad. The error can only be reset by powering the drive down and up again. The table below gives the reasons for internal faults and their corresponding trip.

Trip	Reason
{HF01}	CPU has detected an address error
{HF02}	CPU DMAC has detected an address error
{HF03}	CPU has detected an Illegal opcode
{HF04}	CPU has detected an Illegal slot instruction
{HF05}	An interrupt has occurred that does not have a defined function (Undefined exception)
{HF06}	An interrupt has occurred which is reserved (Reserved exception)
{HF07}	Watchdog failure
{HF08}	CPU Interrupt crash
{HF09}	Free store overflow
{HF10}	Parameter routing system error
{HF11}	Non-volatile memory comms error
{HF12}	Stack overflow. Sub-trip is shown to indicate which stack: 1 - background tasks 2 - timed tasks 3 - main system interrupts
{HF13}	The control hardware is not compatible with the firmware. The sub-trip number gives the actual ID code of the control board hardware.
{HF14}	CPU register bank error
{HF15}	CPU divide error
{HF16}	RTOS error (the background task has returned)
{HF17}	The clock supplied to the control board logic is out of specification
{HF18}	The internal flash memory has failed when writing option module parameter data. Sub-trip is shown to indicate which failure: 1 - Programming error while writing menu in flash 2 - Erase flash block containing setup menus failed 3 - Erase flash block containing application menus failed
{HF19}	Invalid main application firmware CRC. Reprogramming required.
{HF20}	The ASIC is not compatible with the firmware. The sub-trip number displayed is the ASIC version.
{HF23}	If this trip occurs please consult the drive supplier.
{HF24}	If this trip occurs please consult the drive supplier.
{HF25}	If this trip occurs please consult the drive supplier.
{HF26}	The control pod is either a UF90A or a UF99A and is fitted to a power stage that is not compatible because it only provided two phase current feedback. If this trip occurs pleas consult the drive supplier.

When the drive is subsequently powered up a *Stored HF* trip is initiated where the sub-trip number is the number of the HF trip that last occurred. This trip will occur at every power-up until it is reset. The trip can only be reset by first entering 1299 into Parameter mm.000 (mm.000). If the drive is powered up and a *Stored HF* trip occurs, *Onboard User Program: Enable* (11.047) is reset to zero to prevent the on-board user program from running. This ensures that the user program can be changed or erased in case it causes an HF trip at every power-up. Once the *Stored HF* is cleared, it is necessary to power cycle the drive or to re-download the user program to allow the program to restart.

Similar trips that can be initiated by the control system or the power system

Trips shown in the table below can be generated either from the drive control system or from the power system. The sub-trip number which is in the form xxyzz is used to identify the source of the trip. The digits xx are 00 for a trip generated by the control system or the number of a power module if generated by the power system. If the drive is not a multi-power module drive then xx will always have a value of 1 indicating the trip is related to the power system. The y digit is used to identify the location of a trip which is generated by a rectifier module connected to a power module. Where the y digit is relevant it will have a value of 1 or more, otherwise it will be 0. The zz digits give the reason for the trip and are defined in each trip description.

Over Volts	OHt dc bus
OI ac	Phase Loss
OI Brake	Power Comms
PSU	OI Snubber
OHt Inverter	Cloning
OHt Power	Temp Feedback
OHt Control	Power Data

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--	----------------------------	---------------------	-------------------	-------------	------------------------

Braking IGBT

The list below gives conditions that will disable the braking IGBT:

- 1. Braking IGBT Upper Threshold (06.074) = 0, or Low Voltage Braking IGBT Threshold Select (06.076) = 1 and Low Voltage Braking IGBT Threshold (06.075) = 0.
- 2. The drive is in the under-voltage state.
- 3. A priority 1, 2 or 3 trip is active (see Trip 0 (10.020)).
- 4. One of the following trips is active or would be active if another trip is not already active: OI Brake, PSU, Th Brake Res or OHt Inverter.
- 5. Percentage Of Drive Thermal Trip Level (07.036) = 100 %. This is an indication that some part of the drive is too hot and is used to indicate if an internally fitted braking resistor is too hot.
- 6. Brake R Too Hot is active or the system has been set up to disable the braking IGBT based on the braking resistor temperature and the resistor is too hot (i.e. bit 2 of *Action On Trip Detection* (10.037) is set).

NOTE

The braking IGBT over-current trip cannot be reset until 10s after it is initiated. This period consists of a 9 s period after the trip where the braking IGBT cannot be switched on again and the OI Brake trip is held active and cannot be reset. This 9 s period is followed by the normal 1 s delay, that is present for other trips, before the trip can be reset. During this 1s period it is possible for the braking IGBT to switch on again. If the conditions are still present that caused the trip then the trip will be initiated again with a further 9 s hold-off period etc.

Parameter	00.079 (10.021) Trip 1					
Short description	Shows the 2nd from last trip to h	Shows the 2nd from last trip to have occurred				
Mode	Open-Loop, RFC-A, RFC-S					
Minimum	0	Maximum	255			
Default		Units				
Туре	8 Bit Power Down Save	Update Rate	Write on trip			
Display Format	Standard	Decimal Places	0			
Coding	RO, TE, ND, NC, PT, BU	_				

See Trip 00.78 (10.020).

Parameter	00.080 (10.022) Trip 2					
Short description	Shows the 3rd from last trip to ha	Shows the 3rd from last trip to have occurred				
Mode	Open-Loop, RFC-A, RFC-S					
Minimum	0	Maximum	255			
Default		Units				
Туре	8 Bit Power Down Save	Update Rate	Write on trip			
Display Format	Standard	Decimal Places	0			
Coding	RO, TE, ND, NC, PT, BU					

See Trip 00.78 (10.020).

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
		otaliation	otaliation	the Motor		u000p.i.o0		o portuno	parameters	uata		

6.2 Parameter descriptions

6.2.1 Pr mm.000

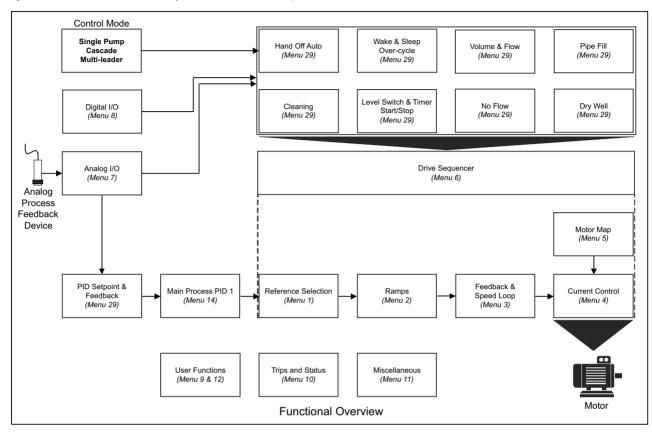
Pr mm.000 is available in all menus, commonly used functions are provided as text strings in Pr mm.000 shown in Table . The functions in Table can also be selected by entering the appropriate numeric values (as shown in Table 6-1) in Pr mm.000. For example, enter 7001 in Pr mm.000 to erase the file in NV media card location 001.

Table 6-1 Functions in Pr mm.000

Value	Action
1000	Save parameters when <i>Under Voltage Active</i> (Pr 10.016) is not active and <i>Low Under Voltage Threshold Select</i> mode (Pr 06.067 = Off) is not active.
1001	Save parameter under all conditions
1070	Reset all option modules
1233	Load standard (50 Hz) defaults
1234	Load standard (50 Hz) defaults to all menus except option module menus (i.e 15 to 20 and 24 to 28)
1244	Load US (60 Hz) defaults
1245	Load US (60 Hz) defaults to all menus except option module menus (i.e 15 to 20 and 24 to 28)
1253	Change drive mode and load standard (50 Hz) defaults
1254	Change drive mode and load US (60 Hz) defaults
1255	Change drive mode and load standard (50 Hz) defaults except for menus 15 to 20 and 24 to 28
1256	Change drive mode and load US (60 Hz) defaults except for menus 15 to 20 and 24 to 28
1299	Reset {Stored HF} trip.
2001*	Create a boot file on a non-volatile media card based on the present drive parameters including all Menu 20 parameters
4yyy*	NV media card: Transfer the drive parameters to parameter file xxx
5yyy*	NV media card: Transfer the onboard user program to onboard user program file xxx
6ууу*	NV media card: Load the drive parameters from parameter file xxx or the onboard user program from onboard user program file xxx
7yyy*	NV media card: Erase file xxx
8yyy*	NV Media card: Compare the data in the drive with file xxx
9555*	NV media card: Clear the warning suppression flag
9666*	NV media card: Set the warning suppression flag
9777*	NV media card: Clear the read-only flag
9888*	NV media card: Set the read-only flag
9999*	NV media card: Erase and format the NV media card
59999	Delete onboard user program
12000**	Only display parameters that are different from their default value. This action does not require a drive reset.
12001**	Only display parameters that are used to set-up destinations (i.e. DE format bit is 1). This action does not require a drive reset.
40yyy	Back-up all drive data.
60ууу	Load all drive data.

^{*} See Chapter 9 NV Media Card Operation on page 347 for more information on these functions.

To allow easy access to some commonly used functions, refer to the table overleaf. Equivalent values and strings are also provided in the table above.


^{**} These functions do not require a drive reset to become active. All other functions require a drive reset to initiate the function.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor					·			

7 Functional descriptions

7.1 Parameter menu and functionality overview

The diagram below shows the functionality of the F600 and which parameter menus Handle it.

7.2 Control mode and feature matrix

The following table shows the features available in each control mode, as selected by Pr 29.011(0.021).

Feature	Single Pump	Cascade	Multi- leader
Main process PID control.	✓	✓	✓
Auxiliary PID control.	✓	✓	✓
Multiple PID setpoints.	✓	✓	✓
Wake and sleep setpoints.	✓	✓	✓
Over-cycle protection.	✓	✓	✓
Main process PID feedback high / low detection.	✓	✓	✓
Flow and volume indication (100Hz max. pulsed input).	✓	✓	✓
No flow detection (flow switch, flow meter, software detection).	✓	✓	✓
Keypad Hand, off and Auto controls.	✓	✓	✓
HMI / PLC control, status and alarm words	✓	✓	✓
Run time indication.	✓	✓	✓
Analog or digital Hand reference.	✓	√	✓
Timer start and stop using keypad real time clock.	✓	√	✓
Level switch control (start and stop).	✓	√	✓

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				Feat	ure				Sing Pum		ascade	Multi- leader
External e	External equipment fault input.										✓	√
Fault log.									✓		✓	✓
Auto reset	-								✓		✓	✓
Dynamic \	//F energy s	aving (ope	n loop indu	ction moto	rs).				✓		✓	✓
Loss of PII	D feedback	transducer	Handling.						✓		✓	✓
Dry well lo	w load dete	ction.							✓		✓	✓
Pipe filling	routine.								✓		✓	✓
Pump clea	ning (de-ra	gging).							✓		√ ∗	✓
Pump starting order alternation.								×		✓	✓	
Cascade o	control - may	y require SI	-I/O options	s, (24 V si	gnal contro	of up to 2 s	oft starters).		×		✓	×
Multi-leade	er control - r	equires SI-	Ethernet op	tions, (Etl	nernet base	ed coordinati	on of up to 3	F600 drives).	×		×	✓

^{*}A limited feature set is available

7.3 Control modes

The F600 supports 3 different control modes for single or parallel pumps. *Pump Control Mode* Pr **29.011** (0.021) sets the control mode as described in the following table.

Control Mode	Description
Single Pump (Simplex)	This is for a single pump installation running from a local Hand mode reference or in Auto mode using the main process PID controller to maintain a setpoint e.g. pressure or flow or level. Alternatively, if PID control isn't required in Auto mode, the drive can run from a fixed speed reference.
(Default)	Single Pump is the default control mode.
Cascade (Duty Assist)	This is for a single leader pump drive with up to 4 cascaded assist pumps powered by soft starters. The soft starters are commanded with simple digital I/O from the leader pump drive; the leader drive may require an SI-I/O option to Handle the assist control signals, e.g. when Assist Control Mode Pr 29.106 = Full I/O. The application may run from a local Hand mode reference or in Auto mode using the main process PID controller to maintain a setpoint e.g. pressure or flow or level. Alternatively, if PID control isn't required in Auto mode, the drive can run from a fixed speed reference.
<i>Multi-leader</i> (Multiplex)	This is for a multi-leader pump installation where up to 3 pumps, controlled by F600 pump drives, are in the system. The role of leader drive is cycled between the pump drives, after a user set time, to even out pump wear. The leader drive requests assist pumps over an Ethernet network; each drive requires an SI-Ethernet option with >=V01.07.03.03 firmware to facilitate the control. The application may run from a local Hand mode reference or in Auto mode using the main process PID controller to maintain a setpoint e.g. pressure or flow or level. Alternatively, if PID control isn't required in Auto mode, the drive can run from a fixed speed reference. This has improved redundancy compared to the other modes where any drive can assume the role of leader in the event of a fault. In the event of a faulty PID feedback transducer, the leader can use the feedback from another drive via the Ethernet connection between drives.

Note that changes to the control mode will only take effect while the system is not running:

- Hand mode must not be selected e.g. Hand Select Pr 29.013 = Off(0).
- Auto mode must not be selected e.g. Auto Select Pr 29.015 = Off(0).
- Manual cleaning must not be selected e.g. Clean Manual Input Pr 29.088 = Off(0).

7.4 Drive controls

The main operating modes for the F600 are Hand and Auto modes.

Hand mode is where the drive runs from a fixed frequency or speed reference for where the process PID loop is disabled. This is intended for localised manual control over the drive system.

Auto mode is where the drive typically runs using the main process PID controller with a suitable feedback transducer, e.g. pressure transducer, to maintain a constant setpoint. This is intended for Autonomous control over the drive system. While running in Auto mode the following features are available to respond to common system requirements:

- · PID high / low detection
- Wake and sleep based on PID demand
- No flow stop by software detection or flow switch
- Low flow stop based on pulsed flow meter
- Dry well detection

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card		Technical	Diagnostics	UL listing
information	information	installation	installation	Running the Motor	parameters	descriptions	,	Operation	parameters	data	· ·	information

- Pipe filling
- · PID feedback loss Handling
- Automatic cleaning
- Level switch control

7.4.1 Control input mode

The way that Hand and Auto modes may be selected depends on the Control Input Mode Pr 29.012(0.024). The following selections are available.

Mode	Description							
Input	In this mode the control logic is supplied to local bit type inputs such as <i>Hand Select Input</i> Pr 29.013 or <i>Auto Select Input</i> Pr 29.015 . The user is intended to direct digital inputs to all bit type input parameters to be controlled.							
Input & Keypad (Default)	In this mode the control logic to apply either a Hand or Auto or to stop commands comes from either the Keypad HAND, OFF and AUTO buttons or from the digital inputs directed to <i>Hand Select Input</i> Pr 29.013 or <i>Auto Select Input</i> Pr 29.015. In this mode of control the keypad can be used to start and stop the drive, however, the keypad controls will be overridden by <i>Hand Select Input</i> Pr 29.013 or <i>Auto Select Input</i> Pr 29.015 if they are used. When the keypad is overridden, any selections made by it are reset. To activate Hand or Auto controls on the keypad press and hold the required function key for 2 s. The Off key activates with a short press. OFF Reset							
	All other local bit type control inputs are Handled the same as <i>Input</i> . Input & Keypad is the default control input mode.							
	*For keypad operation the user can enable the pump drive to start in Auto on power up using Pr29.158 (Pump firmware V01.00.01.00 onwards)							
Ctrl Wrd	In this mode, control inputs are exclusively Handled by <i>Pump Control Word 1</i> Pr 29.151 and <i>Pump Control Word 2</i> Pr 29.152 i.e. the local bit type inputs are ignored. This intended for PLC control, where most PLCs have hardware I/O to Handle devices such as flow switches.							
Ctrl Wrd & Input	In this mode, control inputs may be asserted via <i>Pump Control Word 1</i> Pr 29.151 and <i>Pump Control Word 2</i> Pr 29.152 or by the equivalent local bit type inputs such as the <i>Flow Switch Input</i> Pr 29.066 . This intended for HMI control, where most HMIs don't have hardware I/O, and the F600 Pump drive I/O is used for devices like flow switches, but the HMI is used to select Hand or Auto mode							

7.4.2 Control, status and alarm

The following tables shows the Control, Status and Alarm words with their respective equivalent bit type parameters. The control, status and alarm words are used when Control Input Mode Pr 29.012(0.024) = Ctrl Wrd or Ctrl Wrd & Input.

The equivalent parameters are used when Control Input Mode Pr 29.012(0.024) = Input or Input & Keypad or Ctrl Wrd & Input. 24 V Digital I/O is configured as the source or destination for the equivalent parameters, see I/O section 7.4.4 I/O Assignment.

Table 7-1 Pump Control Word 1 Pr 29.151 and equivalent control parameters.

Bit	Equivalent parameter	Function
0	Drive Enable Pr 06.015 .	Remote software disable input via <i>Drive Enable</i> Pr 06.015 . This is in addition to the drive's STO input. Note that bit 0 is not a safety input.
1	Drive Reset Pr 10.033.	Resets the drive from a trip when set to 1
2	Hand Select Input Pr 29.013.	Selects Hand mode when set to 1.
3	N/A	Reserved
4	Auto Select Input Pr 29.015.	Selects Auto mode when set to 1.
5	Reset Volume Input Pr 29.010.	Resets Volume Pr 29.004 to 0 when set to 1.
6	PID Setpoint Select Input 0 Pr 29.026.	Used to select between the 4 different main process PID setpoints, PID Setpoint 0 Pr 29.022 to
7	PID Setpoint Select Input 1 Pr 29.027.	PID Setpoint 3 Pr 29.025
8	Time Schedule Run Input Pr 29.056.	In Auto mode, if <i>Time Schedule Run Input Enable</i> Pr 29.055 = <i>On(1)</i> , the time schedule run input must be set to 1 when the system must run and 0 when the system must stop.
9	Flow Switch Input Pr 29.066.	A system flow switch may be routed to this input where 1 = flow, 0 = No flow.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Bit	Equivalent parameter	Function
10	Level Switch High Input Pr 29.079.	In Auto mode, when set to 1, the system will stop. This is routed to a sensor that detects when the liquid level is at the maximum.
11	Level Switch Low Input Pr 29.080.	In Auto mode, when set to 1, the system will restart. This is routed to a sensor that detects when the liquid level is at the minimum level.
12	External Pump Fault Input Pr 29.085.	This is used to indicate to the pump that there is a system fault and the drive must stop. 1 = fault, 0 = OK.
13	Motor Thermal Protection Input Pr 29.086.	This is used to input a signal from a normally closed thermal switch where 1 = OK, 0 = too hot.
14	Clean Manual Input Pr 29.088	If Hand or Auto mode are not selected, setting the manual clean input to 1 runs a cleaning cycle. Cleaning continues run for as long as this input remains at 1.
15	N/A	A system HMI or PLC must toggle this bit 0 to 1 to 0 continuously. At least once per second is recommended with the default setting of <i>Pump Control Word Watchdog Time</i> Pr 29.150 .

Table 7-2 Pump Control Word 2 Pr 29.152 and equivalent control parameters.

Bit	Equivalent parameter	Function
0	Assist 1 Ready Input Pr 29.108.	Used in Cascade mode by assist 1 to indicate when it is ready to run e.g. healthy. 1 = Ready, 0 = Not ready.
1	Assist 1 Running Input Pr 29.109	Used in Cascade mode by assist 1 to indicate when it is running. 1 = Running, 0 = Not running.
2	Assist 2 Ready Input Pr 29.114.	Used in Cascade mode by assist 2 to indicate when it is ready to run e.g. healthy. 1 = Ready, 0 = Not ready.
3	Assist 2 Running Input Pr 29.115.	Used in Cascade mode by assist 2 to indicate when it is running. 1 = Running, 0 = Not running.
4	Assist 3 Ready Input Pr 29.160.	Used in Cascade mode by assist 3 to indicate when it is ready to run e.g. healthy. 1 = Ready, 0 = Not ready.
5	Assist 3 Running Input Pr 29.161.	Used in Cascade mode by assist 3 to indicate when it is running. 1 = Running, 0 = Not running.
6	Assist 4 Ready Input Pr 29.166.	Used in Cascade mode by assist 4 to indicate when it is ready to run e.g. healthy. 1 = Ready, 0 = Not ready.
7	Assist 4 Running Input Pr 29.167.	Used in Cascade mode by assist 4 to indicate when it is running. 1 = Running, 0 = Not running.

Table 7-3 Pump Status Word 1 Pr 29.153 and equivalent status parameters.

Bit	Equivalent parameter	Function						
0	Auto Selected Output Pr 29.018.	When set to 1, indicates that Auto mode has been selected.						
1	Hand Selected Output Pr 29.019.	When set to 1, indicates that Hand mode has been selected.						
2	Auto Operational Output Pr 29.021.	When set to 1, indicates that Auto mode has been selected, and the system may be running or sleeping due to the system demand.						
3	Auto Running Output Pr 29.020.	When set to 1, indicates that Auto mode has been selected, and the system is running.						
4	PID Software Enable Pr 29.038.	When set to 1, indicates that the Pump software is commanding the main process PID to enable. PID1 Enable Pr 14.008 may be used to override this bit and disable the PID in Auto mode.						
5	PID At Setpoint Output Pr 29.046.	When set to 1, indicates that the main process PID is at setpoint.						
6	PID Feedback Low Output Pr 29.047.	When set to 1, indicates that the main process PID is either lower than PID At Setpoint Band Pr 29.045 or less than PID Feedback Low Threshold Pr 29.044.						
7	Sleep Required Output Pr 29.053.	When set to 1, indicates that the motor frequency or speed has dropped into Sleep Detect Speed Threshold Pr 29.051 and Sleep Detect Delay Pr 29.052 is timing out.						
8	Sleep Active Output Pr 29.054.	When set to 1, indicates that the drive has entered the Sleeping state due to low system demand.						
9	Pipe Fill Done Output Pr 29.078.	When set to 1, indicates that the pipe filling routine has completed.						
10	Clean Active Output Pr 29.104.	When set to 1, indicates that the Pump Drive F600 is running a cleaning cycle.						
11	N/A	Cleaning was triggered due to load current threshold as configured by <i>Clean On Load Current Low Threshold</i> Pr 29.099 or Clean On Load Current High Threshold pr 29.098 .						
12	N/A	Cleaning was triggered due to motor load accumulator build up as indicated by <i>Motor Overload Alarm</i> Pr 10.017 .						
13	N/A	Cleaning was triggered due to the Clean On Interval Time Pr 29.096 elapsing.						
14	N/A	Cleaning was triggered on start up. See Clean On Start Pr 29.089.						
15	N/A	Cleaning was triggered due to Clean Manual Input Pr 29.088 being set to 1.						

Pump Drive F600 User Guide

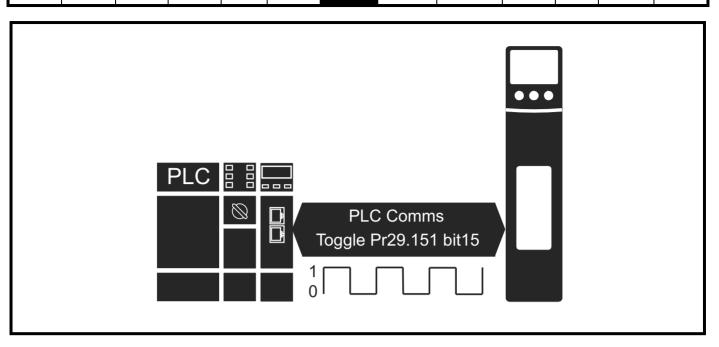
Safe informa		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------	--	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Table 7-4 Pump Status Word 2 Pr 29.154 and equivalent status parameters.

Bit	Equivalent parameter	Function
0	Assist 1 Run Output Pr 29.107.	Used in Cascade mode by assist 1 to command when the soft starter must run. 1 = Run, 0 = Do not run.
1	Assist 2 Run Output Pr 29.113 .	Used in Cascade mode by assist 2 to command when the soft starter must run. 1 = Run, 0 = Do not run.
2	Assist 3 Run Output Pr 29.159.	Used in Cascade mode by assist 1 to command when the soft starter must run. 1 = Run, 0 = Do not run.
3	Assist 4 Run Output Pr 29.165.	Used in Cascade mode by assist 2 to command when the soft starter must run. 1 = Run, 0 = Do not run.

Table 7-5 Pump Alarm Word Pr 29.155 and equivalent alarm parameters.

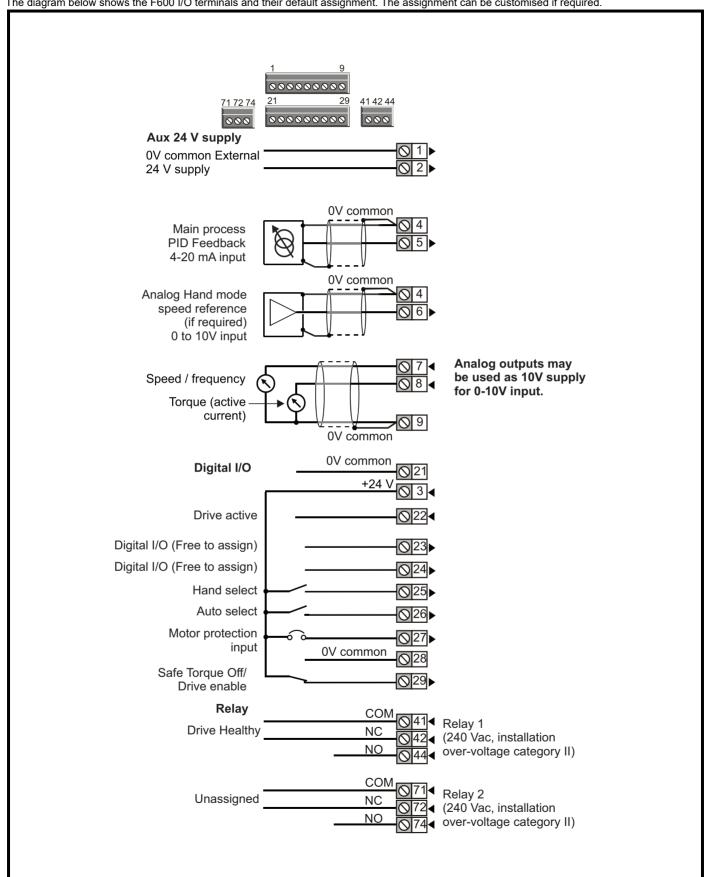
Bit	Equivalent parameter	Function
0	No Flow Switch Output Pr 29.068	When set to 1, indicates that no flow from a flow switch has been triggered.
1	No Flow Output Pr 29.074	When set to 1, indicates that no flow detected by the no flow software has been triggered.
2	Low Flow Meter Stop Output Pr 29.065	When set to 1, indicates that low flow detected by a flow meter has been triggered. See Low Flow Meter Stop Threshold Pr 29.063
3	At Maximum Drive Reference Pr 29.084	When set to 1, indicates that the F600 Pump drive output frequency or speed is in the <i>Maximum Drive Reference Band</i> Pr 29.083 .
4	PID Feedback High Alarm Output Pr 29.040	When set to 1, indicates that the main process PID feedback level is greater than <i>PID Feedback High Alarm Threshold</i> Pr 29.039 .
5	Clean Per Hour Alarm Output Pr 29.105	When set to 1, indicates that Clean Per Hour Limit Pr 29.100 has been reached.
6	Over-cycle Alarm Output Pr 29.131	When set to 1, indicates that Pr 29.128 Over-cycle Starts Per Hour limit has been reached.
7	Dry Well Low Load Alarm Output Pr 29.062	When set to 1, indicates that a Dry well has been detected.
8	N/A	Reserved
9	Assist 1 Lockout Output Pr 29.112	When set to 1, indicates that Cascade mode assist 1 has started too many times in an hour and is now locked out. Assist 1 Lockout Countdown Pr 29.111 indicates the remaining time until it is allowed to start.
10	Assist 2 Lockout Output Pr 29.118	When set to 1, indicates that Cascade mode assist 2 has started too many times in an hour and is now locked out. Assist 1 Lockout Countdown Pr 29.111 indicates the remaining time until it is allowed to start.
11	Assist 3 Lockout Output Pr 29.164	When set to 1, indicates that Cascade mode assist 3 has started too many times in an hour and is now locked out. Assist 3 Lockout Countdown Pr29.163 indicates the remaining time until it is allowed to start.
12	Assist 4 Lockout Output Pr 29.170	When set to 1, indicates that Cascade mode assist 4 has started too many times in an hour and is now locked out. Assist 1 Lockout Countdown Pr29.169 indicates the remaining time until it is allowed to start.


7.4.2.1 Control Word watchdog

Pump Control Word Watchdog Time Pr 29.150 is used to give an indication if there is a communications failure between a connected PLC or HMI and the F600.

If Pump Control Word Watchdog Time Pr 29.150 is set to 0 the watchdog feature is disabled.

If Pump Control Word Watchdog Time Pr 29.150 is set to >0 the watchdog feature is enabled. The maximum time allowed without a state of Pump Control Word 1 Pr 29.150 bit 15 is defined by Pump Control Word Watchdog Time Pr 29.150, change and where the watchdog bit must be toggled 1 to 0 or 0 to 1 inside this time period by the PLC or HMI, otherwise a Ctrl Wrd Watchdg trip will occur, stopping the system. The watchdog is only started after the first time a change in the state of Pump Control Word Pr 29.151 bit 15 is seen.


Getting started / UL listing information Mechanical installation Electrical installation Functional descriptions NV Media Card Technical data Safety Product Basic Advanced Optimization Diagnostics information Running the Motor information parameters Operation parameters

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	*			•	•			

7.4.3 I/O Terminals

The diagram below shows the F600 I/O terminals and their default assignment. The assignment can be customised if required.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.4.4 I/O Assignment

I/O must be assigned for systems that use hard wired I/O for the control, i.e. Control Input Mode Pr 29.012(0.024) = Input or Input & Keypad or Ctrl Wrd & Input. The F600 has 6 different types of I/O available:

- 3x 24 V digital inputs
- 3x 24 V user configured digital inputs or outputs
- 2x 4 20 mA or 0 to 10 v analog inputs
- 2x 4 20 mA or 0 to 10 v analog outputs
- 2x 240 V relay outputs
- 2x 24 V Supply

All of these I/O types are assigned in the same manner, where the I/O needs a source or destination parameter pointer, i.e. a place for the signal data to go to or to come from. For example, to assign Digital I/O 2 as a flow switch input set *Digital I/O 02 Source/Destination* Pr **8.022** to **29.066** (Flow Switch Input).

Care must be taken that the source / destination parameter used is of the correct type for the I/O e.g. a bit type (On/Off) parameter for a digital input or a numerical value for an analog input.

Table 7-2 Digital I/O terminals and configuration parameters

Terminal	Function	I/O Status	Invert	Source / Destination	Output Select	Default Source / Destination
22	24 V Input / Output 1	Pr 8.001	Pr 8.011	Pr 8.021	Pr 8.031	Drive Running 1.011
23	24 V Input / Output 2	Pr 8.002	Pr 8.012	Pr 8.022	Pr 8.032	Free to assign 0.000
24	24 V Input / Output 3	Pr 8.003	Pr 8.013	Pr 8.023	Pr 8.033	Free to assign 0.000
25	24 V Input 4	Pr 8.004	Pr 8.014	Pr 8.024	N/A	Hand Select Input 29.013
26	24 V Input 5	Pr 8.005	Pr 8.015	Pr 8.025	N/A	Auto Select Input 29.015
27	24 V Input 6	Pr 8.006	Pr 8.016	Pr 8.026	N/A	Motor Thermal Protection 29.086
29	STO Input	Pr 8.009	N/A	N/A	N/A	N/A
3	24 V Supply Output (May be used as a control output)	Pr 8.008	Pr 8.018	Pr 8.028	N/A	Free to assign 0.000
2	24 V Supply Input (May be used as a control input)	Pr 8.043	Pr 8.053	Pr 8.063	N/A	Free to assign 0.000
1, 4, 9, 21, 28	0 V common	N/A	N/A	N/A	N/A	N/A

Table 7-3 Relay output terminals and configuration parameters.

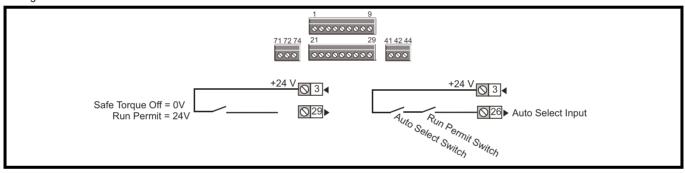
Terminal	Function	I/O Status	Invert	Source / Destination	Default Source / Destination
41 Com 42 NC 44 NO	240 V Relay Output 1	Pr 8.007	Pr 8.017	Pr 8.027	Drive Healthy 10.001
71 Com 72 NC 74 NO	240 V Relay Output 2	Pr 8.045	Pr 8.055	Pr 8.065	Free to assign 0.000

Pump Drive F600 User Guide

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 7-4 Analog I/O terminals and parameters

Terminal	Function	I/O Status	Mode	Scaling	Invert	Source / Destination	Default Source / Destination
5	Analog Input 1	Pr 7.001	Pr 7.007	Pr 7.008	Pr 7.009	Pr 7.010	PID Feedback 29.034
6	Analog Input 2	Pr 7.002	Pr 7.011	Pr 7.012	Pr 7.009	Pr 7.014	Hand Mode Analog Ref1.036
7	Analog Output 1	N/A	Pr 7.007	Pr 7.020	N/A	Pr 7.019	Frequency / Speed 5.001 / 3.002
8	Analog Output 2	N/A	Pr 8.032	Pr 7.023	N/A	Pr 7.022	Torque Current 4.002
1, 4, 9, 21, 28	0 V common	N/A	N/A	N/A	N/A	N/A	N/A

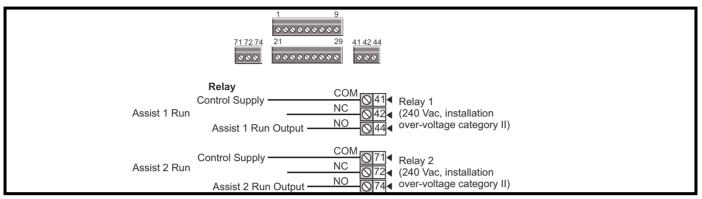

Note that the analog outputs may be used as a 10 V supply for a Hand mode speed potentiometer; set the source parameter for the analog output to an unused application parameter e.g. 18.011, and then set Pr 18.011 to 32767 (the parameter maximum) to give a 10 V output. If the source parameter for an analog output is set to its maximum, the analog output is also set to the maximum of 10 V. Save the parameters by setting Pr 0.000 to Save Parameters and press the red reset button . OFF

Please see chapter 10 Advanced parameters, menus 7 and 8 for more information.

7.4.5 Run permit

For systems that require a run permit, i.e. a run command signal in addition to the Auto Mode Select input, the following solutions area available:

- · The STO input may be used as a run permit input for systems where the pump may coast to a stop when the run permit signal is removed.
- The Auto input may be interrupted by an additional switch contact for systems where the pump must decelerate to a stop when the run permit signal is removed.

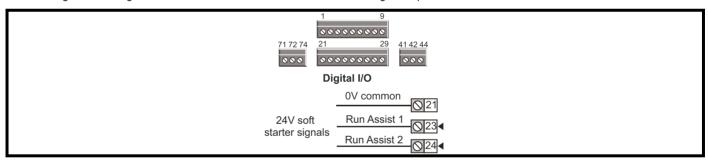

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.4.6 Cascade (run only)

When Cascade mode is selected, *Pump Control Mode* Pr **29.011** = *Cascade*, and *Assist Control Mode* Pr **29.106** = *Run Only*, a single run signal is used to start an assist soft starter. This signal may be sent to the soft starter by a relay output or by 24 V digital output, whichever is the most suitable for the system.

7.4.6.1 Run by relay output

The following terminal diagram shows the additional connections for the run output control relays, that command the soft starters to run.


The control parameter source for the relay must be configured to control the relays. The following parameter settings must be made to use this configuration:

- Relay Output Source Pr 8.027 = 29.107
- Relav 2 Source Pr 8.065 = 29.113
- Set Pr0.000 to Save Parameters and press the red reset button

7.4.6.2 Run by 24 V digital output

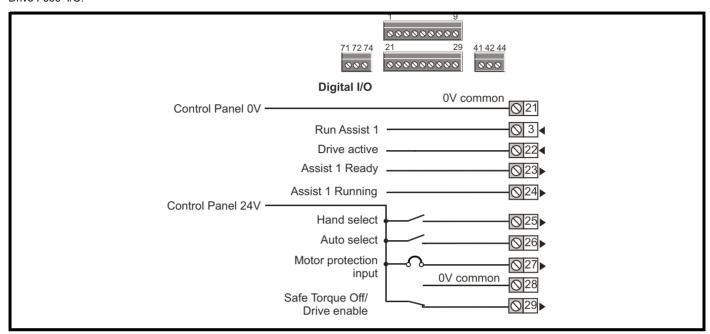
The following terminal diagram shows the additional connections for the 24 V digital outputs that command the soft starter to run.

The control parameter source must be configured to control the digital I/O and they must be assigned as outputs. The following parameter settings must be made to use this configuration:

- Digital I/O 02 Source/Destination Pr 8.022 = 29.107
- Digital I/O 03 Source/Destination Pr 8.023 = 29.113
- Digital I/O 02 Output Select Pr 8.032 = On(1)
- Digital I/O 03 Output Select Pr 8.033 = On(1)
- Set Pr 0.000 to Save Parameters and press the red reset button

7.4.7 Cascade (Full I/O)

When Cascade mode is selected, *Pump Control Mode* Pr **29.011** = *Cascade*, and *Assist Control Mode* Pr **29.106** = *Full I/O*, assist soft starters will be controlled using Run output, Ready Input and Running Input. Using the drives existing hardware, the drive can control:


- A single soft starter with feedback, where the drives 24 V supply output is used to supply the run signal. A control panel 24 V supply is required for the motor protection input, Hand and Auto select inputs.
- Other combinations are possible by rearranging the flexible I/O.

With the addition of an SI-I/O module, 2 assist soft starters with feedback is possible using 24 V digital I/O.

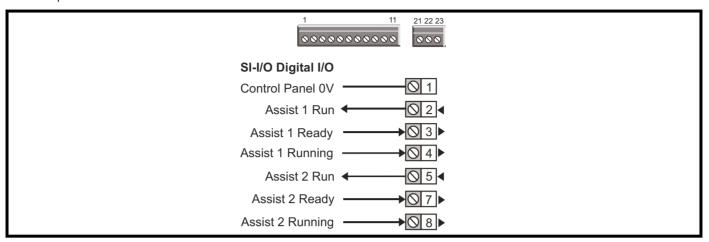
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

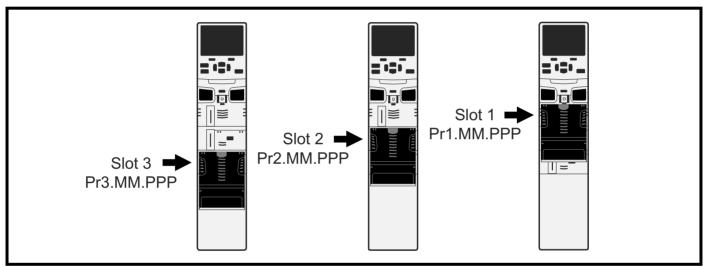
7.4.7.1 Single soft starter with full I/O

The following terminal diagram shows the connections for the 24 V digital I/O to command the soft starter to run and receive feedback using the Pump Drive F600 I/O.

The control parameter source and destinations must be configured to control the digital I/O and they must be assigned as outputs. The following parameter settings must be made to use this configuration:

- Digital I/O 02 Source/Desination Pr 8.022 = 29.108
- Digital I/O 03 Source/Destination Pr 8.023 = 29.109
- 24 V Supply Input Destination Pr 8.063 = 29.107
- Digital I/O 02 Output Select Pr 8.032 = Off(0)
- Digital I/O 03 Output Select Pr 8.033 = Off(0)


Set Pr 0.000 to Save Parameters and press the red reset button


Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	----------------	-------------	------------------------

7.4.7.2 Dual soft starters with full I/O

The following terminal diagram shows the additional connections for the 24 V digital I/O to command the soft starter to run and receive feedback using an SI-I/O option module.

The control parameter source and destinations must be configured to control the digital I/O and they must be assigned as inputs or outputs as required. To do this the parameter Menu for the slot that the SI-I/O option is fitted in must be known.

MM= menu number, PPP = parameter number.

The following parameter settings must be made to use this configuration, where the slot number S = 1, 2 or 3 as identified in the previously:

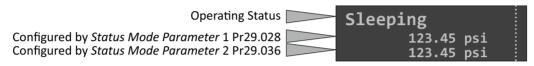
- Digital I/O 01 Source/Destination PrS. 02.021= 29.107 (Assist 1 Run)
- Digital I/O 02 Source/Destination PrS. 02.022 = 29.108 (Assist 1 Ready)
- Digital I/O 03 Source/Destination PrS. 02.023 = 29.109 (Assist 1 Running)
- Digital I/O 01 Source/Destination PrS. 02.024= 29.113 (Assist 2 Run)
- Digital I/O 02 Source/Destination PrS. 02.025 = 29.114 (Assist 3 Ready)
 Digital I/O 03 Source/Destination PrS. 02.026 = 29.115 (Assist 4 Running)
- T2 Digital I/O 1 Mode PrS. 01.011 = On(1)
- T3 Digital I/O 2 Mode PrS.01.012 = Off(0)
- T4 Digital I/O 3 Mode PrS.**01.013** = Off(0)
- T5 Digital I/O 4 Mode PrS.01.014 = On(1)
- T7 Input 5 Mode PrS.01.015 = Digital Input(0)
- T8 Input 5 Mode PrS.01.016 = Digital Input(0)

Set Pr 0.000 to Save Parameters and press the red reset button

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.5 Pump software operating status

The default status display shows the *Drive Status* Pr **29.101**, the *Pump software Operating Status* Pr **29.003**(0.073) and the *Output Frequency* Pr **5.001**(0.069) or *Speed Feedback* Pr **3.002**(0.069).



The default status display will be Automatically shown after 4 minutes if no buttons are pressed, or to show it quickly press the Escape button on the keypad.

The bottom 2 rows of the display may be easily customised to suit to the application requirements, although it is highly recommended to keep the *Operating Status* Pr **29.003**(0.073) displayed.

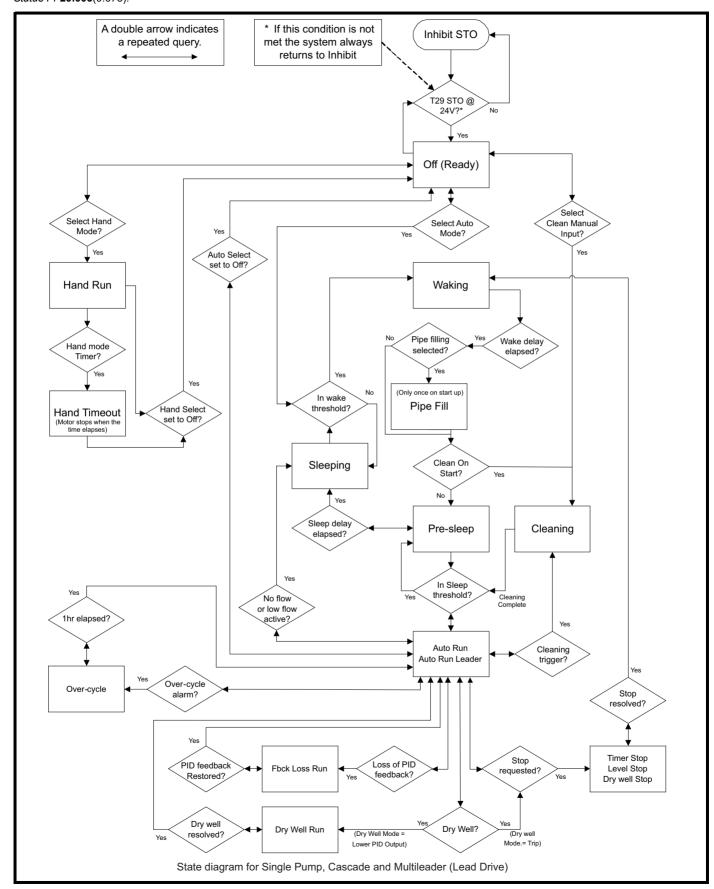
The following diagram illustrates the parameters responsible for configuring the bottom 2 rows of the status display:

Status Mode Parameter 1 Pr 11.018 and Status Mode Parameter 2 Pr 11.019 are parameter pointers, where the value entered is the parameter number that should be displayed. Any MM.PPP format parameter may be used, however some common parameter selections are given in the table below:

Parameter	Name
1.021	Auto Mode Reference (Single Pump, Cascade or Multi-leader (lead drive)
1.028	Multi-leader assist reference
2.001	Post Ramp Reference
3.002	Speed Feedback (in closed loop mode only)
4.020	Percentage load
5.001	Output Frequency
5.003	Output Power
14.020	PID Reference (in % units)
14.021	PID Feedback (in % units)
14.022	PID Error (in % units)
29.002	Total Run Time
29.003	Operating Status
29.004	Volume
29.005	Flow
29.029	PID Final Setpoint (user feedback units)
29.036	PID Final Feedback (user feedback units)
29.037	PID Error (user feedback units)

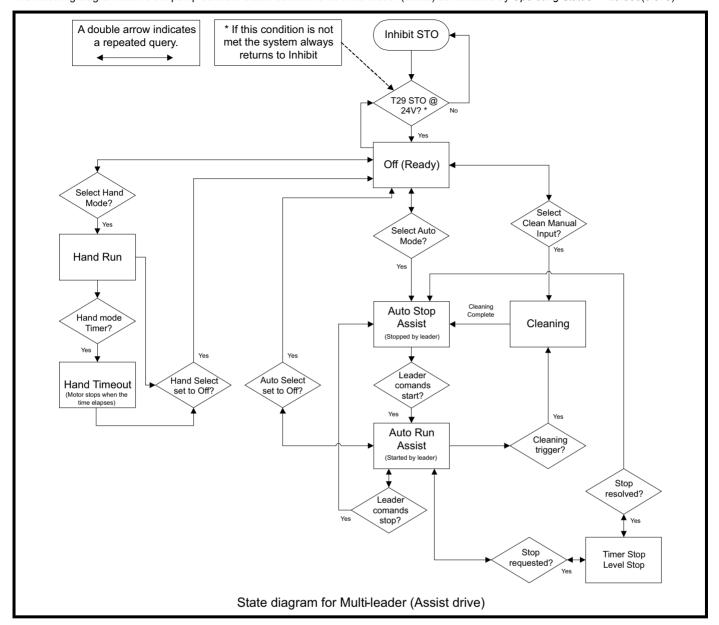
To adjust Status Mode Parameter 1 Pr 11.018 and Status Mode Parameter 2 Pr 11.019, Menu Access Level Pr 0.001 must be set to All Menus. The following table lists the possible Pump software operating statuses and their meaning.

Status	Description
Inhibit STO	The drive is inhibited i.e. the STO input on drive terminal T29 is at 0 V. To enable the drive to move to the Off (<i>Ready</i>) state, apply 24 V to drive terminal T29.
Off (Ready)	The drive is hardware enabled and is waiting for a command to run.
Hand Run	The drive is running in Hand mode from a fixed speed reference.
Waking	The drive is in the process of waking i.e. the Wake Detect Delay Pr 29.050(0.041) is timing.
Pipe Fill	The Automated pipe filling routine is running.
Auto Run	The drive is running in Single Pump control in Auto mode.
Auto Run Leader	The drive is running in Cascade or Multi-leader control in Auto mode as a leader.
Auto Run Assist	The drive is running in Multi-leader control in Auto mode as an assist.


Safety information		echanical Electrical installation		Basic Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	--	-----------------------------------	--	-------------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

	the Motor								
Status	Description								
Pre-sleep	The drive is in Pre-sleep i.e. the output frequency or speed is less than <i>Sleep Detect Speed Threshold</i> Pr 29.051 and the <i>Sleep Detect Delay</i> Pr 29.052 is counting down. This is shown for a short period when starting in Auto mode while the PID output builds up.								
Sleeping	The drive is in Auto mode but has gone to sleep. The system enters Sleeping when the motor speed or frequency value satisfies the <i>Sleep Detect Speed Threshold</i> Pr 29.051 , if no flow from a flow switch, no flow by software detection or low flow is detected.								
Cleaning	The drive is running the cleaning or de-ragging routine.								
Level Stop	The system has stopped due to the high-level switch being reached. See <i>Level Switch High Input</i> Pr 29.079 . This may be overridden by Hand mode or Manual Clean operation.								
Timer Stop	The system has stopped because the timer switch input is set to Off(0), indicating a timer shut-down period. See <i>Time Schedule Run Input Enable</i> Pr 29.055 and <i>Time Schedule Run Input</i> Pr 29.056 . This may be overridden by Hand or Manual Clean operation.								
Hand Timeout	The system was stopped while running in Hand mode after the <i>Hand Mode Timeout</i> Pr 29.017 elapsed. To reset a Hand mode timeout, deselect and reselect Hand mode.								
Over-cycle	The system has detected an over-cycle condition. The drive has started too many times in this hour. See <i>Over-cycle Mode</i> Pr 29.127 (0.060) and <i>Over-cycle Starts Per Hour</i> Pr 29.128 (0.061).								
Fbck Loss Run	Analog Input 1 Current Loop Loss Pr 07.028 = On(1) indicating that there is a current loop loss for the main process PID feedback, and PID Feedback Loss Action Pr 29.048 = Fixed Speed where the drive is running with at a fixed speed defined by PID Disabled / Feedback Loss Reference Pr 01.023.								
Dry Well Run	A dry well low load condition has been detected and the drive is running with a reduced reference as defined by <i>Dry Well Low Load PID Output Reduction</i> Pr 29.060(0.053). This state can only be reached when <i>Dry Well Low Load Mode</i> Pr 29.059 (0.052) = <i>Lower PID Output</i> .								
Dry Well Stop	A dry well low load condition has been detected and the drive has tripped on Dry Well, where <i>Dry Well Low Load Mode</i> Pr 29.059 (0.052) = <i>Trip</i> . When this happens, the drive will remain stopped in the <i>Dry Well Stop state</i> until the <i>Dry Well Low Load Restart Delay</i> Pr 29.061 (0.054) has elapsed.								
Auto Stop Assist	This indicates that the drive is an assist in a Multi-leader system, Auto mode has been selected, but the system leader has not commanded this assist to run yet.								

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								


7.5.1 Single Pump, Cascade and Multi-leader (leader) state diagram

The following diagram shows the pump software status transitions for Single Pump, Cascade and Multi-leader (leader) as indicated by *Operating Status* Pr **29.003**(0.073).

7.5.2 Multi-leader (assist) state diagram

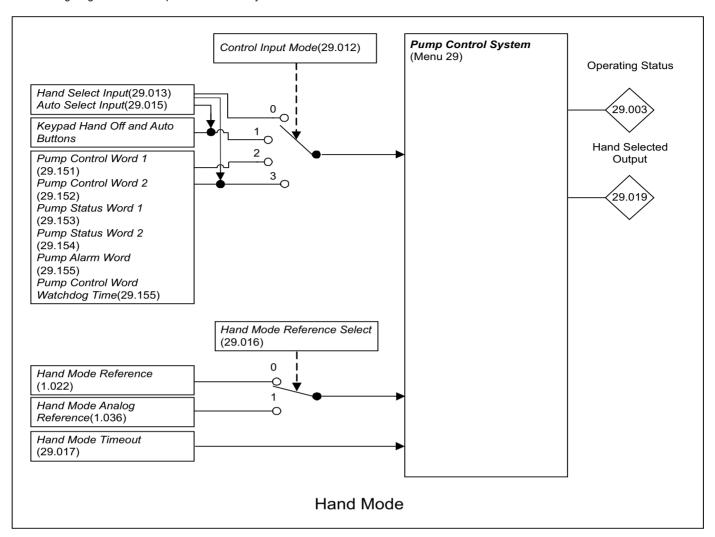
The following diagram shows the pump software status transitions for Multi-leader (assist) as indicated by Operating Status Pr 29.003(0.073).

7.6 Hand mode

Hand mode runs the pump at a user defined fixed speed, from either a digital pre-set or an analog reference. The mode has a timeout facility to prevent continuous running in Hand mode if required.

By default, the following setup is made for Hand mode:

- · Hand mode is selected by either:
 - o Press and hold the Hand key for 2 s. HAND



- o Apply 24 V to Digital input 4 T25
- The frequency or speed setpoint is set using Hand Mode Reference Pr 1.022 (0.026).
- The Hand mode reference will run continuously while selected.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.6.1 Hand mode logic diagram

The following diagram shows the parameters used by Hand mode.

7.6.2 Hand mode parameters

The following section details the parameters used by Hand mode.

Parameter	Parameter 29.016 (0.025) Hand Mode Reference Select							
Minimum	0 Maximum 1							
Default	0	Units						

This selects where the frequency or speed reference comes from when Hand mode is selected. When set to *Digital Speed*, Hand Mode Reference Pr **1.022** (0.026) sets the reference. When set to *Analog Speed*, by default, a 0 to 10 V signal is applied to analog input 2 T6.

NOTE

If a 10 V supply is required an analog output can be setup to provide this, see I/O 7.4.4 I/O Assignment.

Parameter	29.017 Hand Mode Timeout							
Minimum	0.0	Maximum	25.0					
Default	0.0	Units	minutes					

When set to 0.0 minutes, Hand mode timeout is disabled, i.e. the system will run in Hand mode for as long as Hand mode is selected.

When set > 0.0, this sets the time in minutes that Hand mode will be selected for before timing out and stopping the motor, where *Operating State* Pr **29.003** changes to *Hand Timeout*. To reset the Hand mode timeout, Hand mode must be deselected.

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Paramet	er		29.013 H	and Selec	t Input							
Minimum 0			Maxim	Maximum 1								
Default			0			Units						

This is the destination for a 24V digital input that is used to select Hand mode. This is used when Control Input Mode Pr 29.012 = Input or Input & Keypad or Ctrl Wrd & Input. By default, digital input 4 T25 is configured for this purpose.

When Control Input Mode Pr 29.012 = Ctrl Wrd This input is not used.

Parameter	1.036 Hand Mode Analog Reference								
Minimum	Minimum VM_SPEED_FREQ_USER_RE FS[MIN]	Maximum	VM_SPEED_FREQ_USER_REFS[MAX]						
Default	0.0	Units	Hz or rpm						

Used to receive the final analogue speed / frequency reference in Hand mode. By default, analog input 2 T6 is directed to this parameter, and is used when analog Hand mode reference is selected by setting *Hand Mode Reference* Select Pr **29.016**(0.025) = Analog Speed.

Parameter	1.022 (0.026) Hand Mode Reference								
Minimum	VM_SPEED_FREQ_REF[MIN]								
Default	DefaultSTD = 750, US = 900. Units Hz or rpm								

This defines the speed or frequency reference used when running in Hand mode and when *Hand Mode Reference Select* Pr **29.016**(0.025) = *Digital Speed*.

Parameter	29.019 Hand Selected Output			
Minimum	0	Maximum	1	
Default	0	Units		

When set to On(1), this indicates that Hand mode has been selected. The following conditions must be met for *Hand Selected Output* Pr **29.019** to become set to On(1):

- Hand Select Input Pr 29.013 = On(1), or Hand button pressed for 2 s, or Pump Control Word 1 Pr 29.151 bit2 = 1.
- The drive is enabled where Hardware Enable Pr 6.029 = On(1). 24 V must be applied to the STO input T29.
- Auto mode hasn't been selected where Auto Select Input Pr 29.015 = Off(0) or Pump Control Word 1 Pr 29.151 bit4 = 0.
- Hand mode time-out is disabled or hasn't timed out via Hand Mode Timeout Pr 29.017.

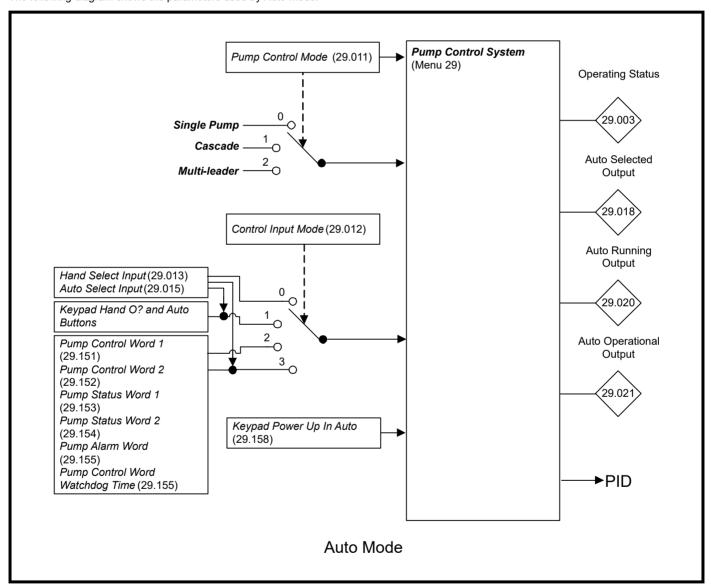
When set to Off, Hand mode is not selected.

Parameter	29.003 (0.073) Operating Status				
Minimum	0	Maximum	18		
Default	0	Units			

When Hand mode is running *Operating Status = Hand Run*. See section 7.5 Pump software operating status for more information on the operating states.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			·	-			

7.7 Auto mode


In Auto Mode, the pump starts Automatically with a start delay when the wake condition is detected, e.g. pressure transducer signal goes below wake threshold. Initially, a pipe fill operation may be performed to remove air from the pipes. An optional PID control then regulates the system to the setpoint e.g. for a constant pressure system, the demand pressure will be regulated by adjusting the motor speed. If the pump detects a stop condition for a defined time period it will Automatically stop and enter the *Sleeping state*. There are four main stop conditions - sleep on low motor speed, software no flow detection, no flow from a flow switch and low flow from a pulsed flow meter. All four conditions can be individually enabled to suit the system requirements.

In Cascade or Multi-leader parallel pumping systems, when the leader drive PID output is at maximum, additional assist F600s or soft starters are commanded to run. If the sleeping threshold is reached additional assist F600s or soft starters are commanded to stop.

Optionally, Auto mode can run with no PID control and a fixed frequency or speed reference. This is helpful in tank filling systems that have a fixed head, where the pump starts and stops with level switch control instead of PID demand. See section 7.8 *PID* and section 7.14 *Level switches*.

7.7.1 Auto mode logic diagram

The following diagram shows the parameters used by Auto mode.

Note that the PID control is covered separately in section 7.8 PID.

7.7.2 Auto mode parameters

The following section details the parameters used by Auto mode.

Parameter	29.011 (0.021) Pump Control Mode			
Minimum	0 Maximum 3			
Default	0	Units		

This decides which type of system the F600 drive is being applied to and the behaviour in Auto mode. In *Single Pump*, Auto mode only runs a single independent pump. In Cascade or Multi-leader, when running in Auto mode, up to 2 additional parallel assist pumps are automatically commanded to run as required. See section 7.20 *Cascade mode* and section 7.21 *Multi-leader mode* for more details.

Parameter	29.015 Auto Select Input			
Minimum	0	Maximum	1	
Default	0	Units		

This is the destination for a 24 V digital input that is used to select Auto mode. This is used when *Control Input Mode* Pr **29.012**(0.024) = *Input or Input & Keypad or Ctrl Wrd & Input*. By default, digital input 5 T26 is configured for this purpose.

When Control Input Mode Pr 29.012(0.024) = Ctrl Wrd This input is not use.

Parameter	29.018 Auto Selected Output				
Minimum	0	Maximum	1		
Default	0	Units			

When set to On(1), this indicates that Auto mode has been selected. The following conditions must be met for *Auto Selected Output* Pr **29.018** to become set to On(1):

- Auto Select Input Pr 29.015 = On(1), or Auto button pressed for 2s, or Pump Control Word 1 Pr 29.151 bit4 = 1.
- The drive is enabled where Hardware Enable Pr 6.029 = On(1). 24V must be applied to the STO input T29.
- Hand mode hasn't been selected where Hand Select Input Pr 29.013 = Off(0) or Pump Control Word 1 Pr 29.151 bit2 = 0.
- The time schedule function is disabled via *Time Schedule Run Input Enable* Pr **29.055**, or *Time Schedule Run Input Enable* Pr **29.055** = *On(1)* and *Time Schedule Run Input* Pr **29.056** = *On(1)*.

Parameter	29.020 Auto Running Output				
Minimum	0	Maximum	1		
Default	0	Units			

When set to On(1), this indicates that Auto mode is selected, and the motor is energised.

Parameter	29.021 Auto Operational Output			
Minimum	0	Maximum	1	
Default	0	Units		

When set to On(1), this indicates that Auto mode is selected, and the system is sleeping (motor stopped) or running (motor energised).

Parameter	29.158 Keypad Power Up In Auto			
Minimum	0	1		
Default	0	Units	N/A	

This feature allows the user to decide how the F600 should behave on power up when controlled by the keypad. To use this feature, Pr29.012 Control Input Mode must be set to Input & Keypad and the drive must only be controlled by the keypad.

When set to 0, on power up provided the STO input has been set to 24V, the system will power up in the Off (Ready) state, where the pump will be stopped.

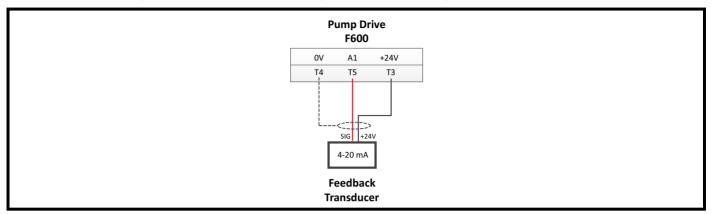
When set to 1, on power up provided the STO input has been set to 24V, the system will power up and automatically select Auto, allowing continued pump operation after a transient loss of supply voltage.

236

Safety information information installation

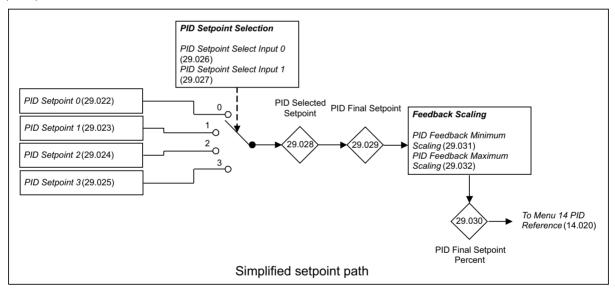
Parameter	29.003 (0.073) Operating Status			
Minimum	0	Maximum	18	
Default	0	Units		

When Auto mode is running:


- Operating Status = Auto Run in Single Pump mode.
- Operating Status = Auto Leader Run in Cascade and Multi-leader mode, where a Multi-leader drive is the system leader.

 Operating Status = Auto Assist Run in Multi-leader mode, where the Multi-leader drive is an assist to the leader.

See section 7.5 *Pump software operating status* for more information on the operating states.

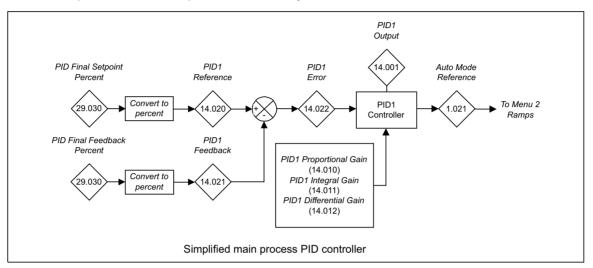

7.8 PID

The main process PID controller is used to modify the motor frequency or speed between the minimum and maximum in order to match the feedback to the setpoint while the system is in Auto mode. By default, the main process PID feedback is connected to Analog input 1 T5 and requires a 4-20 mA signal, (the signal type may be changed if required). In a Multi-leader system, each F600 may have a pressure feedback device to offer to best redundancy, or a 4-20 mA signal duplicator may be used and a single feedback transducer signal can then be split between the drives.

The feedback transducer defines the units that the main process PID controls in, e.g. if the feedback transducer connected to Analog input 1 is a pressure sensor, then the PID is a pressure controller. The scaling defined by *PID Feedback Minimum Scaling* Pr **29.031**(0.030) and *PID Feedback Maximum Scaling* Pr **29.032**(0.031), where the PID feedback and setpoint will be in the units defined by the scaling. By default, the scaling is setup for percent units i.e. 0.00 % to 100.00 %.

The system has up to 4 selectable PID setpoints depending on the system requirements; selecting the different setpoints is done using PID Setpoint Select Input 0 Pr 29.026 and PID Setpoint Select Input 1 Pr 29.027. By default, the system is setup to accept a single PID setpoint, PID Setpoint 0 Pr 29.022(0.029).

The resulting feedback and setpoint, *PID Final Feedback Percent* Pr **29.035** and *PID Final Setpoint Percent* Pr **29.030**, are passed to PID1 the main process PID in Menu 14 to control the motor frequency or speed, where the output of PID1 is routed to *Auto Mode Reference* Pr **1.021**.


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.8.1 PID tuning

The default PID loop gains are a good starting point when commissioning the system, however, each system has different characteristics and tuning may be required. If the PID loop needs to be tuned to it is recommended that CT Scope is used to monitor the following parameters:

- PID1 Reference Pr 14.020(0.066)
- PID1 Feedback Pr 14.021(0.067)

While monitoring the PID reference, feedback and error using CT Scope, adjust *PID1 Proportional Gain* Pr **14.010**(0.064) and *PID1 Integral Gain* Pr **14.011**(0.065). It may be helpful to vary the PID setpoint between two values in order to see the performance of the PID As a starting point while changing the gains, the best practice when stiffening the PID loop performance is to double both *PID1 Proportional Gain* Pr **14.010**(0.064) and *PID1 Integral Gain* Pr **14.011**(0.065) to maintain the balance between the two gains. It is not recommended to introduce differential gain as this tends to introduce noise to the main process PID control loop, and for this reason by default *PID1 Differential Gain* Pr **14.012** is set to 0.000.

The PID controller output is defined as follows:

PID1 Output Pr 14.001 = PID1 Error Pr 14.022 x [Kp + Ki/s + sKd / (0.064s + 1)]

Kp = PID1 Proportional Gain Pr 14.010(0.064)

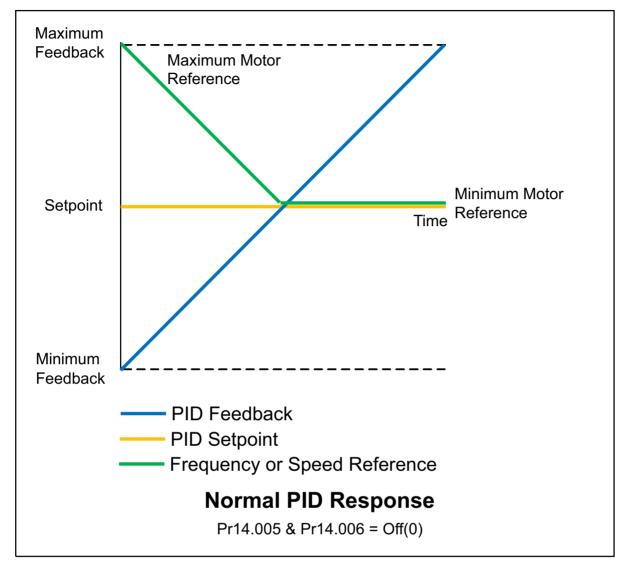
Ki = PID1 Integral Gain Pr 14.011(0.065)

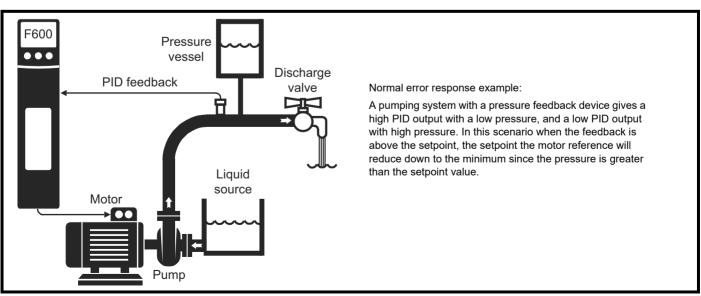
Kd = PID1 Differential Gain Pr 14.012

Therefore:

- If PID1 Error Pr 14.022 = 100.00 % the proportional term gives a value of 100.00% if PID1 Proportional Gain Pr 14.010(0.064) = 1.000.
- If PID1 Error Pr 14.022 = 100.00 % the integral term gives a value that increases linearly by 100.00 % per second if PID1 Integral Gain Pr 14.011(0.065) = 1.000.
- If PID1 Error Pr 14.022 increases linearly by 100.00 % per second, the differential term gives a value of 100.00 % if PID1 Differential Gain Pr 14.012 = 1.000. (A filter with a time constant of 64 ms is provided on the differential gain to reduce the noise produced by this term.)

Note that for a very rapid response, <1 s to full output, the default acceleration and deceleration rates configured by *General Acceleration Rate* Pr **2.011**(0.027) and *General Deceleration Rate* Pr **2.021**(0.028) may require adjustment.

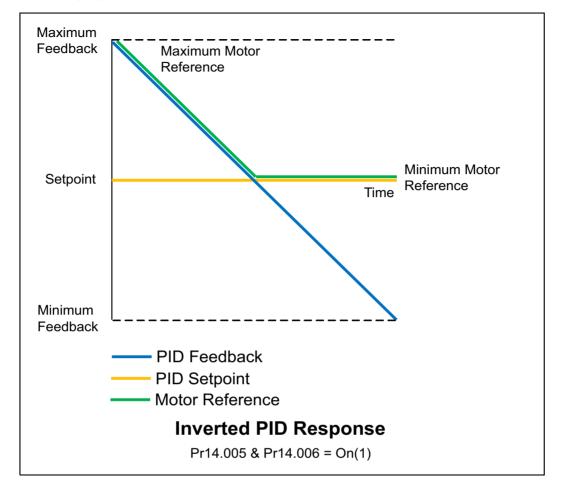

7.8.2 Inverting the main process PID error response

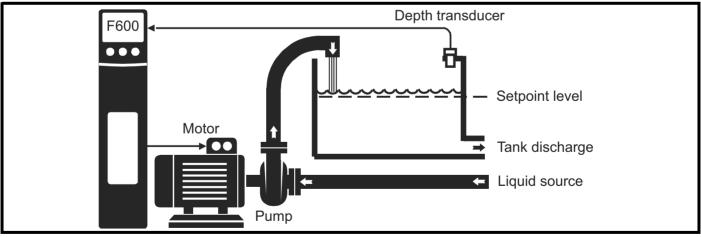

PID1 Reference Invert Pr 14.005 may be used in combination with PID1 Feedback Invert Pr 14.006 to invert the response characteristics of the main process PID. This is helpful in applications where if the feedback value is greater than the setpoint the system motor should speed up rather than slow down as it does with a normal error response.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.8.2.1 Normal PID Error response

If PID1 Feedback Source Pr **14.004** and PID1 Reference Invert Pr **14.005** = Off(0) then the main process PID will give a normal error response characteristic. See the following diagram:




240

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor				·	-			

7.8.2.2 Inverted PID Error response

If PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005 = On(1) then the main process PID will give an inverted error response characteristic. See the following diagram:

Inverted error response example:

A tank emptying system with a depth feedback device gives a high PID output with a high depth, and a low PID output with low depth. In this scenario when the feedback is above the setpoint, the motor reference will increase up to the maximum to empty the water rapidly since the liquid level is too high. If the liquid level is low the PID output will reduce, allowing the tank to fill.

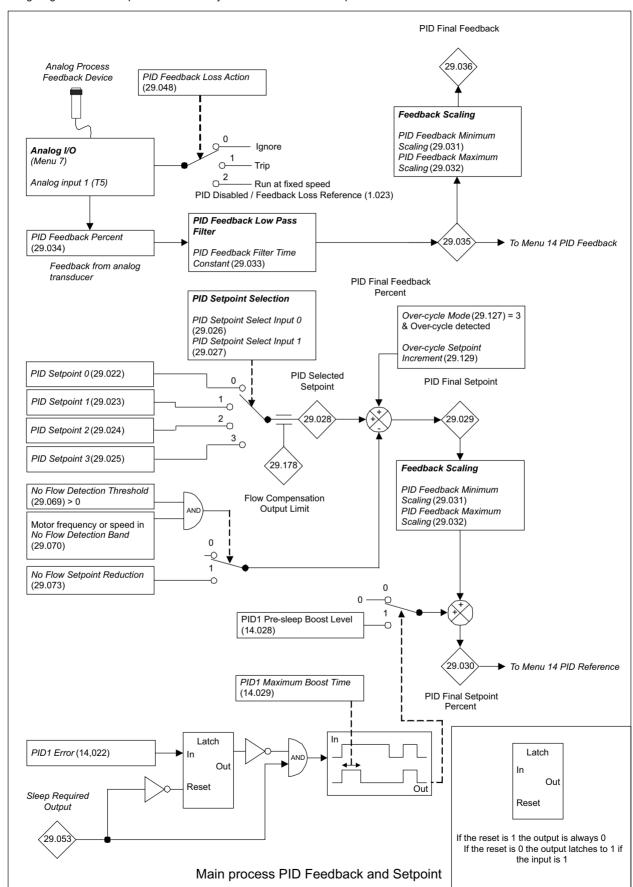
Note that the Wake Detect Feedback Threshold Pr 29.049(0.040) changes function depending on the state of PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005.

- If PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr1 4.005 = Off(0) then the feedback must be less than Wake Detect Feedback Threshold Pr 29.049(0.040) for the system to wake.
- If PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005 = On(1) then the feedback must be greater than Wake Detect Feedback Threshold Pr 29.049(0.040) for the system to wake.

7.8.3 Disabling the PID for fixed speed systems

For some applications the PID is not necessary when running in Auto mode e.g. if filling a tank using level switches with a fixed head. In a fixed speed application:

- The main process PID is disabled while running in Auto mode by setting PID Enable Pr 14.008 to Off(0).
- The fixed speed reference used while running in Auto is set by PID Disabled / Feedback Loss Reference Pr 1.023.


When the main process PID is disabled, the following features are affected:

- PID pressure control this is disabled.
- Waking / Starting the system will start immediately after the start time elapses.
- Sleeping / Stopping the system will only stop if low flow or no flow from a flow switch is detected.
- Pipe filling only available if a flow sensor or a flow switch is fitted.
- Feedback High / Low detection Only available if a feedback device is connected.
- · Software no flow detection this is disabled.
- Dry well low load detection this is disabled.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			•	-			

7.8.4 PID feedback and setpoint logic diagram

The following diagram shows the parameters used by the PID feedback and setpoint

Safety information		lechanical nstallation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	---------------------------	-------------------------	--	---------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

7.8.5 PID feedback and setpoint parameters

The following section details the parameters used by the PID feedback and setpoint.

Parameter	29.022 (0.029) PID Setpoint 0						
Minimum	0.00	Maximum	327.67				
Default	0.00	Units	user feedback units				

This is the main process PID setpoint and is selected by default, since the PID setpoint select inputs, PID Setpoint Select Input 0 Pr 29.026 and PID Setpoint Select Input 1 Pr 29.027 are set to Off(0) by default.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	29.023 PID Setpoint 1		
Minimum	0.00	Maximum	327.67
Default	0.00	Units	user feedback units

This is an additional setpoint and requires the PID setpoint select inputs, PID Setpoint Select Input 0 Pr 29.026 and PID Setpoint Select Input 1 Pr 29.027, to command it. If PID Setpoint Select Input 0 Pr 29.026 = On(1) and PID Setpoint Select Input 1 Pr 29.027 = Off(0), PID Setpoint 1 Pr 29.023 is selected.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	29.024 PID Setpoint 2		
Minimum	0.00	Maximum	327.67
Default	0.00	Units	user feedback units

This is an additional setpoint and requires the PID setpoint select inputs, PID Setpoint Select Input 0 Pr 29.026 and PID Setpoint Select Input 1 Pr 29.027, to command it. If PID Setpoint Select Input 0 Pr 29.026 = Off(0) and PID Setpoint Select Input 1 Pr 29.027 = On(1), PID Setpoint 2 Pr 29.023 is selected.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	29.025 PID Setpoint 3		
Minimum	0.00	Maximum	327.67
Default	0.00	Units	user feedback units

This is an additional setpoint and requires the PID setpoint select inputs, PID Setpoint Select Input 0 Pr 29.026 and PID Setpoint Select Input 1 Pr 29.027, to command it. If PID Setpoint Select Input 0 Pr 29.026 = On(1) and PID Setpoint Select Input 1 Pr 29.027 = On(1), PID Setpoint 3 Pr 29.023 is selected.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	29.026 PID Setpoint Select Input 0					
Minimum	0	Maximum	1			
Default	0	Units				

PID Setpoint Select Input 0 Pr 29.026 is used in combination with PID Setpoint Select Input 1 Pr 29.027 to select the 4 different main process PID setpoints. By default, both inputs are set to Off where PID Setpoint 0 Pr 29.022(0.029) is selected.

244

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
mormation	miormation	motanation	motanation	the Motor	paramotoro	accomplianc		Operation	paramotoro	data		inionnation

PID Setpoint Select Input 0 Pr29.026 Value	PID Setpoint Select Input 1 Pr29.027 Value	Result
Off(0)	Off(0)	PID Setpoint 0 Pr 29.022(0.029) is selected.
On(1)	Off(0)	PID Setpoint 1 Pr 29.023 is selected.
Off(0)	On(1)	PID Setpoint 2 Pr 29.024 is selected.
On(1)	On(1)	PID Setpoint 3 Pr 29.025 is selected.

Parameter	29.027 PID Setpoint Select Input 1				
Minimum	0	Maximum	1		
Default	0	Units			

PID Setpoint Select Input 1 Pr 29.027 is used in combination with PID Setpoint Select Input 0 Pr 29.026 to select the 4 different main process PID setpoints. By default, both inputs are set to Off where PID Setpoint 0 Pr 29.022(0.029) is selected.

See PID Setpoint Select Input 0 Pr 29.026 for the selection table.

Parameter	29.028 PID Selected Setpoint				
Minimum	0.00	Maximum	327.67		
Default	0.00	Units	user feedback units		

This indicates the value of the setpoint selected by PID Setpoint Select Input 0 Pr 29.026 and PID Setpoint Select Input 1 Pr 29.027.

The units of this parameter (user feedback units) are defined by pr29.184.

*When Flow Compensation Enable Pr29.172 is set to On(1), this value is limited to the output of the Flow Compensation interpolation calculation as indicated by Flow Compensation Output Limit Pr29.178.

*Pump firmware V01.00.01.00 onwards

Parameter	29.029 PID Final Setpoint				
Minimum	0.00	327.67			
Default	0.00	Units	user feedback units		

This indicates the final value of the setpoint passed to the main process *PID reference setpoint PID1 Reference* Pr **14.020** shown in feedback units. *PID Final Setpoint* Pr **29.029** = *PID Selected Setpoint* Pr **29.028** - *No Flow Setpoint Reduction* Pr **29.073**.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	29.030 PID Final Setpoint Percent				
Minimum	0.00 Maximum		100.00		
Default	0.00	Units	%		

This indicates the final value of the setpoint passed to the main process *PID reference setpoint PID1 Reference* Pr **14.020** in percent units. *PID Final Setpoint Percent* Pr **29.030** = 100 * (*PID Selected Setpoint* Pr **29.028** - *No Flow Setpoint Reduction* Pr **29.073**) / (*PID Feedback Maximum Scaling* Pr **29.032** - *PID Feedback Minimum Scaling* Pr **29.031**).

Parameter	29.031 (0.030) PID Feedback Minimum Scaling					
Minimum	0.00	Maximum	327.67			
Default	0.00	Units	user feedback units			

PID Feedback Minimum Scaling Pr 29.031(0.030) defines the minimum value for the main process PID feedback, provided by a transducer connected to Analog input 1 T5. PID Feedback Minimum Scaling Pr 29.031(0.030) is used in combination with PID Feedback Maximum Scaling Pr 29.032 to define to feedback scaling.

Pump Drive F600 User Guide 245

information	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
Parameter			29.032 (0.	.031) <i>PID</i>	Feedback I	Maximum Sc	aling					
Minimum			0.00			Maxim	um	3	327.67			
Default		100.00		Units		u	user feedback units					

PID Feedback Maximum Scaling Pr 29.032(0.031) defines the maximum value for the main process PID feedback, provided by a transducer connected to Analog input 1 T5. PID Feedback Minimum Scaling Pr 29.031(0.030) is used in combination with PID Feedback Maximum Scaling Pr 29.032(0.031) to define to feedback scaling.

Parameter	29.033 PID Feedback Filter Time Constant				
Minimum	0.00	Maximum	327.67		
Default	1.00	Units	s		

This is the time constant in seconds for the low pass filter used to condition the value from the feedback transducer connected to Analog input 1 T5. For a step change in feedback value, after 5 x the filter time constant the input and output of the filter will be approximately equal e.g. if the time constant is 1 s, after a step change in feedback, after 5 s the output will approximately match the input.

The input to the filter is PID Feedback Percent Pr 29.034 and the output from the filter is PID Final Feedback Percent Pr 29.035.

Parameter	29.034 PID Feedback Percent				
Minimum	-100.00	Maximum	100.00		
Default	0.00	Units	%		

This parameter is the destination for the main process PID feedback analog input. by default, Analog input 1 T5 is routed to this parameter. This value is filtered, (see *PID Feedback Filter Time Constant* Pr **29.033**(0.032)), where the result of the filter is passed to *PID Final Feedback Percent* Pr **29.035** which is used as the main process PID feedback value.

Parameter	29.035 PID Final Feedback Percent			
Minimum	-100.00	Maximum	100.00	
Default	0.00	Units	%	

This parameter is the output of the main process PID feedback filter and is routed to the main process PID Feedback reference source in Menu 14. See *PID Feedback Filter Time Constant* Pr **29.033**(0.032).

Parameter	29.036 PID Final Feedback				
Minimum	-327.68	327.67			
Default	0.00	Units	User feedback units		

This parameter is the output of the main process PID feedback filter, scaled into feedback units via PID Feedback Minimum Scaling Pr 29.031(0.030) and PID Feedback Maximum Scaling Pr 29.032(0.032).

PID Final Feedback Pr 29.036 = PID Feedback Minimum Scaling Pr 29.031 + (PID Final Feedback Percent Pr 29.035 * (PID Feedback Maximum Scaling Pr 29.032 - PID Feedback Minimum Scaling Pr 29.031) / 100).

The units of this parameter (user feedback units) are defined by pr29.184.

See PID Feedback Filter Time Constant Pr 29.033(0.032).

Product

Mechanical Electrical

Parameter	29.037 PID Error					
Minimum	-327.68 Maximum 327.67					
Default	0.00	Units	User feedback units			

This indicates the main process PID Error in feedback units.

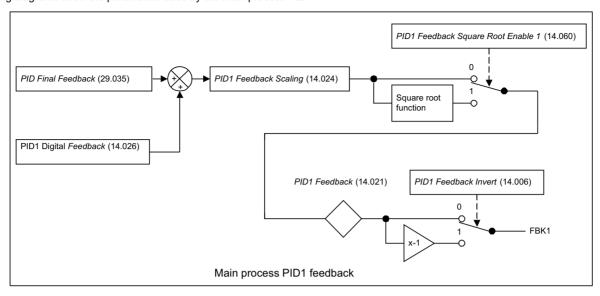
PID Error Pr 29.037 = PID Feedback Minimum Scaling Pr 29.031 + (PID1 Error Pr 14.022 * (PID Feedback Maximum Scaling Pr 29.032 - PID Feedback Minimum Scaling Pr 29.031) / 100).

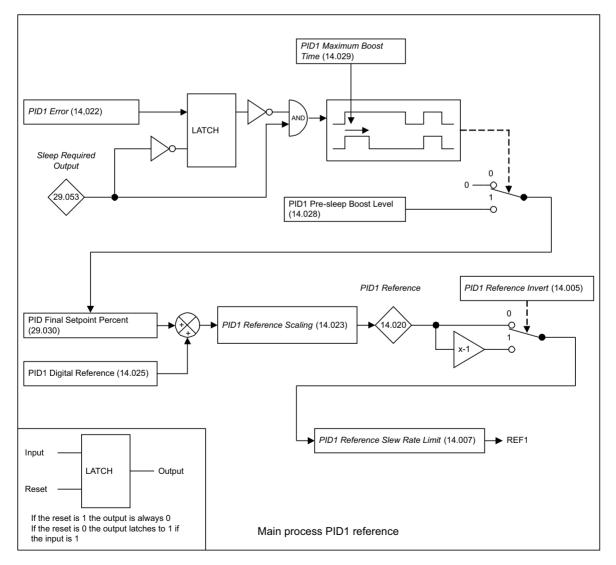
The units of this parameter (user feedback units) are defined by pr29.184.

UL listing

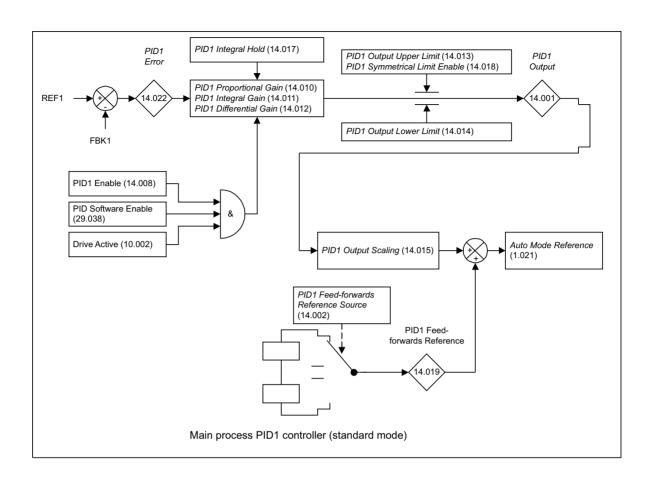
Safety Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
----------------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

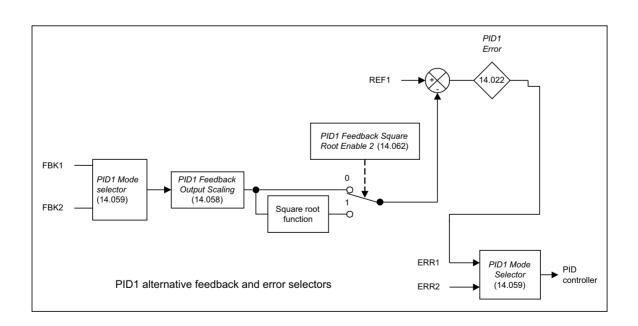
Parameter	29.048 (0.033) PID Feedback Loss Action				
Minimum	0	2			
Default	1	Units			


This chooses the action of the software when there is a total loss of PID feedback, as indicated by *Analog Input 1 Current Loop Loss* Pr **07.028** = *On(1)*, which shows when there is a connection fault to a 4-20mA transducer. If *Analog Input 1 Mode* Pr **7.007** is set to *Volt(6)* for 0 to 10 V operation, this parameter has no effect. The table below shows the options available:


Mode	Value	Description
Ignore	0	Ignore the feedback loss - do nothing.
Trip	1	Trip the drive, (PID Feedbk Loss).
Fixed Speed2	2	Run at a fixed speed defined by PID Disabled / Feedback Loss Reference Pr 01.023.

Safety information	Product Mechanica information installation	Electrical st installation R	Getting started / Basic parameters he Motor	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	------------------------------	---	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------


7.8.6 Main process PID logic diagrams


The following diagrams show the parameters used by the main process PID.

248

7.8.7 Main process PID parameters

The following section details the parameters used by the main process PID.

Parameter	14.001(0.068) PID1 Output					
Minimum	-100 Maximum 100					
Default		Units	%			

PID1 is used as the main process PID controller by the Pump software. The output from the PID controller is routed to Auto Mode Reference Pr 1.021.

The structure of PID controller 1 shown in section 7.8.6 is when *PID1 Mode Selector* Pr **14.059** = 0, PID1 *Feedback Output Scaling* Pr **14.058** = 1.000, and *PID1 Feedback Square Root Enable* 2 Pr **14.062** = 0. If the PID enable inputs are inactive (Pr **14.008**, Pr **29.038** and Pr **10.002** = *Off(0)*), all internal states are held at zero and the destination parameter will be defined by *PID1 Feed-forwards Reference* Pr **14.019** alone.

PID1 Error Pr **14.022** is the difference between the reference and feedback produced by the reference and feedback systems described in the previous sections. The PID controller output is defined as follows:

PID1 Output Pr 14.001 = PID1 Error Pr 14.022 x [Kp + Ki/s + sKd / (0.064 s + 1)]

Kp = PID1 Proportional Gain Pr 14.010

Ki = PID1 Integral Gain Pr 14.011

Kd = PID1 Differential Gain Pr 14.012

Therefore:

- 1. If PID1 Error Pr 14.022Pr = 100.00 % the proportional term gives a value of 100.00% if PID1 Proportional Gain Pr 14.010 = 1.000.
- 2. If PID1 Error Pr 14.022 = 100.00 % the integral term gives a value that increases linearly by 100.00 % per second if PID1 Integral Gain Pr 14.011 = 1.000.
- 3. If *PID1 Error* Pr **14.022** increases linearly by 100.00 % per second the differential term gives a value of 100.00 % if *PID1 Differential Gain* Pr **14.012** = 1.000. (A filter with a time constant of 64 ms is provided on the differential gain to reduce the noise produced by this term.)

The output may be limited to a range that is less than the maximum range of *PID1 Output* Pr **14.001** using *PID1 Output Upper Limit* Pr **14.013** and *PID1 Output Lower Limit* Pr **14.014**. If PID1 *Output Lower Limit* Pr **14.015** then the output is held at the value defined by *PID1 Output Upper Limit* Pr **14.013**. If *PID1 Symmetrical Limit Enable* Pr **14.018** = 1 then the lower limit = - (*PID1 Output Upper Limit* Pr **14.013**). If the output reaches either of these limits the integral term accumulator is frozen until the output moves away from the limit to prevent integral wind-up. The integral hold function can also be enabled by the user by setting *PID1 Integral Hold* Pr **14.017** = 1.

PID1 Output Scaling Pr 14.015 can be used to scale the output, which is limited to a range from -100.00 % to 100.00 % after this function. The output is then added to PID1 Feed-forwards Reference Pr 14.019 and is again limited to the range from -100.00 % to 100.00 % before being routed to the destination defined by PID1 Destination Pr 14.016.

Parameter	14.002 PID1 Feed-forwards Reference Source				
Minimum	0.000	0.000 Maximum			
Default	0.000	Units			

PID1 Feed-forwards Reference Source Pr 14.002 is used to set the source parameter for PID1 feedforward reference source. It is not used by default by the Pump software but may be added if required.

See 14.001 PID1 Output.

Parameter	14.003 PID1 Reference Source				
Minimum	0.000 Maximum 59.999				
Default	29.030	Units			

PID1 Reference Source Pr 14.003 is used to set the source parameter for PID1 reference source. By default, it is pointed at PID Final Setpoint Percent Pr 29.030 so it is serviced by the Pump software. It is not recommended to change this.

Parameter	14.004 PID1 Feedback Source				
Minimum	0.000	Maximum	59.999		
Default	29.035	Units			

PID1 Feedback Source Pr 14.004 is used to set the source parameter for PID1 feedback source. By default, it is pointed at PID Final Feedback Percent Pr 29.035 so it is serviced by the Pump software. It is not recommended to change this.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	14.005 PID1 Reference Invert				
Minimum	0	Maximum	1		
Default	0	Units			

PID1 Reference Invert Pr 14.005 may be used in combination with PID1 Feedback Invert Pr 14.006 to invert the response characteristics of the main process PID.

If PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005 = Off(0) then the main process PID will give a normal error response characteristic.

If PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr14.005 = On(1) then the main process PID will give an inverted error response characteristic.

See section 7.8.2 Inverting the main process PID error response

NOTE

The Wake Detect Feedback Threshold Pr 29.049 changes function depending on the state of PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005.

See Wake Detect Feedback Threshold Pr 29.049(0.040) and PID1 Reference Pr 14.020.

Parameter	14.006 PID1 Feedback Invert				
Minimum	0	Maximum	1		
Default	0	Units			

PID1 Feedback Invert Pr 14.006 may be used in combination with PID1 Reference Invert Pr 14.005 to invert the response characteristics of the main process PID.

See PID1 Reference Invert Pr 14.005 and PID1 Reference Pr 14.020.

Parameter	14.007 PID1 Reference Slew Rate				
Minimum	0.0 Maximum 3200.0				
Default	0.0	Units	s		

This introduces a fixed rate slew function that may be used to filter an incoming reference to the PID e.g. if the Pump software setpoint is derived from a noisy analog source such as a potentiometer.

See PID1 Reference Source Pr 14.003.

Parameter	14.008 PID1 Enable		
Minimum	0	Maximum	1
Default	1	Units	

PID1 Enable Pr 14.008 provides a means for the user to disable the main process PID for systems that don't require the motor speed to be controlled in order to reach a particular setpoint. Typically, it used by pumping systems that fill a tank with a fixed head, where high level and low level switches are used to command the pump to start or stop, (see Level Switch Mode Pr 29.082).

When PID1 Enable Pr 14.008 = On(1) and Auto is selected, Auto Select Input Pr 29.015 = On(1), the main process PID output reference is selected, Auto Mode Reference Pr 1.021.

When PID1 Enable Pr 14.008 = Off(0) and Auto is selected, the main process PID is disabled and the drive will run from the fixed speed reference set by PID Disabled / Feedback Loss Reference Pr 01.023. See section 7.8.3 Disabling the PID for fixed speed systems.

See 14.001 PID1 Output.

Parameter	14.009 PID1 Enable Source 1				
Minimum	0.000	Maximum	59.999		
Default	29.038	Units			

By default, *PID1 Enable Source 1* Pr **14.009** is directed to *PID Software Enable* Pr **29.038** as required by Pump software to operate correctly. This allows the Pump software to control when the PID is enabled or disabled. It is recommended to leave *PID1 Enable Source 1* Pr **14.009** set at the default value for normal Pump operation.

The user can still manually disable the PID if required by setting PID1 Enable Pr 14.008 to Off(0).

information	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
Paramete	er		14.010 (0	.064) <i>PID</i>	1 Proportio	nal Gain						
Minimum	1		0.000			Maxim	um	4	.000			
Default			2 000			Units						

PID1 Proportional Gain Pr **14.010**(0.064) is the main process PID1 loop proportional gain. The default value of 2.000 is a good starting point for most applications. CT Scope may be used to tune the main process PID loop once the drive is operational to refine the performance according to the applications needs.

See 14.001 PID1 Output.

Parameter	14.011 (0.065) PID1 Integral Gain				
Minimum	0.000 Maximum 4.000				
Default	1.000	Units			

PID1 Integral Gain Pr 14.011(0.065) is the main process PID1 loop integral gain. The default value of 1.000 is a good starting point for most applications. CT Scope may be used to tune the main process PID loop once the drive is operational to refine the performance according to the applications needs.

See 14.001 PID1 Output.

Parameter	14.012 PID1 Differential Gain				
Minimum	0.000 Maximum 4.000				
Default	0.000	Units			

PID1 Differential Gain Pr14.012 is the main process PID1 loop differential gain. The default value of 0.000 is a good starting point for most applications. Note that the differential gain gives an output proportional to the rate of change of error which for most systems only serves to amplify feedback noise; it is recommended to leave this at 0.000.

See 14.001 PID1 Output.

Parameter	14.013 PID1 Output Upper Limit				
Minimum	0.00 Maximum 100.00				
Default	100.00	Units	%		

PID1 Output Upper Limit Pr 14.013 defines the PID output upper limit in percent units. It is written to by the Pump software and can't be modified by the user.

If Dry Well Low Load Mode Pr 29.059 = Lower PID Output and a dry well condition has been detected, PID1 Output Upper Limit Pr 14.013 is set to Dry Well Low Load PID Output Reduction Pr 29.060.

For all other conditions PID1 Output Upper Limit Pr 14.013 is set to 100.00 %, as required by normal PID operation.

See 14.001 PID1 Output.

Parameter	14.014 PID1 Output Lower Limit				
Minimum	-100.00 Maximum 100.00				
Default	0.00	Units	%		

PID1 Output Lower Limit Pr 14.014 sets the minimum output for the main process PID, where the default of 0 % is recommended such that reverse rotation of the pump is prevented, while running in Auto mode.

See 14.001 PID1 Output.

Parameter	14.015 PID1 Output Scaling				
Minimum	0.000	Maximum	4.000		
Default	1.000	Units			

PID1 Output Scaling Pr 14.015 implements a PID output scaling function. It is recommended to leave this at the default of 1.000 for normal operation. See 14.001 PID1 Output.

Parameter	14.016 PID1 Destination				
Minimum	0.000	Maximum	59.999		
Default	1.021	Units			

By default, this is directed to *Auto Mode Reference* Pr **01.021**, as required by Pump software to operate correctly in Auto mode. See 14.001 *PID1 Output*.

		Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
--	--	-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	14.017 PID1 Integral Hold				
Minimum	0	Maximum	1		
Default	0	Units			

PID1 Integral Hold Pr 14.017 is used to prevent PID integral term from winding up in some applications. The default of Off(0) is suitable for most Pump applications.

See 14.001 PID1 Output.

Parameter	14.018 PID1 Symmetrical Limit Enable				
Minimum 0		Maximum	1		
Default	0	Units			

When PID1 Symmetrical Limit Enable Pr 14.018 = Off(0), PID1 Output Upper Limit Pr 14.013 and PID1 Output Lower Limit Pr 14.014 define the main process PID output limits.

When PID1 Symmetrical Limit Enable Pr 14.018 = On(1), PID1 Output Upper Limit Pr 14.013 defines the main process PID output limits where the lower limit = -(PID1 Output Upper Limit Pr 14.013).

The default of Off(0) is recommended such that reverse rotation of the pump is prevented, while running in Auto mode.

See 14.001 PID1 Output.

Parameter	14.019 PID1 Feed-forwards Reference					
Minimum	-100.00	Maximum	100.00			
Default		Units	%			

PID1 Feed-forwards Reference Pr 14.019 indicates the level of the PID1 feed-forward reference, pointed to by PID1 Feed-forwards Reference Source Pr 14.002, in percent units.

Parameter	14.020 (0.066) PID1 Reference					
Minimum	-100.00	Maximum	100.00			
Default		Units	%			

PID1 Reference Pr 14.020 indicates the level of the PID1 reference, which is the sum of the parameter pointed to by PID1 Reference Source Pr 14.003 and PID1 Digital Reference Pr 14.025, multiplied by PID1 Reference Scaling Pr 14.023, in percent units.

The reference sections are always active even if the PID controller itself is disabled or the reference sources are not routed to valid parameters. If a reference source is not a valid parameter or is 0.000 then the value is taken as zero.

The reference is the sum of the reference source, *PID1 Digital Reference* Pr **14.025** and the *PID1 Pre-sleep Boost Level* Pr **14.028**) when it is active. The result is multiplied by *PID1 Reference Scaling* Pr **14.023** and then limited to +/-100.00 %. The reference can then be inverted if required (PID1 Reference Invert Pr **14.005** = 1) and then a slew rate limit is applied with *PID1 Reference Slew Rate* Pr **14.007**. This limits the maximum rate of change so that a change from 0.00 to 100.00 % takes the time given in *PID1 Reference Slew Rate* Pr **14.007**.

Parameter	14.021 (0.067) PID1 Feedback					
Minimum	-100.00	100.00				
Default		Units	%			

PID1 Feedback Pr 14.021 indicates the level of the PID1 feedback, which is the sum of the parameter pointed to by PID1 Feedback Source Pr 14.004 and PID1 Digital Feedback Pr 14.026, multiplied by PID1 Feedback Scaling Pr 14.024, in percent units.

The feedback sections are always active even if the PID controller itself is disabled or the feedback sources are not routed to valid parameters. If a feedback source is not a valid parameter or is 0.000 then the value is taken as zero.

The feedback is the sum of the feedback source and the *PID1 Digital Feedback* Pr **14.026**. The result is multiplied by *PID1 Feedback Scaling* Pr **14.024** and then limited to +/-100.00 %. A square root function can be applied (*PID1 Feedback Square Root Enable 1* Pr **14.060** = 1) and the feedback can then be inverted if required (*PID1 Feedback Invert* Pr **14.006** = 1). The square root function is defined as follows.

Square root function output = Sign(Input) x 100.00 % x $\sqrt{(|Input| / 100.00 \%)}$

where Sign(Input) = 1 if Input ≥ 0 or -1 otherwise

The square root function is useful in applications where the PID controller is operating with flow as its reference and feedback and the motor is controlling a pump. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant $x \sqrt{\text{Pressure the square root function can be used in the conversion.}$

Pump Drive F600 User Guide 253

	Minimum Default			-100.00			Maxim Units	um	9	00.00			
Parameter		14.022 Pi	ID1 Error										
	inomaton	mormation	Installation	mstanation	the Motor	parameters	descriptions		Орстаноп	parameters	uata		mormation
ı	information	information	installation	installation	Running	narameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information

NV Media Card Advanced Technical

UL listina

PID1 Error Pr 14.022 indicates the main process PID error in percent units.

Mechanical Electrical

Product

Safety

Parameter	14.023 PID1 Reference Scaling					
Minimum	0.000	Maximum	4.000			
Default	1.000	Units				

PID1 Reference Scaling Pr 14.023 implements a PID reference scaling function that is applied to the sum of the parameter pointed to by PID1 Reference Source Pr 14.003 and PID1 Digital Reference Pr 14.025. It is recommended to leave this at the default of 1.000 for normal operation.

Parameter	14.024 PID1 Reference Scaling					
Minimum	0.000	Maximum	4.000			
Default	1.000	Units				

PID1 Feedback Scaling Pr 14.024 implements a PID reference scaling function that is applied to the sum of the parameter pointed to by PID1 Feedback Source Pr 14.004 and PID1 Digital Feedback Pr 14.026. It is recommended to leave this at the default of 1.000 for normal operation.

Parameter	14.025 PID1 Digital Reference				
Minimum	-100.00	Maximum	100.00		
Default	0.00	Units	%		

PID1 Digital Reference Pr 14.025 is summed with PID1 Reference Source Pr 14.003, after conversion to a percentage of the parameter maximum, and passed to PID1 Reference Scaling Pr 14.023. It may be used to provide an offset to PID1 Reference Source Pr 14.003.

For normal operation of the Pump software, it is recommended to leave PID1 Digital Reference Pr 14.025 at the default of 0.00 %.

Parameter	14.026 PID1 Digital Feedback					
Minimum	-100.00	Maximum	100.00			
Default	0.00	Units	%			

PID1 Digital Feedback Pr 14.026 is summed with PID1 Feedback Source Pr 14.004, after conversion to a percentage of the parameter maximum, and passed to PID1 Feedback Scaling Pr 14.024. It may be used to provide an offset to PID1 Feedback Source Pr 14.004.

For normal operation of the Pump software, it is recommended to leave PID1 Digital Feedback Pr 14.026 at the default of 0.00 %.

Parameter	14.027 PID1 Enable Source 2					
Minimum	0.000	Maximum	59.999			
Default	10.002	Units				

By default, *PID1 Enable Source 2* Pr **14.027** is pointed to *Drive Active* Pr **10.002** as required by Pump software to operate correctly. This ensures that the PID is only enabled when the motor is energised. It is recommended to leave *PID1 Enable Source 2* Pr **14.027** set at the default value for normal Pump operation.

The user can still manually disable the PID if required by setting PID1 Enable Pr14.008 to Off(0).

Parameter	14.028 PID1 Pre-sleep Boost Leve	el	
Minimum	0.00	Maximum	100.00
Default	0.00	Units	%

PID1 Pre-sleep Boost Level Pr 14.028 is used to provide a small amount of PID reference boost as the drive enters Sleep Detect Speed Threshold Pr 29.051(0.042), as indicated by Sleep Required Output Pr 29.053. The boost level is only applied for a maximum of PID1 Pre-Sleep Maximum Boost Time Pr 14.029 seconds.

This feature is a benefit in pumping systems where the output of the pump is controlled by a valve. In this scenario boosting the setpoint by a small amount can help prevent the system from going to sleep as often, and in the event that the system does go to sleep the boost in pump output will hold the system in sleep for longer reducing pump wear and running costs.

information information installation installation installation Running the Motor Department of the Motor of t		Safety information	Product information	Mechanical installation	Electrical installation	J	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation		Technical data	Diagnostics	UL listin informati
--	--	-----------------------	---------------------	-------------------------	-------------------------	---	---------------------	-------------------------	--------------	----------------------------	--	-------------------	-------------	---------------------

Parameter	14.029 PID1 Pre-Sleep Maximum	Boost Time	
Minimum	0.00	Maximum	250.00
Default	0.00	Units	s

The PID1 Pre-sleep Boost Level Pr 14.028 is only applied for a maximum of PID1 Pre-Sleep Maximum Boost Time Pr 14.029 seconds.

See PID1 Pre-sleep Boost Level Pr 14.028.

Parameter	14.058 PID1 Feedback Output Sca	aling	
Minimum	0.000	Maximum	4.000
Default	1.000	Units	

PID1 Feedback Output Scaling Pr14.058 is used scale the result PID feedback after the effect of PID1 Mode Selector Pr14.059 has been applied. PID1 Feedback Square Root Enable 2 Pr14.062 can be used in converting the output of the combined feedback from pressure to flow. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant $x \sqrt{\text{Pressure the square root function can be used in the conversion.}$

See PID1 Mode Selector Pr14.059.

Parameter	14.059 PID1 Mode Selector		
Minimum	0	Maximum	7
Default	0	Units	

The description given in *PID1 Output* Pr **14.001** assumed that *PID1 Mode Selector* Pr **14.059** = 0 so that PID controller 1 uses its own feedback (FBK1). It is possible to select alternative configurations that allow various combinations of feedback or error from either PID controller to be used as shown below.

PID1 Mode Selector Pr 14.059 can be used to select the feedback and error as shown in the table below. It should be noted that PID controller 2 will operate normally even when its feedback or error has been selected for PID controller 1. However, if PID1 Mode Selector Pr 14.059 is non-zero PID controller 2 enable is controlled directly by the enable state of PID controller 1.

PID1 Mode Selector Pr14.059	Feedback	Error
0: Fbk1	FBK1	ERR1
1: Fbk2	FBK2	ERR1
2: Fbk1 + Fbk2	FBK1 + FBK2	ERR1
3: Min Fbk	Lowest of FBK1 or FBK2	ERR1
4: Max Fbk	Highest of FBK1 or FBK2	ERR1
5: Av Fbk	(FBK1 + FBK2) / 2	ERR1
6: Min Error	FBK1	If ERR1 ≤ ERR2 then ERR1 Else ERR2
7: Max Error	FBK1	If ERR1 ≥ ERR2 then ERR1 Else ERR2

Parameter	14.060 Feedback Square Root En	able 1	
Minimum	0	Maximum	1
Default	0	Units	

PID1 Feedback Square Root Enable 1 Pr 14.060 applies a square root function to PID1 Feedback Pr 14.021, and the feedback can then be inverted if required, (PID1 Feedback Invert Pr 14.006 = 1). The square root function is defined as follows.

Square root function output = Sign(Input) x 100.00% x √(|Input| / 100.00%)

Where Sign(Input) = 1 if Input ≥ 0 or -1 otherwise

The square root function is useful in applications where the PID controller is operating with flow as its reference and feedback and the motor is controlling a pump. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant $x \sqrt{\text{Pressure the square root function can be used in the conversion.}$

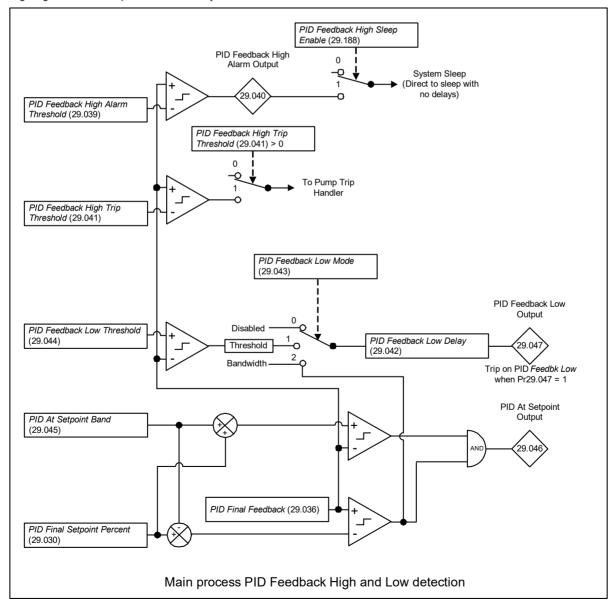
Pump Drive F600 User Guide 255

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Paramete	er		14.062 Fe	eedback S	Square Roo	t Enable 1						
Minimum 0 Ma				Maxim	um							
Default			0			Units	Units					

PID1 Feedback Square Root Enable 2 Pr 14.062 can be used in converting the output of the combined feedback from pressure to flow. It is easier to use a pressure transducer than a flow transducer, and so the feedback from the transducer needs to be converted from pressure to flow. As flow = Constant x √Pressure the square root function can be used in the conversion. See PID1 Feedback Output Scaling Pr 14.058.

7.9 PID thresholds

The PID thresholds offer system protection against situations where the main process PID is High or Low and provide an indication when the main process PID is at the setpoint.


The PID feedback high detection thresholds provide alarm and trip detection when the main process PID feedback is high e.g. if the feedback device is a pressure transducer then this function provides over-pressure detection.

The PID feedback low detection threshold provides alarm and trip detection when the main process PID feedback is low e.g. if the feedback device is a pressure transducer then this function provides under-pressure detection which can protect the system in the event of a burst output pipe.

PID at setpoint detection is provided with a configurable band.

7.9.1 PID thresholds logic diagram

The following diagram shows the parameters used by the PID thresholds.

Safety information	Product Mechanical information	Electrical start installation Runr the M	d / Basic ng parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	--------------------------------	--	----------------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.9.2 PID threshold parameters

The following section shows the parameters used by the PID feedback and setpoint.

Parameter	29.039 PID Feedback High Alarm	Threshold		
Minimum	0.00	Maximum	327.67	
Default	0.00	Units	user feedback units	

This defines the threshold above which a main process PID feedback High alarm is given by the PID Feedback High Alarm Output Pr 29.040.

If PID Feedback High Alarm Threshold Pr 29.039 = 0.00, then the feedback high alarm feature is disabled.

The units of this parameter (user feedback units) are defined by pr29.184.

This indicates when the PID Feedback High Alarm Threshold Pr 29.039 has been reached or exceed by the PID Final Feedback Pr 29.036.

Parameter	29.041(0.034) PID Feedback High	Trip Threshold		
Minimum	0.00	Maximum	327.67	
Default	0.00	Units	user feedback units	

When set to 0, the main process PID high trip mechanism is disabled.

When set >0, this defines the threshold above which a PID Feedbk High trip is actioned.

The units of this parameter (user feedback units) are defined by pr29.184.

This defines the continuous time in seconds that the feedback may be low for without actioning a feedback low drive trip. This acts as a filter for transient feedback conditions that prevents false detection of a main process PID feedback low condition.

This parameter is only used when PID Feedback Low Mode Pr 29.043(0.036) = Threshold or Bandwidth.

Parameter	29.043(0.036) PID Feedback Low	Mode	
Minimum	0	Maximum	2
Default	0	Units	

PID Feedback Low Mode Pr 29.043(0.036) selects which mode to use when generating a feedback low indication and trip. The table below shows the options available:

Mode	Value	Description
Disabled	0	No feedback low trip.
Threshold	1	If the main process PID feedback, PID Final Feedback Pr 29.036, falls below the PID Feedback Low Threshold Pr29.044 for PID Feedback Low Delay Pr 29.042 seconds, and the motor output frequency or speed is in the Maximum Drive Reference Band Pr 29.083, then a PID Low drive trip is actioned. Status indication via PID Feedback Low Output Pr 29.047 is also available.
Bandwidth	2	If the main process PID feedback, PID Final Feedback Pr 29.036, falls below the PID At Setpoint Band Pr 29.045 for PID Feedback Low Delay Pr 29.042 seconds, and the motor output frequency or speed is in the Maximum Drive Reference Band Pr 29.083, then a PID Feedbk Low trip is actioned. The detection band follows the current PID setpoint dynamically. Status indication via PID Feedback Low Output Pr 29.047 is also available.

iniornation	mormation	Installation	mstallation	the Motor	parameters	descriptions		Operation	parameters	uala	_	Information
Parameter 29.044(0.037) PID Feedback Low Mode												
Minimum			0.00			Maxim	um	3	27.67			
Default		2.00			Units		U	user feedback units				

Optimization

Functional

NV Media Card

Advanced

Technical

Diagnostics

UL listing

This defines the PID feedback low threshold, used when PID Feedback Low Mode Pr 29.043 = Bandwidth.

started /

If the main process PID feedback, PID Final Feedback Pr 29.036, falls below the PID Feedback Low Threshold Pr 29.044(0.037) for PID Feedback Low Delay Pr 29.042(0.035) seconds then a PID Low drive trip is actioned and a PID low indication is given via PID Feedback Low Output Pr 29.047.

Basic

This defines a symmetrical band around the PID setpoint, *PID Final Setpoint* Pr **29.029**, where the system is considered to be at the setpoint i.e. the top of the band is *PID Final Setpoint* Pr **29.029** + *PID At Setpoint Band* Pr **29.045**, and the bottom of the band is *PID Final Setpoint* Pr **29.029** - *PID At Setpoint Band* Pr **29.045**.

If the main process PID feedback, PID Final Feedback Pr 29.036), is within the PID At Setpoint Band Pr 29.045, PID At Setpoint Output Pr 29.046 is set to On(1) indicating that the system is at the setpoint.

The units of this parameter (user feedback units) are defined by pr29.184.

Parameter	29.046 PID At Setpoint Output					
Minimum	0	Maximum	1			
Default	0	Units				

When set to On(1), this indicates when the main process PID feedback, PID Final Feedback Pr **29.036** is within the PID At Setpoint Band Pr **29.045** indicating that the system is at the setpoint, PID At Setpoint Output Pr **29.046**.

When set to Off(0), the system isn't at the setpoint.

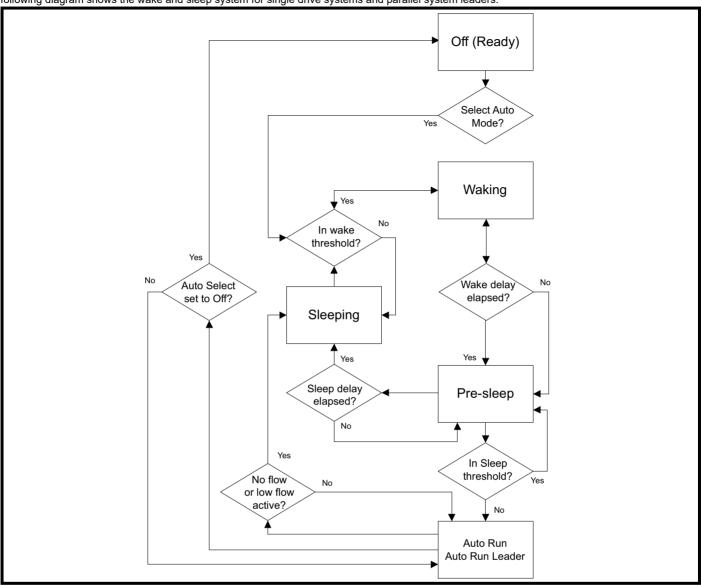
Safety

Product

Mechanical

Electrical

Parameter	29.047 PID Feedback Low Output					
Minimum	0 Maximum 1					
Default	0	Units				


When set to On(1), this indicates when the main process PID feedback, PID Final Feedback Pr 29.036 is either less than the PID At Setpoint Band Pr 29.045 or the PID Feedback Low Threshold Pr 29.044(0.037) indicating that the system is output is lower than the setpoint, PID Final Setpoint Pr 29.029.

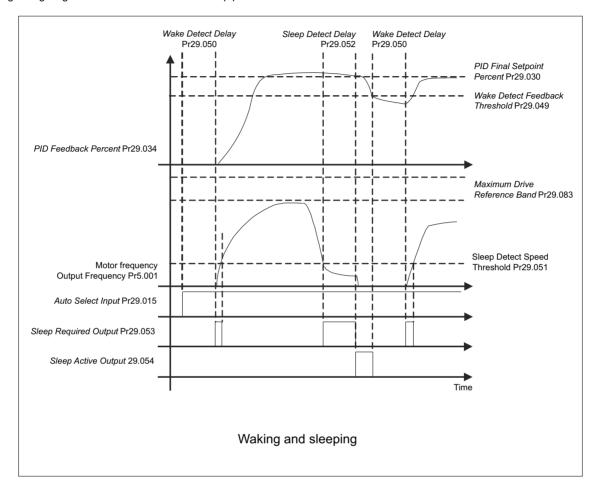
When set to Off(0), the system output isn't low

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor				·	-			

7.10 Wake and sleep

When the Auto mode has been selected, the wake and sleep system is activated, which instructs the system when to start and when to stop. The following diagram shows the wake and sleep system for single drive systems and parallel system leaders:

Note that an assist in a Multi-leader system is started and stopped in Auto mode by the system leader.

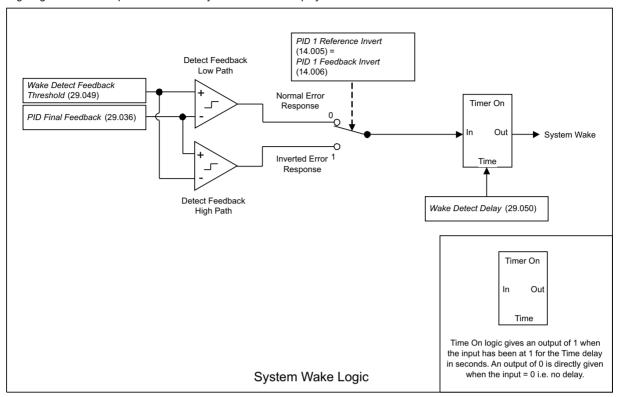

When the drive is placed in Auto mode, *Operating Status* Pr **29.003**(0.073) changes to *Sleeping* and the system checks if the PID feedback meets the wake threshold requirements. By default, *PID Final Feedback* Pr **29.036** must be less than *Wake Detect Feedback Threshold* Pr **29.049**(0.040). If the PID has been inverted, (*PID1 Reference Invert* Pr **14.005** and *PID1 Feedback Invert* Pr **14.005** = 1), the feedback must be greater than the *Wake Detect Feedback Threshold* Pr **29.049**(0.040). See 7.8.2 Inverting the main process PID error response for more information.

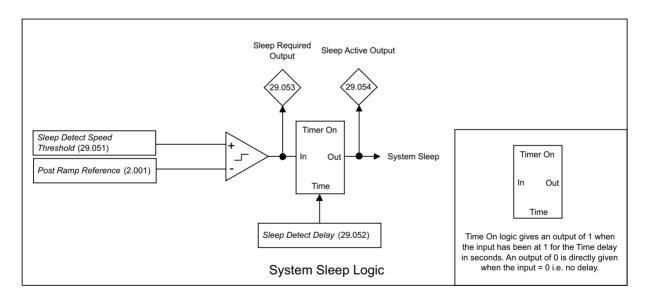
Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

When the wake threshold has been satisfied, and the *Wake Detect Delay* Pr **29.049**(0.041) has elapsed, *Operating Status* Pr **29.003**(0.073) changes to *Pre-sleep*. Normally this happens for a few moments while the PID controller output accelerates the motor until the frequency or speed is above the *Sleep Detect Speed Threshold* Pr **29.051**(0.042), where *Operating Status* Pr **29.003**(0.073) changes to *Auto Run* or *Auto Run Leader*.

If the system output demand drops, the PID controller will reduce the speed of the motor until the *Sleep Detect Speed Threshold* Pr **29.051**(0.042) is reached and *Operating Status* Pr **29.003**(0.073) changes to *Pre-sleep*. If the speed remains below the *Sleep Detect Speed Threshold* Pr **29.051**(0.042) for the duration of the *Sleep Detect Delay* Pr **29.052**(0.043), the motor is stopped and *Operating Status* Pr **29.003**(0.073) changes to *Sleeping*.

The following timing diagram illustrates the wake and sleep process in Auto mode:




Note that if the main process PID has been disabled by setting PID1 Enable Pr **14.008** = Off(0), then the wake threshold is ignored and the system will wake when started in Auto mode.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor				·	-			

7.10.1 Wake and sleep logic diagrams

The following diagram shows the parameters used by the wake and sleep system.

|--|

7.10.2 Wake and sleep parameters

PID Feedback must be below the wake threshold.

The following section shows the parameters used by the wake and sleep system.

Parameter	29.049 (0.040) Wake Detect Feedback Threshold					
Minimum	0.00 Maximum 327.67					
Default	1.00	Units	user feedback units			

If the PID is running with a normal error response, (PID1 Reference Invert Pr 14.005 and PID1 Feedback Invert Pr 14.006 = Off(0)), Wake Detect Feedback Threshold Pr 29.049(0.040) defines the main process PID feedback level, PID Final Feedback Pr 29.036, below which the system will wake when the system is running in Auto mode, and defines the minimum working feedback level for the system. For example, a pumping system with a pressure feedback device gives a high PID output with a low pressure, and a low PID output with high pressure. In this scenario when the feedback is above the setpoint the setpoint the motor reference will reduce to the minimum. In order to wake the system, the

If the PID is running with an inverse error response, (PID1 Reference Invert Pr 14.005 and PID1 Feedback Invert Pr 14.006 = On(1)), Wake Detect Feedback Threshold Pr 29.049 (0.040) defines the main process PID feedback level, PID Final Feedback Pr 29.036, above which the system will wake when the system is running in Auto mode. For example, a cooling system with a temperature feedback device gives a high PID output with a high temperature, and a low PID output with low temperature. In this scenario when the feedback is below the setpoint the motor reference will reduce to the minimum. In order to wake the system, the PID Feedback must be above the wake threshold.

See section 7.8.2 Inverting the main process PID error response.

The units of this parameter (user feedback units) are defined by pr29.184.

Note that if the main process PID has been disabled via PID1 Enable Pr 14.008, then the wake threshold is ignored, and the system will wake when started in Auto mode.

Parameter	29.050 (0.041) Wake Detect Delay					
Minimum	0.0 Maximum 6553.5					
Default	5.0	Units	s			

This defines the continuous time in seconds that the main process PID feedback, *PID Final Feedback* Pr **29.036**, must be above the *Wake Detect Feedback Threshold* Pr**29.049** (0.040) before the system is Automatically started. *Wake Detect Delay* Pr **29.050** (0.041) filters out any intermittent wake conditions.

Note that if the main process PID has been disabled via PID1 Enable Pr 14.008, then the wake threshold is ignored, and the system will wake when started in Auto mode.

See Wake Detect Feedback Threshold Pr 29.049 (0.040).

Parameter	29.051 (0.042) Sleep Detect Speed Threshold					
Minimum	0.0	Maximum	3000.0			
Default	750.0	Units				

This defines the drive output frequency or speed below which the system will sleep. This must be set to a value greater than or equal to the *Minimum Reference Clamp* Pr **1.004** to ensure the system will sleep in Auto mode.

If the system must never Automatically sleep but still control using the PID then set *Sleep Detect Speed Threshold* Pr **29.051**(0.042) to a lower value than *Minimum Reference Clamp* Pr **1.004**. Note that other conditions like Dry Well Low Load or No Flow can still stop the system Automatically.

The system will tend to reach this threshold if there is no output demand from the pump e.g. in a pump system if a pump output valve is closed the motor speed will drop because the main process PID can reach the setpoint with a reduced speed where the system will enter this threshold.

Parameter	29.052 (0.043) Sleep Detect Delay					
Minimum	0.0	Maximum	6553.5			
Default	5.0	Units	S			

This defines the continuous time in seconds that the motor frequency or speed must be below *Sleep Detect Speed Threshold* Pr **29.051**(0.042) before the system is Automatically stopped. *Sleep Detect Delay* Pr **29.052**(0.043) filters out any intermittent sleep conditions.

See Sleep Detect Speed Threshold Pr 29.051(0.042).

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Parameter	29.053 Sleep Required Output						
Minimum	0	Maximum	1				
Default	0	Units					

This indicates when the motor frequency or speed is below the *Sleep Detect Speed Threshold* Pr **29.051** (0.042) and the *Sleep Detect Delay* Pr **29.052**(0.043) is timing down indicating that a sleep is required i.e. pre-sleep.

See Sleep Detect Speed Threshold Pr 29.051(0.042).

Parameter	29.054 Sleep Active Output						
Minimum	0	Maximum	1				
Default	0	Units					

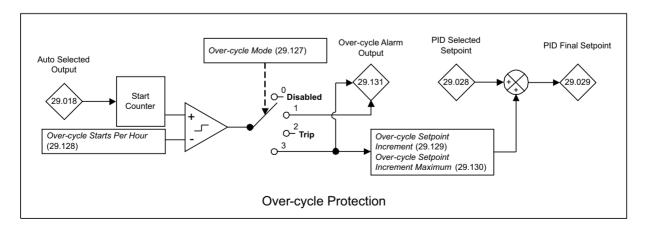
This indicates when the motor frequency or speed was below the *Sleep Detect Speed Threshold* Pr **29.051** (0.042) and the *Sleep Detect Delay* Pr **29.052** (0.043) has elapsed and the system is sleeping.

See Sleep Detect Speed Threshold Pr 29.051(0.042).

7.11 Over-cycle

The Pump software over-cycle protection that is used to check if the system has Automatically started and stopped too many times in an hour, due to the action of the wake and sleep system. For some systems it is not desirable for the system to stop and start too many times in an hour as this may disrupt system output.

- Over-cycle Mode Pr 29.127(0.060) configures how the over-cycle detection system operates:
- Disabled = Over-cycle protection is disabled.
- Alarm Only = When the Over-cycle Starts Per Hour Pr 29.128(0.061) has been reached the system will indicate an alarm via the Over-cycle Alarm Output Pr 29.131.
- Trip = When the Over-cycle Starts Per Hour Pr 29.128(0.061) has been reached the system will trip Over-cycle.
- Inc Setpoint = When the Over-cycle Starts Per Hour Pr 29.128(0.061) has been reached the system will indicate an alarm via the Over-cycle Alarm Output Pr 29.131 and the PID setpoint will be increased by the Over-cycle Setpoint Increment Pr 29.129 in order to keep the system running. The maximum amount that the PID setpoint can be increased by is set by Over-cycle Setpoint Increment Maximum Pr29.130. An alarm is given via the Over-cycle Alarm Output Pr 29.131 when Over-cycle Setpoint Increment Maximum Pr 29.130 is reached. This helps to prevent the system from going to sleep as often thereby reducing the number of starts per hour.


An alternative to these methods is to use the pre-sleep boost feature, configured using PID1 Pre-sleep Boost Level Pr 14.028 and PID1 Pre-Sleep Maximum Boost Time Pr 14.029.

PID1 Pre-sleep Boost Level Pr 14.028 is used to provide a small amount of PID reference boost as the drive enters Sleep Detect Speed Threshold Pr 29.051(0.042), as indicated by Sleep Required Output Pr 29.053). The boost level is only applied for a maximum of PID1 Pre-Sleep Maximum Boost Time Pr 14.029 seconds.

This feature is a benefit in pumping systems where the output of the pump is controlled by a valve. In this scenario boosting the setpoint by a small amount can help prevent the system from going to sleep as often. In the event that the system does go to sleep, the boost in pump output will hold the system in sleep for longer, reducing pump wear and running costs.

7.11.1 Over-cycle logic diagram

The following diagram shows the parameters used by the over-cycle detection scheme.

|--|

7.11.2 Over-cycle parameters

The following section shows the parameters used by the over-cycle detection scheme.

Parameter	29.127(0.060) Over-cycle Mode						
Minimum	0	Maximum	3				
Default	1	Units					

This defines the over-cycle protection mode used by a single drive application like Single Pump, and when the drive is a Leader in a Cascade or Multi-Leader system. Soft Starter Assist over-cycle is always enabled and is Handled separately; See *Assist Starts Per Hour* Pr **29.120** and *Assist Over-cycle Mode* Pr **29.121**.

The following over-cycle modes are available:

Mode	Value	Description
Disabled	0	Over-cycle protection is disabled.
Alarm Only	1	When the Over-cycle Starts Per Hour Pr 29.128(0.061) has been reached the system will indicate an alarm via the Over-cycle Alarm Output Pr 29.131.
Trip	2	When the Over-cycle Starts Per Hour Pr 29.128(0.061) has been reached the system will trip Over-cycle.
Inc Setpoint	3	When the Over-cycle Starts Per Hour Pr 29.128(0.061) has been reached the system will indicate an alarm via the Over-cycle Alarm Output Pr 29.131 and the PID setpoint will be increased by the Over-cycle Setpoint Increment Pr 29.129 in order to keep the system running. The maximum amount that the PID setpoint can be increased by is set by Over-cycle Setpoint Increment Maximum Pr 29.130). An alarm is given via the Over-cycle Alarm Output Pr 29.131) when Over-cycle Setpoint Increment Maximum Pr 29.130 is reached. This helps prevent the system from going to sleep as often thereby reducing the number of starts per hour. An alternative to this is to use PID1 Pre-sleep Boost Level Pr 14.028 and PID1 Pre-Sleep Maximum Boost Time Pr 14.029.

Parameter	29.128(0.061) Over-cycle Starts Per Hour						
Minimum	0	Maximum	255				
Default	5	Units					

Sets the maximum number of starts per hour threshold for the over-cycle detection system. The internal count of starts is reset every hour. See *Over-cycle Mode* Pr **29.127**(0.060) for more details.

Parameter	29.129 Over-cycle Setpoint Increment						
Minimum	0.1	Maximum	2.00				
Default	0.01	Units	%				

Over-cycle Setpoint Increment Pr 29.129 is only used when Over-cycle Mode Pr29.127(0.060) = Inc Setpoint.

This defines the amount that will be added to the main process PID setpoint in the event that an over-cycle condition is detected. The maximum amount that the main process PID setpoint can be increased by is defined by *Over-cycle Setpoint Increment Maximum* Pr **29.130**. This helps prevent the system from going to sleep as often thereby reducing the number of starts per hour.

See Over-cycle Mode Pr 29.127(0.060) for more details.

Parameter	29.130 Over-cycle Setpoint Increment Maximum							
Minimum	0.01	15.00						
Default	0.60	Units	%					

Over-cycle Setpoint Increment Maximum Pr 29.130 is only used when Over-cycle Mode Pr 29.127(0.060) = Inc Setpoint.

This defines the maximum amount that will be added to the main process PID setpoint in the event that an over-cycle condition is detected. The amount that the main process PID setpoint is increased by is defined by *Over-cycle Setpoint Increment* Pr **29.129**. This helps prevent the system from going to sleep as often thereby reducing the number of starts per hour.

See Over-cycle Mode Pr 29.127(0.060) for more details.

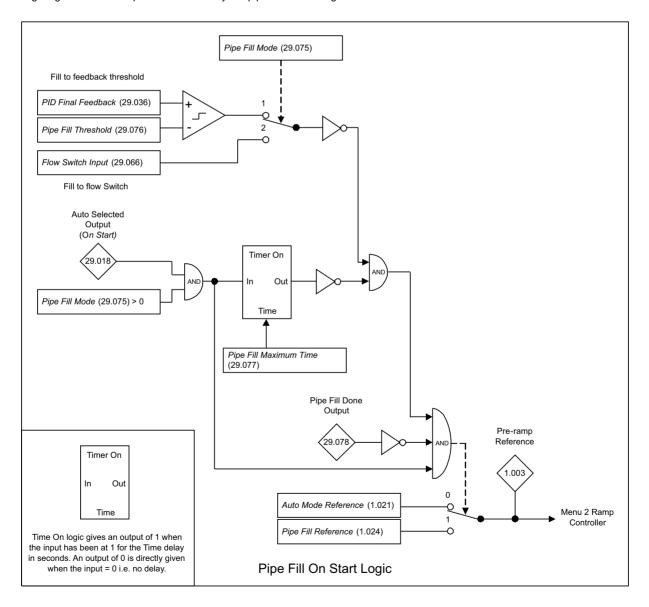
Parameter	29.131 Over-cycle Alarm Output						
Minimum	0	Maximum	1				
Default	0	Units					

In the event that Over-cycle Starts Per Hour Pr29.128(0.061) has been reached Over-cycle Alarm Output Pr 29.131 is set to On(1).

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			•	-			

7.12 Pipe fill on start up

An important feature for pumping systems is priming the output of the pump system with a pipe filling operation. This prevents saturation of the pressure control PID on start-up, which could result in erratic operation. Once the pipe fill operation is complete on the system, the operation will not run again until the system is stopped and re-enters Auto mode, or all drives are switched off.


When starting the drive in Auto mode but prior to Automatic running, the drive may optionally run a fixed reference pipe filling routine. The routine has a time limit, (maximum time), to run which can be superseded by either reaching a PID feedback threshold or if flow is indicated from a hardware flow switch. When the routine is running *Operating Status* Pr **29.003**(0.073) changes to *Pipe Fill*. When the routine completes, the system moves to Auto Run where the PID controls the motor speed.

The pipe filing routine is configured using Pipe Fill Mode Pr 29.075(0.046) with the following options:

- Disabled = The pipe fill routine is disabled.
- Feedback Level = Pipe Fill Reference Pr 1.024(0.047) will be applied until Pipe Fill Threshold Pr 29.076(0.049) is reached by the main process PID feedback. In the event that the Pipe Fill Threshold Pr 29.076(0.049) isn't reached, the Pipe Fill Maximum Time Pr 29.077(0.048) will elapse stopping the Automatic pipe filling routine
- Flow Switch = Pipe Fill Reference Pr 1.024(0.047) will be applied until the Flow Switch Input Pr 29.066 = On(1). In the event that
 the Flow Switch Input Pr 29.066 isn't set to On(1) the Pipe Fill Maximum Time Pr 29.077(0.048) will elapse stopping the Automatic pipe filling
 routine

7.12.1 Pipe fill logic diagram

The following diagram shows the parameters used by the pipe fill on start logic.

7.12.2 Pipe fill parameters

The following section shows the parameters used by the pipe fill logic.

Parameter	29.075(0.046) Pipe Fill Mode					
Minimum	0 Maximum 2					
Default	0	Units				

This defines the operating mode of the Automated pipe fill routine. The following options are available:

Mode	Value	Description
Disabled	0	The pipe fill routine is disabled.
Feedback Level	1	Pipe Fill Reference Pr 1.024(0.047) will be applied until Pipe Fill Threshold Pr 29.076(0.049) is reached by the main process PID feedback. In the event that the Pipe Fill Threshold Pr 29.076(0.049) isn't reached the Pipe Fill Maximum Time Pr 29.077(0.048) will elapse stopping the Automatic pipe filling routine.
Flow Switch	2	Pipe Fill Reference Pr1.024(0.047) will be applied until the Flow Switch Input Pr 29.066 = On(1). In the event that the Flow Switch Input Pr 29.066 isn't set to On(1) the Pipe Fill Maximum Time Pr 29.077(0.048) will elapse stopping the Automatic pipe filling routine.

Parameter	29.076(0.047) Pipe Fill Threshold					
Minimum	0.00 Maximum 327.67					
Default	0.00	user feedback units				

This defines main PID feedback threshold above which the pipe is considered to be filled when Pipe Fill Mode Pr 29.075(0.046) = Feedback Level. Pipe Fill Threshold Pr 29.076(0.048) is compared against PID Final Feedback Pr 29.036).

The units of this parameter (user feedback units) are defined by pr29.184.

See Pipe Fill Mode Pr 29.075(0.046).

Parameter	29.077(0.048) Pipe Fill Maximum Time					
Minimum	0.0 Maximum 6553.5					
Default	0.0	Units	s			

This defines the maximum time in seconds that the pipe filling routine will run for in the event that pipe filled isn't detected by either feedback detection or flow switch detection.

See Pipe Fill Mode Pr 29.075(0.046).

Parameter	29.078 Pipe Fill Done Output					
Minimum	0 Maximum 1					
Default	0	Units				

When set to On(1), this indicates that the pipe filling routine has completed.

When set to Off(0), this indicates that the pipe filling routine is not enabled via Pipe Fill Mode Pr 29.075(0.046) or pipe filling has not been completed.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.13 Timer scheduling

The Pump software has a dedicated input for a timer to select when the system will run in Auto and when it will be stopped, *Operating Status* Pr **29.003**(0.073) changes to *Timer Stop*. Timer scheduling doesn't affect Hand mode operation. The timer control input is enabled by setting *Time Schedule Run Input Enable* Pr **29.055**.

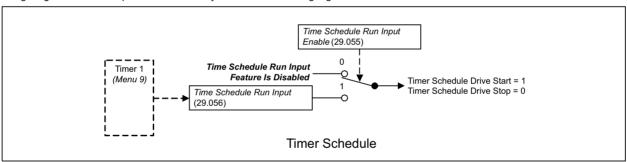
The timer can be run in one of two ways:

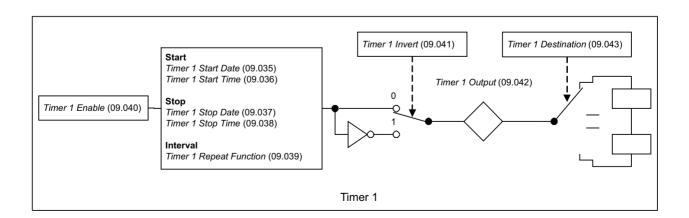
An external timer with a 24 V output signal can be connected into a spare digital input that is directed to Time Schedule Run Input Pr 29.056. Note
that to use this method Timer 1 Destination Pr 9.043 must be set to 0.000 and press reset.

• The real time clock in the keypad supplied with the F600 may be used with the timer functionality in menu 9 to start and stop the drive in Auto mode. The output of Timer 1, configured by *Timer 1 Destination* Pr **9.043**, is directed to *Time Schedule Run Input* Pr **29.056** by default.

To use the real time clock in the keypad the time must be set correctly. To do this set:

- Select the date format using Date Format Pr 6.020, STD = DD-MM-YY, US = MM-DD-YY.
- Set Date/Time Selector Pr 6.019 to Set to allow the date and time to be updated
- Set Date Pr6.016 and Time Pr 6.017. Note that Day Of Week Pr6.018 will Automatically be resolved.
- Set Date/Time Selector Pr 6.019 to Local Keypad


To use timer 1 in menu 9 to schedule the on and off period in each day set the following parameters:


- Set Timer 1 Start Time Pr 9.036 in 24hour format.
- · Set Timer 1 Stop Time Pr 9.038 in 24hour format.
- Set Timer 1 Repeat Function Pr 9.039 to Day.
- Set Timer 1 Enable Pr 9.040 to On(1)
- Perform a save by setting Pr0.000 to Save Parameters and then press the red reset button.

7.13.1 Timer scheduling logic diagrams

The following diagram shows the parameters used by the timer scheduling logic.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.13.2 Timer scheduling parameters

The following section shows the parameters used by the timer scheduling logic.

Parameter	29.055 Time Schedule Run Input Enable				
Minimum	0	1			
Default	0	Units			

When set to On(1), Time Schedule Run Input Pr **29.056** is enabled. To run the system in Auto Time Schedule Run Input Pr **29.056** must be set to On(1), and to stop the system Time Schedule Run Input Pr **29.056** must be set to On(1).

This feature is intended to be operated by a clock such as the one provided by a KI-HOA Keypad RTC keypad, where timer 1 in the *User Functions 1* Menu 9 may be used to define on and off periods for the system e.g. for an irrigation pump it may be desirable to run the pump during the day only. By default, the output of timer 1, *Timer 1 Output* Pr **9.042**, is routed to the *Time Schedule Run Input* Pr **29.056** using *Timer 1 Destination* Pr **9.043**.

When set to Off(0), Time Schedule Run Input Pr 29.056 is disabled and has no effect on the system.

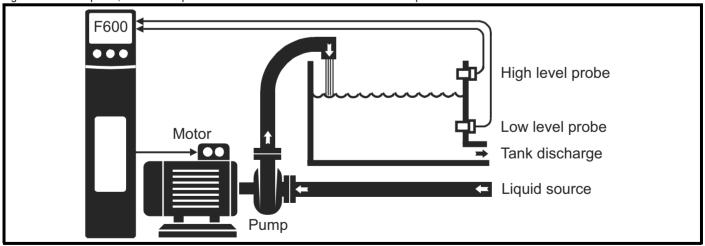
Parameter	29.056 Time Schedule Run Input					
Minimum	0 Maximum 1					
Default	0	Units				

To use this input Time Schedule Run Input Enable Pr 29.055 must be set to On(1).

When set to On(1), the system will be permitted to run in Auto mode.

When set to Off(1), the system will be stopped in Auto mode.

This feature is intended to be operated by a clock such as the one provided by a KI-HOA Keypad RTC keypad, where timer 1 in the *User Functions 1* Menu 9 may be used to define on and off periods for the system e.g. for an irrigation pump it may be desirable to run the pump during the day only. By default, the output of timer 1, *Timer 1 Output* Pr **9.042**, is routed to the *Time Schedule Run Input* Pr **29.056** using *Timer 1 Destination* Pr **9.043**.


See Time Schedule Run Input Enable Pr 29.055.

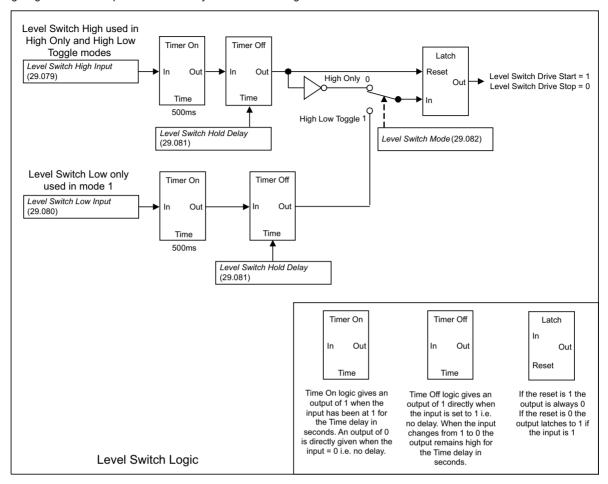
7.14 Level switches

The level switch functionality allows the user to run the drive in two different ways, configured by Level Switch Mode Pr 29.082:

High Only = Stop the system in Auto mode when Level Switch High Input Pr 29.079 = On(1); Operating Status Pr 29.003 changes to Level Stop. The system restarts when the high level switch input is set to Off(0). This is intended for pumping systems that fill a tank or reservoir, that have a high level probe to detect if the tank is going to over-fill.

High Low Toggle = Start the system in Auto mode when Level Switch Low Input Pr 29.079 = On(1), and stop the system when Level Switch High Input Pr 29.079 = On(1); Operating Status Pr 29.003 changes to Level Stop. If the Level Switch Low Input Pr 29.079 and Level Switch High Input Pr 29.079 both = On(1) the high level switch has priority and the system will stop. This is intended for pumping systems that fill a tank or reservoir, that have a high and low level probe, where the liquid level must rise and fall between the two level probes.

The high level probe must be configured to detect when it comes into contact with liquid i.e. it outputs 24 V when liquid is present. The low level probe must be configured to detect when it isn't in contact with liquid, so that the level drops just below the sensor to start the pump. If the level probes can't be configured in this way directly, the F600 digital inputs may be inverted to get the correct logic.


To filter out transient conditions, e.g. ripple on the liquid surface triggering the level probes, a fixed 500 ms settling time is used when triggering the high and low inputs, and once triggered the condition is held for a minimum time defined by Level Switch Hold Delay Pr 29.081.

Note that if the main process PID has been disabled by setting PID1 Enable Pr 14.008 = Off(0), then the wake threshold is ignored and the system will wake when started in Auto mode, even if Level Switch Low Input Pr 29.079 hasn't been set to On(1). If the PID is enabled, Wake Detect Feedback Threshold Pr 29.049(0.040) must be met by the feedback for the system to start.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.14.1 Level switch logic diagram

The following diagram shows the parameters used by the level switch logic.

7.14.2 Level switch parameters

The following section shows the parameters used by the level switch logic.

Parameter	29.079 Level Switch High Input				
Minimum	0 Maximum 1				
Default	0	Units			

This is the input for a tank level high probe or switch where Off(0) = not at high level, On(1) = at the high level and the system must shut down. A digital input with a tank high level probe or switch connected should be routed to Level Switch High Input Pr 29.079.

If Level Switch High Input Pr 29.079 and Level Switch Low Input Prb = On(1) the high switch action has priority and the system will stop.

Parameter	29.080 Level Switch Low Input				
Minimum	0	1			
Default	0	Units			

This is the input for a tank low level probe or switch where Off(0) = not at low level, On(1) = at the low level, where if Level Switch Mode Pr29.082 = High Low Toggle the system will start. A digital input with a tank level low probe or switch connected should be routed to Level Switch Low Input Pr29.080.

If Level Switch High Input Pr 29.079 and Level Switch Low Input (29.080) = On(1) the high switch action has priority and the system will stop. The low level switch is only active when running in Auto mode.

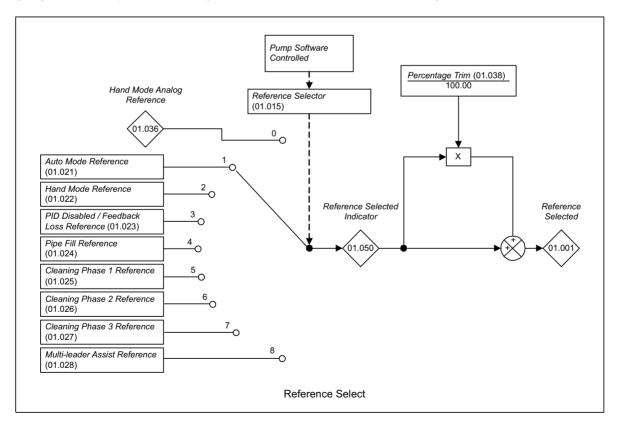
This is intended to be used in a pumping system where the PID is not in use, *PID1 Enable* (14.008) = *Off(0)*, and the system must fill a tank until the high level switch is reached, and then let the level fall until the low level switch is reached where the system will start again. If *PID1 Enable* Pr14.008 = *On(1)*, then the system must hit the low level switch and meet the wake criteria e.g. *Wake Detect Feedback Threshold* Pr 29.049(0.040).

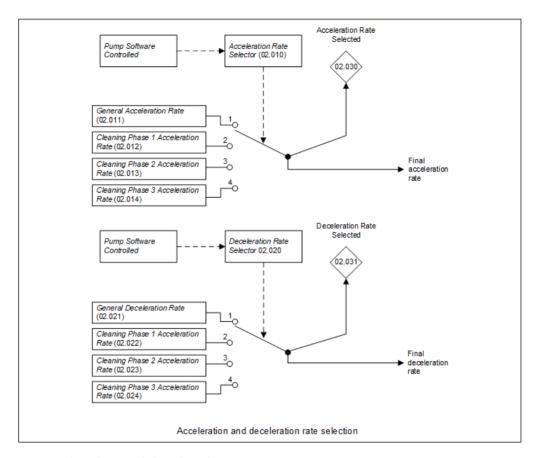
Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Parameter		29.081 Level Switch Hold Delay										
Minimum	1		0.0			Maxim	um		6553.5			
Default			5.0			Units			5			

This defines the minimum time in seconds for either a high or low level switch activation to be maintained for regardless of the state of the Level Switch High Input (29.079) or Level Switch Low Input (29.080). A fixed 500 ms switch debounce delay is added when confirming a level high or low switch activation.

Parameter	29.082 Level Switch Mode					
Minimum	0	Maximum	1			
Default	0	Units				

This defines the operating mode of the level switches. The following options are available:


Mode	Value	Description
High Only	0	When the Level Switch High Input Pr 29.079 is set to On(1) the system will stop. This only happens when running in Auto mode, Hand mode and Cleaning are not affected. The Level Switch Low Input Pr 29.080 is not used.
High Low Toggle	1	The Level Switch Low Input Pr 29.080 is enabled where if this input = On(1) the system will run until the Level Switch High Input Pr 29.079 = On(1) when the system stops. The level will rise and fall automatically between these two limits. The low input and high input logic level does not need to be maintained


7.15 References, acceleration and deceleration

The frequency or speed setpoints and profile acceleration and deceleration are situated in Menu 1 and 2. Menu 1 is where the reference clamps, references and selection are found. Menu 2 is where the acceleration, deceleration and selection are found.

7.15.1 Reference, acceleration and deceleration logic diagrams

The following diagram shows the parameters used by the reference, acceleration and deceleration logic.

7.15.2 Reference, acceleration and deceleration parameters

The following section shows the parameters used by the reference, acceleration and deceleration logic.

Parameter	01.001 Reference Selected		
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]
Default		Units	Hz or rpm

Reference Selected Pr 01.001 is the basic reference selected from the available sources including the effect of the percentage trim.

Parameter	01.015 Reference Selector				
Minimum	0	Maximum	8		
Default	1	Units			

Used by the Pump software to select the frequency or speed reference. See the table below for the list of reference selections:

Value	Reference
0	Hand Mode Analog Reference Pr 01.036
1	Auto Mode Reference Pr 01.021
2	Hand Mode Reference Pr 01.022(0.026)
3	PID Disabled / Feedback Loss Reference Pr 01.023
4	Pipe Fill Reference Pr 01.024(0.047)
5	Cleaning Phase 1 Reference Pr 01.025
6	Cleaning Phase 2 Reference Pr 01.026
7	Cleaning Phase 3 Reference Pr 01.027
8	Multi-leader Assist Reference Pr 01.028

the Motor	ute wictor	Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------	------------	-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	01.021 Auto Mode Reference					
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]			
Default	0.0	Units	Hz or rpm			

This defines the speed or frequency reference used when running in Auto mode. The output of the main process PID, (PID1), is routed to this parameter. See *Auto Select Input* Pr **29.015** and *User PID Controller* Menu 14.

Parameter	01.022(0.026) Hand Mode Reference					
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]			
Default	25 Hz or 750 rpm (Std) 30 Hz or 900 rpm (US)	Units	Hz or rpm			

This defines the speed or frequency reference used when running in Hand mode. See Hand Select Input Pr 29.013.

Parameter	01.023 PID Disabled / Feedback Loss Reference				
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]		
Default	25 Hz or 750 rpm (Std) 30 Hz or 900 rpm (US)	Units	Hz or rpm		

This defines the speed or frequency reference used when the PID has been disabled in Auto mode by PID1 Enable Pr14.008 = On(1), or when a transducer loss has been detected, Analog Input 1 Current Loop Loss Pr7.028 = On(1).

Parameter	01.024(0.047) Pipe Fill Reference				
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]		
Default	25 Hz or 750 rpm (Std) 30 Hz or 900 rpm (US)	Units	Hz or rpm		

This defines the speed or frequency reference used when the Automated pipe filling routine is running. See Pipe Fill Mode Pr 29.075(0.046).

Parameter	01.025 Cleaning Phase 1 Reference					
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]			
Default	-15 Hz or -450 rpm (Std) -18 Hz or -540 rpm (US)	Units	Hz or rpm			

This defines the speed or frequency reference used when pump cleaning, (de-ragging), phase 1 is in progress.

See Cleaning Phase 1 Time At Reference Pr 29.093, Cleaning Phase 1 Acceleration Rate Pr 2.012 and Cleaning Phase 1 Deceleration Rate Pr 2.022.

Parameter	01.026 Cleaning Phase 2 Reference								
Minimum	VM_SPEED_FREQ_REF[MIN]	VM_SPEED_FREQ_REF[MIN]							
Default	15 Hz or 450 rpm (Std) 18 Hz or 540 rpm (US)	Units	Hz or rpm						

This defines the speed or frequency reference used when pump cleaning, (de-ragging), phase 2 is in progress.

See Cleaning Phase 2 Time At Reference Pr 29.094, Cleaning Phase 2 Acceleration Rate Pr 2.013 and Cleaning Phase 2 Deceleration Rate Pr 2.023.

Parameter	01.027 Cleaning Phase 3 Reference								
Minimum	VM_SPEED_FREQ_REF[MIN]	VM_SPEED_FREQ_REF[MIN]							
Default	40 Hz or 1200rpm (Std) 54 Hz or 1440rpm (US)	Units	Hz or rpm						

This defines the speed or frequency reference used when pump cleaning, (de-ragging), phase 3 is in progress. See Cleaning Phase 3 Time At Reference Pr 29.095, Cleaning Phase 3 Acceleration Rate Pr 2.014 and Cleaning Phase 3 Deceleration Rate Pr 2.024.

Parameter	01.028 Multi-leader Assist Reference						
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]				
Default	0.0	Units	Hz or rpm				

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

This defines the speed or frequency reference used by this drive when it is an assist to the leader drive in a Multi-leader system, *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Parameter	01.036 Hand Mode Analog Reference							
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]					
Default	0.0	Units	Hz or rpm					

Used to receive the final analogue speed / frequency reference in Hand mode. By default, analog input 2 T6 is directed to this parameter, and us used when analog Hand mode reference is selected by setting *Hand Mode Reference Select* Pr **29.016**(0.025) = *Analog Speed*.

Parameter	01.038 Percentage Trim						
Minimum	-100.00	100.00					
Default	0.00	Units	%				

Percentage Trim Pr 1.038 is used to apply an offset to the Reference Selected Pr1.001. The default of 0.00 is suitable for most applications. The final reference is calculated from Reference Selected Pr 1.001 multiplied by [1 + (Percentage Trim Pr 1.038 / 100.00)].

Parameter	01.050 Reference Selected Indicator						
Minimum	1	Maximum	8				
Default		Units					

Indicates which speed or frequency reference has been selected by *Reference Selector* Pr**1.015**. See the table below for the list of reference selections:

Value	Reference
0	Hand Mode Analog Reference Pr 01.036
1	Auto Mode Reference Pr 01.021
2	Hand Mode Reference Pr 01.022 (0.026)
3	PID Disabled / Feedback Loss Reference Pr 01.023
4	Pipe Fill Reference Pr 01.024(0.047)
5	Cleaning Phase 1 Reference Pr 01.025
6	Cleaning Phase 2 Reference Pr 01.026
7	Cleaning Phase 3 Reference Pr 01.027
8	Multi-leader Assist Reference Pr 01.028

Parameter	2.001 Post Ramp Reference							
Minimum	VM_SPEED_FREQ_REF[MIN]	VM_SPEED_FREQ_REF[MAX]						
Default		Units						

The Post Ramp Reference Pr 2.001 is combined with the slip compensation frequency to define the output frequency of the drive.

Parameter	2.010 Acceleration Rate Selector					
Minimum	1	4				
Default	1	Units				

The Acceleration Rate Selector Pr 2.010 is used to select an acceleration rate by the Pump software. The following table shows the rates that may be selected:

Value	Reference
1	General Acceleration Rate Pr 2.011
2	Cleaning Phase 1 Acceleration Rate Pr 2.012
3	Cleaning Phase 2 Acceleration Rate Pr 2.013
4	Cleaning Phase 3 Acceleration Rate Pr 2.014

information	information	installation	installation	Running the Motor	parameters	descriptions	Opanii Zaasii	Operation	parameters	data	Diagnesiis	information
Parameter 2.011 (0.027) General Acceleration Rate												
Minimum		VM_ACC	VM_ACCEL_RATE[MIN] Maximum			\	VM_ACCEL_RATE[MAX]					
Default					Linita							

NV Media Card

Advanced

UL listing

This defines the acceleration rate in Hand and Auto, except when a pump cleaning or de-ragging cycle is running.

Mechanical

Electrical

The units of General Acceleration Rate Pr 2.011), Cleaning Phase 1 Acceleration Rate Pr 2.012, Cleaning Phase 2 Acceleration Rate Pr 2.013 and Cleaning Phase 3 Acceleration Rate Pr 2.014 are s / Ramp rate frequency or s / Ramp rate speed. See Ramp Rate Units Pr 2.039 for the definition of Ramp rate frequency and Ramp rate speed.

Parameter	2.012 Cleaning Phase 1 Acceleration Rate				
Minimum	VM_ACCEL_RATE[MIN]				
Default	5.0	Units	s		

This defines the acceleration rate when executing phase 1 of the cleaning or de-ragging routine; See Cleaning Phase 1 Time At Reference Pr 29.093.

Parameter	2.013 Cleaning Phase 2 Acceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s		

This defines the acceleration rate when executing phase 2 of the cleaning or de-ragging routine.

Parameter	2.014 Cleaning Phase 3 Acceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s		

This defines the acceleration rate when executing phase 3 of the cleaning or de-ragging routine.

Parameter	2.020 Deceleration Rate Selector			
Minimum	1	Maximum	4	
Default	1	Units		

The *Deceleration Rate Selector* Pr**2.020** is used to select an acceleration rate by the Pump software. The following table show the selections possible:

Value	Deceleration Rate Selected
1	General Deceleration Rate Pr 2.021
2	Cleaning Phase 1 Deceleration Rate Pr 2.022
3	Cleaning Phase 2 Deceleration Rate Pr 2.023
4	Cleaning Phase 3 Deceleration Rate Pr 2.024

Parameter	2.021 (0.028) General Deceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	1.0	Units	s		

This defines the acceleration rate in Hand and Auto, except when a pump cleaning or de-ragging cycle is running.

The units of *General Deceleration Rate* Pr **2.021**, *Cleaning Phase 1 Deceleration Rate* Pr **2.022**, *Cleaning Phase 2 Deceleration Rate* Pr **2.023** and *Cleaning Phase 3 Deceleration Rate* Pr **2.024** are s / Ramp rate frequency or s / Ramp rate speed. See *Ramp Rate Units* Pr **2.039**) for the definition of Ramp rate frequency and Ramp rate speed.

Parameter	2.022 Cleaning Phase 1 Deceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s		

This defines the deceleration rate when executing phase 1 of the cleaning or de-ragging routine.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	2.023 Cleaning Phase 2 Deceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s		

This defines the deceleration rate when executing phase 2 of the cleaning or de-ragging routine.

Parameter	2.024 Cleaning Phase 3 Deceleration Rate				
Minimum	VM_ACCEL_RATE[MIN]				
Default	5.0	Units	s		

This defines the deceleration rate when executing phase 3 of the cleaning or de-ragging routine.

Parameter	2.030 Acceleration Rate Selected				
Minimum	0 Maximum 8				
Default		Units			

Acceleration Rate Selected 2.030 shows the acceleration rate that has been selected by the Pump software. The following table shows the rates that may be selected:

Value	Acceleration Rate Selected
1	General Deceleration Rate Pr 2.011
2	Cleaning Phase 1 Deceleration Rate Pr 2.012
3	Cleaning Phase 2 Deceleration Rate Pr 2.013
4	Cleaning Phase 3 Deceleration Rate Pr 2.014

Parameter	2.031 Deceleration Rate Selected					
Minimum	0	Maximum	8			
Default		Units				

Deceleration Rate Selected Pr 2.031 the deceleration rate that has been selected by the Pump software. The following table show the selections possible:

Value	Deceleration Rate Selected				
1	1 General Acceleration Rate Pr 2.021				
2	Cleaning Phase 1 Acceleration Rate Pr 2.022				
3	Cleaning Phase 2 Acceleration Rate Pr 2.023				
4	Cleaning Phase 3 Acceleration Rate Pr 2.024				

Parameter	2.039 Deceleration Rate Selected				
Minimum	0	1			
Default	1	Units			

The ramp rate parameters, General Acceleration Rate Pr 2.011, Cleaning Phase 1 Acceleration Rate Pr 2.012, Cleaning Phase 2 Acceleration Rate Pr 2.013, Cleaning Phase 3 Acceleration Rate Pr 2.014, General Deceleration Rate Pr 2.021, Cleaning Phase 1 Deceleration Rate Pr 2.022, Cleaning Phase 2 Deceleration Rate Pr 2.023 and Cleaning Phase 3 Deceleration Rate Pr 2.024, are specified in s / Ramp rate frequency for Openloop mode and s / Ramp rate speed for RFC-A and RFC-S modes. Ramp rate frequency and Ramp rate speed are selected with Ramp Rate Units Pr 2.039 as defined in the table below:

Ramp Rate Units (2.039)	Open-loop Ramp rate frequency	RFC-A and RFC-S mode Ramp rate speed
0	100 Hz	1000 rpm
1	Maximum frequency (Maximum Reference Clamp Pr 1.006)	Maximum speed (Maximum Reference Clamp Pr 1.006)

Pump Drive F600 User Guide 275

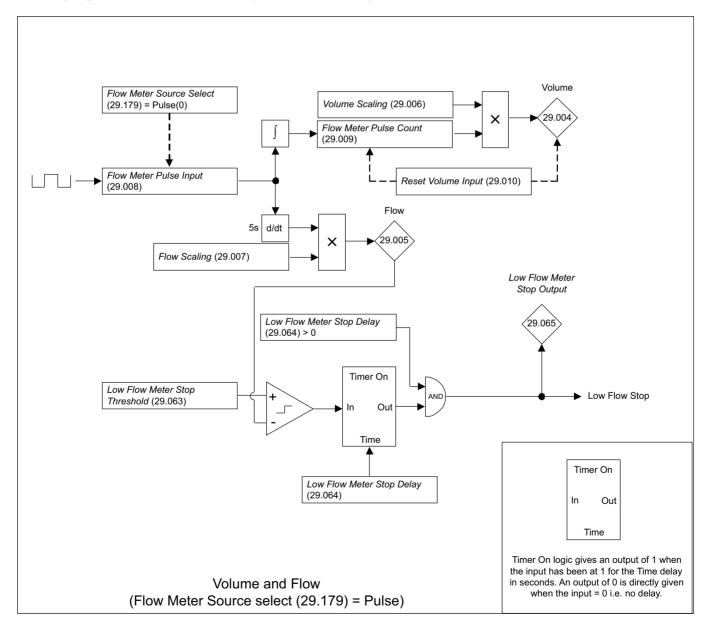
Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.16 Volume and flow using a pulsed flow meter

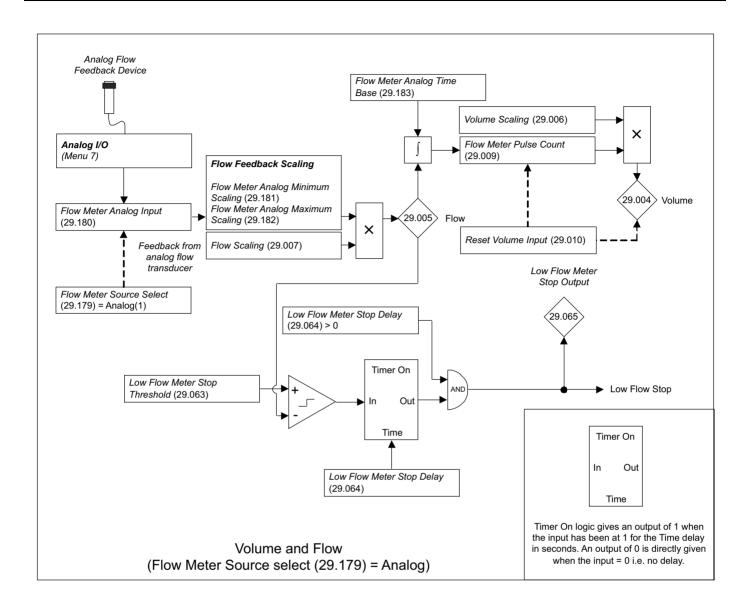
The F600 has volume and flow indication when a suitable pulsed flow sensor has been connected to a digital input routed to *Flow Meter Pulse Input* Pr **29.008**. The maximum input frequency is 100 Hz.

Flow Scaling Pr 29.007 converts the pulses from the flow meter into the equivalent flow rate e.g. Litres per minute or Gallons per minute. Many flow meters give a flow rate at a given frequency e.g. 100 Hz = 120 litres per minute, where this can be converted to a flow scale factor by dividing the flow rate by the frequency and then multiplying by the 5 s pump software sample rate e.g. flow Scale Factor = $120/(100^*5) = 0.24$.

Volume Scaling Pr 29.006 converts the pulses from the flow meter into the equivalent volume e.g. Litres per minute of Gallons per minute. Many flow meters give a flow rate at a given frequency e.g. 100 Hz = 120 litres per minute, where this can be converted to a volume per pulse by dividing the flow rate by the frequency e.g. Volume Scaling = 120/100 = 1.2.


Volume Pr 29.004 indicates the total volume so far in the units defined by Volume Scaling Pr 29.006. The value may be reset during operation by setting Reset Volume Input Pr 29.010 to On(1).

Flow Pr 29.005 indicates the flow in the units defined by Flow Scaling Pr 29.007.


Once a suitable pulsed flow meter is connected, the system may be stopped in the event of the liquid flow going below *Low Flow Meter Stop Threshold* Pr **29.063**. The feature is enabled when Low Flow Meter Stop Delay Pr **29.064** is set >0.0 s.

7.16.1 Volume and flow logic diagram

The following diagram shows the parameters used by the volume and flow logic.

Pump Drive F600 User Guide

Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------

7.16.2 Volume and flow logic parameters

The following section shows the parameters used by the volume and flow logic.

Parameter	29.004 Volume						
Minimum	0	Maximum	2147483647				
Default	0	Units	Defined by Volume Scaling Pr 29.006				

This indicates the system total volume so far in units defined by *Volume Scaling* Pr **29.006** e.g. Litres or Gallons. The volume value can be reset by setting *Reset Volume Input* Pr **29.010** to On(1). To calculate Volume a suitable pulsed output flow meter must be connected to a digital input routed to *Flow Meter Pulse Input* Pr **29.008**.

Parameter	29.005 Flow					
Minimum	0.0	Maximum	100000000.0			
Default	0.0	Units	Flow Scaling Pr 29.007			

This indicates the system flow in units defined by Flow Scaling Pr 29.007 e.g. Litres per minute or Gallons per minute. To calculate Flow a suitable pulsed output flow meter must be connected to a digital input routed to Flow Meter Pulse Input Pr 29.008.

Parameter	29.006 Volume Scaling				
Minimum	0.000000	Maximum	1000.000000		
Default	1.000000	Units			

This is the scaling factor to convert the pulsed flow meter count into a volume in a user selected unit e.g. Gallons or Litres. The scaling factor is a volume per flow meter pulse. Many flow meters give a flow rate at a given frequency e.g. $100 \, \text{Hz} = 120 \, \text{litres}$ per minute, where this can be converted to a volume per pulse by dividing the flow rate by the frequency e.g. Volume Scaling = 120/100 = 1.2.

Parameter	29.007 Flow Scaling				
Minimum	0.000000	Maximum	1000.000000		
Default	1.000000	Units			

This is the scaling factor to convert the pulsed flow meter count into a flow rate in a user selected unit e.g. Gallons per minute or Litres per minute. The scaling factor converts the flow rate at maximum frequency to the equivalent flow with a 5s sample rate. Many flow meters give a flow rate at a given frequency e.g. 100 Hz = 120 litres per minute, where this can be converted to a flow scale factor by dividing the flow rate by the frequency * 5 s e.g. flow Scale Factor = 120/(100*5) = 0.24.

Parameter	29.008 Flow Meter Pulse Input				
Minimum	0	Maximum	1		
Default	0	Units			

This is the system input for a pulsed flow meter used to derive Flow and Volume. The maximum input frequency is 100 Hz. A digital input with a pulsed flow meter connected should be routed to this parameter.

Parameter	29.009 Flow Meter Pulse Count				
Minimum	0	Maximum	2147483647		
Default	0	Units			

This indicates the total number of flow meter pulses detected so far from the *Flow Meter Pulse Input* Pr **29.008**. This count can be reset by setting *Reset Volume Input* Pr **29.010** to *On(1)*. This count is the basis for the Volume calculation so resetting this value will also reset *Volume* Pr **29.004**.

Parameter	29.010 Reset Volume Input					
Minimum	0	Maximum	1			
Default	0	Units				

When set to On(1), this resets the total number of flow meter pulses detected so far in Flow Meter Pulse Count Pr 29.009 and Volume Pr 29.004.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	29.063 Low Flow Meter Stop Threshold					
Minimum	0.0 Maximum 214748364.7					
Default	0.0	Units				

This defines the threshold below which the system will stop due to a low flow condition, detected using the pulsed flow meter feedback. This is set in the units defined by the *Flow Scaling* Pr **29.007**.

A suitable pulsed output flow meter must be connected to a digital input routed to the Flow Meter Pulse Input Pr 29.008 to allow the Low Flow functionality to operate.

In the event that a low flow is detected, Operating Status Pr 29.003(0.073) will transition to Sleeping.

Parameter	29.064 Low Flow Meter Stop Delay					
Minimum	0.0 Maximum 6553.5					
Default	5.0	Units	s			

When set to 0, the low flow stop feature is disabled.

When set to >0, the low flow stop feature is enabled.

This defines the continuous time in seconds that the Flow Pr 29.005 must be below Low Flow Meter Stop Threshold Pr 29.063 to detect a low flow condition. Low Flow Meter Stop Delay Pr 29.064 filters out any intermittent Low Flow conditions.

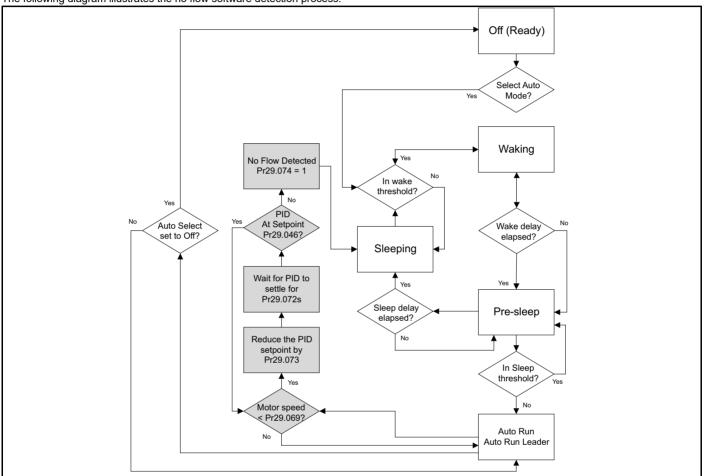
A suitable pulsed output flow meter must be connected to a digital input routed to Flow Meter Pulse Input Pr 29.008 to allow the Low Flow functionality to operate.

Parameter	29.065 Low Flow Meter Stop Output					
Minimum	0 Maximum 1					
Default	0	Units				

This indicates when a Low Flow meter stop has been actioned. This happens when the Flow Pr 29.005 is below the Low Flow Meter Stop Threshold Pr 29.063 and the Low Flow Meter Stop Delay Pr 29.064 has elapsed.

A suitable pulsed output flow meter must be connected to a digital input routed to Flow Meter Pulse Input Pr 29.008 to allow the Low Flow functionality to operate.

	Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
ı					the Motor								


7.17 No flow detection

The F600 supports 2 no flow mechanisms, either from a flow switch or by software detection to stop the system in the event of no flow condition. The no flow detection schemes are intended to detect when there is no liquid flow due to a closed pump discharge valve, e.g. a closed tap. This is intended to be used in a pump system where the main process PID feedback is a pressure transducer and not a flow transducer.

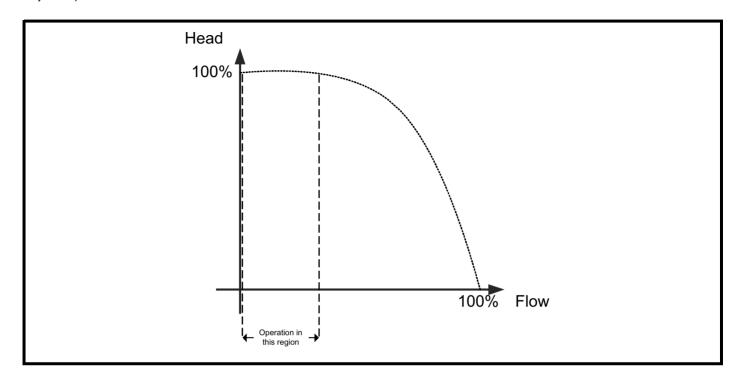
No flow detection from a flow switch requires a digital input to be routed to *Flow Switch Input* Pr **29.066**, where 24 V to the digital input represents when there is flow, and *Flow Switch Input* Pr **29.066** is set to *On(1)*. When there is no flow, *Flow Switch Input* Pr **29.066** is set to *Off(0)*, and after *No Flow Switch Delay* Pr **29.067** has elapsed, *Operating Status Pr* **29.003**(0.073) is set to *Sleeping* and the motor will stop. *No Flow Switch Output* Pr **29.068** indicates when the system has stopped due to no flow caused by *Flow Switch Input* Pr **29.066** = *Off(0)* for *No Flow Switch Delay* Pr **29.067** seconds.

If a flow switch is not available, no flow detection by software detection is available, provided that the main process PID is enabled, PID1 Enable Pr **14.008** = On(1).

The following diagram illustrates the no flow software detection process:

The No Flow by software detection scheme is made up of four stages:

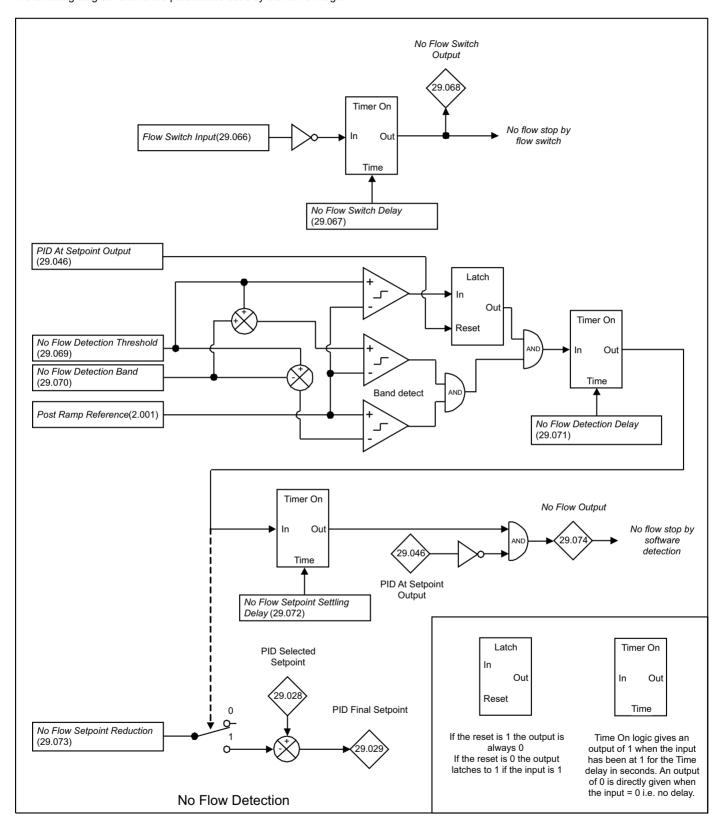
Is the motor frequency or speed < No Flow Detection Threshold Pr **29.069**(0.055)? If yes, move to the next step.


Is the motor frequency or speed within the

- 1. No Flow Detection Band Pr 29.070(0.056) for No Flow Detection Delay Pr 29.071(0.057) seconds? If yes, move to the next step.
- 2. Reduce the main process PID setpoint by
- 3. No Flow Setpoint Reduction Pr 29.073(0.059) and wait for the No Flow Setpoint Settling Delay Pr 29.072(0.058) to elapse. Is the PID is unable to follow the new setpoint? If yes, move to the next step.
- 4. Stop the system and set No Flow Output Pr 29.074 to On(1). If the feedback is within the PID At Setpoint Output Pr 29.046 window, move to step 1.

It is recommended to set *No Flow Detection Band* Pr **29.070**(0.056) to 10 % of the value found in the *Maximum Reference Clamp* Pr **1.006**(0.022), and *No Flow Detection Threshold* Pr **29.069** to the greater of the *Positive Minimum Reference Clamp* Pr **1.004**(0.023) OR the *Sleep Detect Speed Threshold* Pr **29.051**(0.042) + *No Flow Detection Band* Pr **29.070**(0.056). In the event of a closed pump discharge valve the PID feedback will rise causing the PID output frequency or speed to dip into the *No Flow Detection Band* Pr **29.070**(0.056).

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								


No flow by software detection is particularly helpful when controlling pumps that have a flat pressure to speed relationship at maximum pressure. This is when changes in speed result in little or no change in pressure (head), where the discharge valve may be closed slowly resulting in no flow, but the pressure feedback does not change, which may leave the pump drive running. In this scenario, a PID controller alone is unable to regulate the pump speed due to the static feedback response. The following diagram illustrates the operating region where the no flow by software detection system may be helpful.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.17.1 No flow logic diagram

The following diagram shows the parameters used by the no flow logic.

Safety Produinformation information		Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-------------------------------------	--	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

7.17.2 No flow logic parameters

The following section shows the parameters used by the no flow logic.

Parameter	29.045 PID At Setpoint Band					
Minimum	0	Maximum	1			
Default	1	Units				

^{*}This defines a symmetrical band around the PID setpoint, PID Final Setpoint Pr 29.029, where the system is considered to be at the setpoint i.e. the top of the band is PID Final Setpoint Pr29.029 + PID At Setpoint Band Pr29.045, and the bottom of the band is PID Final Setpoint Pr 29.029 - PID At Setpoint Band Pr 29.045.

If the main process PID feedback, PID Final Feedback Pr 29.036, is within the PID At Setpoint Band Pr 29.045, PID At Setpoint Output Pr 29.046 is set to On(1) indicating that the system is at the setpoint.

Note that No Flow Setpoint Reduction Pr 29.073 must be greater than PID At Setpoint Band Pr 29.045 for the no flow by software detection system to operate correctly.

The units of this parameter (user feedback units) are defined by pr29.184.

*Pump firmware V01.00.01.00 onwards.

Parameter	29.046 PID At Setpoint Output					
Minimum	0	Maximum	1			
Default	1	Units				

^{*}When set to On(1), this indicates when the main process PID feedback, PID Final Feedback Pr 29.036, is within the PID At Setpoint Band Pr 29.045 indicating that the system is at the setpoint. This output is used by the no flow by software detection scheme to tell if the setpoint reduction configured by No Flow Setpoint Reduction Pr 29.073 has been reached or not. When set to Off(0), the system isn't at the setpoint.

^{*}Pump firmware V01.00.01.00 onwards.

Parameter	29.066 Flow Switch Input					
Minimum	0	Maximum	1			
Default	0	Units				

This is the input for a flow switch where Off(0) = No flow, On(1) = Flow. A digital input with a flow switch connected should be routed to this parameter. This input is used to detect when the system should stop due to no flow and to terminate the Automatic pipe filling routine when flow is detected; see *No Flow Switch Delay* Pr **29.067** and *Pipe Fill Mode* Pr **29.075**.

Where a flow switch is not fitted, set Flow Switch Input Pr 29.066 to On(1) and perform a drive parameter save to prevent a false no flow stop.

Parameter	29.067 No Flow Switch Delay					
Minimum	0.0	6553.5				
Default	5.0	Units	s			

This defines the continuous time in seconds that the *Flow Switch Input* Pr **29.066** must be set to *Off(0)* to detect a no flow condition. *No Flow Switch Delay* Pr **29.067** filters out any intermittent No Flow conditions.

A suitable flow switch must be connected to a digital input routed to the Flow Switch Input Pr 29.066 to allow the No Flow by switch functionality to operate.

If a flow switch is fitted, then no flow by software detection is not required. A pump will be protected from running into a closed discharge using the flow switch.

In the event that a no flow is detected, Operating Status Pr 29.003(0.073) will transition to Sleeping and the motor will stop.

Parameter	29.068 No Flow Switch Output					
Minimum	0 Maximum 1					
Default	0	Units				

This indicates when a No Flow detection from a flow switch has been detected. This happens when the Flow Switch Input Pr 29.066 = Off(0) for No Flow Switch Delay Pr 29.067 seconds.

A suitable flow switch must be connected to a digital input routed to the Flow Switch Input Pr 29.066 to allow the No Flow by switch functionality to operate.

In the event that a no flow is detected, Operating Status Pr 29.003(0.073) will transition to Sleeping and the motor will stop.

Parameter	29.069(0.055) No Flow Detection Threshold
-----------	---

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Minimum	1		0.0			Maxim	num	3	0.000			
Default			0.0			Units		Н	lz or rpm			

When No Flow Detection Threshold Pr 29.069(0.055) is > 0, software detection of no flow is enabled. This defines the frequency or speed threshold below which software based no flow is detected. This must be set to the greater of the Positive Minimum Reference Clamp Pr 1.004 OR the Sleep Detect Speed Threshold Pr 29.051 + No Flow Detection Band Pr 29.070(0.056). In the event of a closed pump output the main process PID feedback will rise causing the motor frequency or speed to dip below this level.

When No Flow Detection Threshold Pr 29.069(0.055) = 0, software detection of no flow is disabled.

NOTE

If the main process PID has been disabled via PID1 Enable Pr 14.008, then then no flow detection when running in Auto mode is disabled.

In the event that a no flow is detected, Operating Status Pr 29.003(0.073) will transition to Sleeping and the motor will stop.

Parameter	29.070(0.056) No Flow Detection Band					
Minimum	0.0 Maximum 3000.0					
Default	150.0	Units				

This defines the frequency or speed band used by the software no flow detection scheme. It is recommended to set this to 10% of the *Maximum Reference Clamp* Pr **1.006**. In the event of a closed pump or fan output the PID feedback will rise causing the motor frequency or speed to dip into this band.

This is only used when No Flow Detection Threshold Pr 29.069 is > 0. See No Flow Detection Threshold Pr 29.069 for details on the no flow by software detection process.

NOTE

If the main process PID has been disabled via *PID1 Enable* Pr **14.008**, then then no flow detection when running in Auto mode is disabled. In the event that a no flow is detected, *Operating Status* Pr **29.003** will transition to *Sleeping*.

Parameter	29.071(0.057) No Flow Detection Delay					
Minimum	0.0 Maximum 6553.5					
Default	5.0	Units	S			

This defines the continuous time in seconds that the motor frequency or speed must be below the *No Flow Detection Threshold* Pr **29.069**(0.055) to complete stage 1 of the no flow by software detection scheme. *No Flow Detection Delay* Pr **29.071**(0.057) filters out any intermittent No Flow conditions.

This is only used when *No Flow Detection Threshold* Pr **29.069**(0.055) is > 0.

NOTE

If the main process PID has been disabled via *PID1 Enable* Pr **14.008**, then then no flow detection when running in Auto mode is disabled. In the event that a no flow is detected, *Operating Status* Pr **29.003**(0.073) will transition to *Sleeping* and the motor will stop.

Parameter	29.072 No Flow Setpoint Settling Delay				
Minimum	0.0	6553.5			
Default	1.0	Units	s		

This defines the continuous time in seconds that the no flow by software detection scheme will wait after applying the *No Flow Setpoint Reduction* Pr **29.073**(0.059) before checking if the main process PID is able to track the change in setpoint. If the main process PID isn't able to track the change in setpoint a no flow by software detection stop is actioned and *No Flow Output* Pr **29.074** is set to *On(1)*.

This is only used when No Flow Detection Threshold Pr 29.069(0.055) is > 0.

NOTE

If the main process PID has been disabled via PID1 Enable Pr 14.008, then then no flow detection when running in Auto mode is disabled.

In the event that a no flow is detected, Operating Status Pr 29.003(0.073) will transition to Sleeping and the motor will stop.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	29.073(0.059) No Flow Setpoint Reduction						
Minimum	0.00 Maximum 2.55						
Default	0.06	Units	user feedback units				

This defines the main process PID setpoint reduction value used in stage 2 of detecting no flow by software. After applying the *No Flow Setpoint Reduction* Pr **29.073**(0.059) and waiting for the *No Flow Setpoint Settling Delay* Pr **29.072** to elapse, the software will check to see if the main process PID hasn't been able to track the change in setpoint; if it hasn't then software no flow is detected. and the system will stop.

This is only used when No Flow Detection Threshold Pr 29.069 is > 0.

NOTE

If the main process PID has been disabled via *PID1 Enable* Pr **14.008**, then then no flow detection when running in Auto mode is disabled. In the event that a no flow is detected, *Operating Status* Pr **29.003**(0.073) will transition to *Sleeping* and the motor will stop.

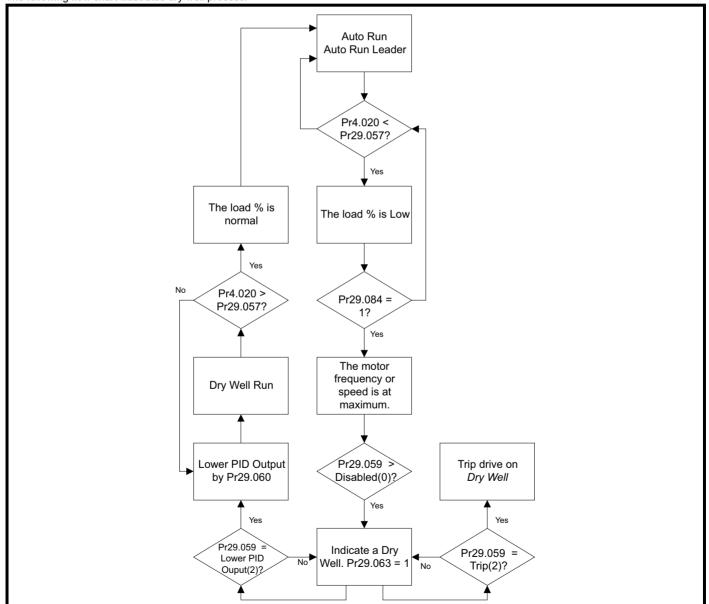
^{*}The drive checks if the PID has followed the *No Flow Setpoint Reduction* Pr **29.073** by checking if *PID At Setpoint Output* Pr **29.046** = On(1). Note that *No Flow Setpoint Reduction* Pr **29.073** must be greater than *PID At Setpoint Band* Pr **29.045** for the no flow by software detection system to operate correctly.

^{*}Pump firmware V01.00.01.00 onwards.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.18 Dry well

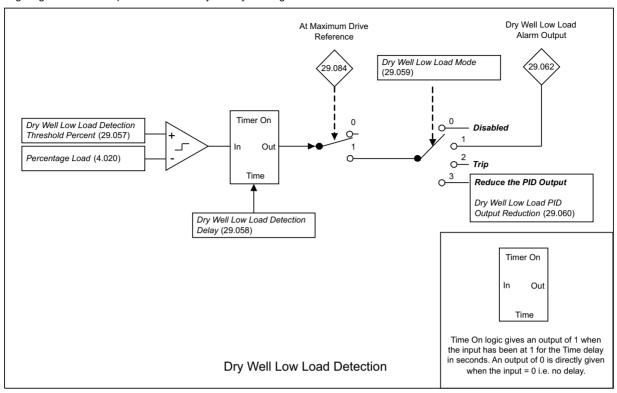
In a pump application, e.g. pumping from a well or tank, the level of liquid being pumped may drop below the level of the pump suction pipe. In this situation the pump should be slowed down or stopped to prevent pump wear. Dry Well Low Load detection Automatically checks for this condition and is configured by *Dry Well Low Load Mode* Pr **29.059**(0.052) to respond in one of the following ways:


- Disabled The Dry Well Low Load detection system is disabled.
- Alarm only If a Dry Well Low Load condition is detected, an alarm is raised by setting Dry Well Low Load Alarm Output Pr 29.062 = On(1).
- Trip If a Dry Well Low Load condition is detected, a Dry Well trip is actioned.
- Lower PID Output If a Dry Well Low Load condition is detected, the PID output is lowered by the Dry Well Low Load PID Output Reduction
 Pr 29.060(0.053) value thereby limiting potential damage to the pump. When the load value is above
 the Dry Well Low Load Detection Threshold Percent Pr 29.057(0.050), the PID output is restored. Operating Status Pr 29.003(0.073) =
 Dry Well Run when the PID output has been reduced due to a dry well condition.

A dry well is detected when the load level is below the *Dry Well Low Load Detection Threshold Percent* Pr **29.057**(0.050) and the motor frequency or speed must be within the *Maximum Drive Reference Band* Pr **29.083** to detect a dry well low load condition. *Dry Well Low Load Detection Delay* Pr **29.058**(0.051) filters out any intermittent Dry Well Low Load conditions.

If a Dry Well condition is detected in a Cascade system, *Pump Control Mode* Pr **29.011**(0.021) = *Cascade* the Soft Starters will be stopped to prevent pump wear. The soft starters will Automatically restart when the Dry Well condition has finished.

If the main process PID has been disabled via PID1 Enable Pr 14.008, then Dry Well Low Load detection is internally disabled.


The following flow chart illustrates dry well process:

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor				-	-			

7.18.1 Dry well logic diagrams

The following diagram shows the parameters used by the dry well logic.

7.18.2 Dry well logic parameters

The following section shows the parameters used by the no flow logic.

Parameter	29.057(0.050) Dry Well Low Load Detection Threshold Percent						
Minimum	0.0	100.0					
Default	1.0	Units	%				

This defines the load percentage below which a dry well low load condition is detected. *Dry Well Low Load Detection Threshold Percent* Pr **29.057**(0.050) is compared against *Percentage Load* Pr **4.020**. To complete the dry well low load detection logic the motor frequency or speed must be within the *Maximum Drive Reference Band* Pr **29.083**.

Parameter	29.058(0.051) Dry Well Low Load Detection Delay				
Minimum	0.0	6553.5			
Default	1.0	Units	%		

This defines the continuous time in seconds that the load level must be below the *Dry Well Low Load Detection Threshold Percent* (29.057) and the motor frequency or speed must be within the *Maximum Drive Reference Band* (29.083) to detect a dry well low load condition. *Dry Well Low Load Detection Delay* (29.058) filters out any intermittent Dry Well Low Load conditions.

NOTE

If the main process PID has been disabled via PID1 Enable Pr 14.008, then Dry Well Low Load detection is internally disabled.

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Paramet	er		29.059(0.	052) <i>Dry</i>	Well Low L	oad Mode						
Minimum	1		0			Maxim	num	;	3			
Default			0			Units						

This defines the Dry Well Low Load system will operate. The following options are available:

Mode	Value	Description		
Disabled	0	The Dry Well Low Load detection system is disabled		
Alarm Only	1	If a Dry Well Low Load condition is detected, an alarm is raised, <i>Dry Well Low Load Alarm Output</i> Pr 29.062 = <i>On(1)</i> .		
Trip	2	If a Dry Well Low Load condition is detected, a <i>Dry Well</i> trip is actioned when a dry well low load condition is detected.		
Lower PID Output	3	If a Dry Well Low Load condition is detected, the PID output is lowered by the <i>Dry Well Low Load PID Output Reduction</i> Pr 29.060 (053) value thereby limiting potential damage to the pump. When the load value is above the <i>Dry Well Low Load Detection Threshold Percent</i> Pr 29.057 (0.050), the PID output is restored. <i>Operating Status</i> Pr 29.003 (0.073) = <i>Dry Well Run</i> when the PID output has been reduced due to a dry well condition.		

Parameter	29.060(0.053) Dry Well Low Load PID Output Reduction				
Minimum	0.00	100.00			
Default	50.00	Units	%		

When *Dry Well Low Load Mode* Pr **29.059**(0.052) = *Lower PID Output*, if a Dry Well Low Load condition is detected, the PID output is lowered by the *Dry Well Low Load PID Output Reduction* Pr **29.060** value thereby limiting potential damage to the pump. When the load value is above the *Dry Well Low Load Detection Threshold Percent* Pr **29.057**(0.050), the PID output is restored.

Operating Status Pr 29.003(0.073) = Dry Well Run when Dry Well Low Load PID Output Reduction Pr 29.060(0.053) has been used to reduce the PID output due to a dry well condition.

NOTE

If the main process PID has been disabled via PID1 Enable Pr 14.008, then Dry Well Low Load detection is internally disabled.

Parameter	29.061 Dry Well Low Load Restart Delay				
Minimum	0.0	6553.5			
Default	5.0	Units	s		

The defines the minimum time in seconds after the drive has been tripped due to a Dry Well Low Load condition before it can be restarted. This prevents the system from Automatically resetting and attempting to run again without there being sufficient time to allow the well or tank to fill again. This is only used when Dry Well Low Load Mode Pr **29.059** = *Trip*.

NOTE

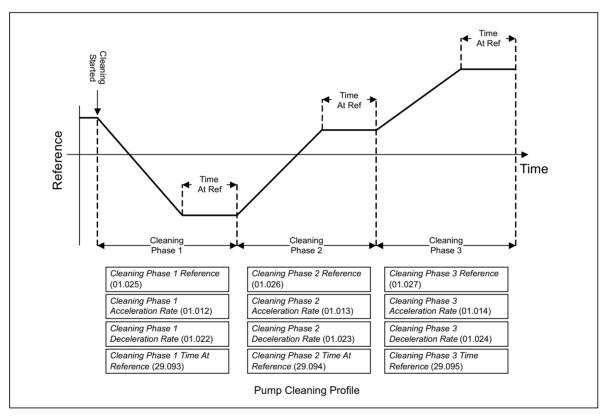
If the main process PID has been disabled via PID1 Enable Pr 14.008, then Dry Well Low Load detection is internally disabled.

Parameter	29.062 Dry Well Low Load Alarm Output				
Minimum	0	1			
Default	0	Units			

When set to On(1), this indicates when a Dry Well Low Load condition has been detected.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor					-			

7.19 Pump cleaning


The pump cleaning or de-ragging functionality of the software works by cycling pump backwards and forwards with a user defined cleaning profile to release rags or other debris back into the suction tank where they can settle away from the pump suction inlet. This helps to keep remote pumps operating with moderate blockages without user intervention. For a persistent blockage, manual intervention may be still be required.

Before using this feature the pump manufacturer must be consulted to find out if the pump can be run backwards without damaging it; not all pumps can be run backwards e.g. centrifugal pumps are designed to run forwards only.

The pump cleaning or de-ragging functionality is started using the following triggers:

- A digital input routed to Clean Manual Input Pr 29.088. The cleaning routine runs while this input is set to On(1). Hand and Auto mode are a higher priority than manual clean and will cancel any manual cleaning that is in progress even if Clean Manual Input Pr 29.088 = On(1).
- A cleaning cycle may be activated when the system is started in Auto mode, by setting Clean On Start Pr 29.089 = On(1).
- A cleaning cycle may be activated after Clean On Interval Time Pr 29.096, by setting Pr 29.090 Clean On Interval = On(1). This is not available in Cascade mode, Pump Control Mode Pr 29.011(0.021) = Cascade.
- A cleaning cycle may be activated when either the Clean On Load Current High Threshold Pr 29.098 or Clean On Load Current Low Threshold Pr 29.099 is reached, by setting Clean On Load Current Threshold Pr 29.091 = On(1). This is not available in Cascade mode, Pump Control Mode Pr 29.011(0.021) = Cascade.
- A cleaning cycle may be activated when *Motor Overload Alarm* Pr **10.017** = *On(1)*, by setting *Clean On Motor Over-load* Pr **29.092** = *On(1)*. This is not available in Cascade mode, *Pump Control Mode* Pr **29.011**(0.021) = *Cascade*.

When the cleaning cycle is triggered, the cleaning profile runs the motor at 3 user defined frequencies or speeds. By default, the initial rotation is backwards to release debris from the impellor back into the suction tank thereby clearing the blockage. The following diagram shows the profile configuration:

The load current supplied to the pump motor is sampled before and after the cleaning routine in *Pre-clean Load Current* Pr **29.102** and *Post-clean Load Current* Pr **29.103** to give an indication of how well the blockage has been removed.

To protect the system for attempting to clean too many times in an hour, Clean Per Hour Limit Pr 29.100 set the maximum allowed number of cleaning cycles before taking the action configured by Clean Per Hour Limit Mode Pr 29.101:

- Alarm Only An alarm will be raised where Clean Per Hour Alarm Output Pr 29.105 is set to On(1) when the limit is reached.
- Stop Cleaning An alarm will be raised where Clean Per Hour Alarm Output Pr 29.105 is set to On(1) and cleaning will be deactivated for the remainder of the current hour when the limit is reached.
- Trip The drive will trip Clean Over-cycle when the clean per hour limit is reached. Resetting the trip will reset the internal clean per hour counters so that cleaning can continue after the reset if triggered. The Clean Over-cycle will be logged in the trip log, Trip 0 Pr 10.020 to Trip 9 Pr 10.029. When cleaning is activated Clean Active output Pr 29.104 is set to On(1).

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

7.19.1 Pump cleaning logic diagrams

The following diagram shows the parameters used by the pump cleaning logic.

7.19.2 Pump cleaning logic parameters

The following section shows the parameters used by the pump cleaning logic.

Parameter	1.025 Cleaning Phase 1 Reference				
Minimum	VM_SPEED_FREQ_REF[MIN]				
Default	-15 Hz or -450 rpm (Std) -18 Hz or -540 rpm (US)	Units	Hz or rpm		

This defines the speed or frequency reference used when pump cleaning, (de-ragging), phase 1 is in progress. See Cleaning Phase 1 Time At Reference Pr 29.093, Cleaning Phase 1 Acceleration Rate Pr 2.012 and Cleaning Phase 1 Deceleration Rate Pr 2.022.

Parameter	1.026 Cleaning Phase 2 Reference				
Minimum	VM_SPEED_FREQ_REF[MIN]	Maximum	VM_SPEED_FREQ_REF[MAX]		
Default	15 Hz or 450 rpm (Std) 18 Hz or 540 rpm (US)	Units	Hz or rpm		

This defines the speed or frequency reference used when pump cleaning, (de-ragging), phase 2 is in progress. See Cleaning Phase 2 Time At Reference Pr 29.094, Cleaning Phase 2 Acceleration Rate Pr 2.013 and Cleaning Phase 2 Deceleration Rate Pr 2.023.

290

	Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
in	formation	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information

Parameter	1.027 Cleaning Phase 3 Reference				
Minimum	VM_SPEED_FREQ_REF[MIN]				
Default	40 Hz or 1200 rpm (Std) 54 Hz or 1440 rpm (US)	Units	Hz or rpm		

This defines the speed or frequency reference used when pump cleaning, (de-ragging), phase 3 is in progress. See Cleaning Phase 3 Time At Reference Pr 29.095, Cleaning Phase 3 Acceleration Rate Pr 2.014 and Cleaning Phase 3 Deceleration Rate Pr 2.024.

Parameter	2.012 Cleaning Phase 1 Acceleration Rate					
Minimum	VM_ACCEL_RATE[MIN]	Maximum	VM_ACCEL_RATE[MAX]			
Default	5.0	Units	s			

This defines the acceleration rate when executing phase 1 of the cleaning or de-ragging routine.

Parameter	2.013 Cleaning Phase 2 Acceleration Rate					
Minimum	VM_ACCEL_RATE[MIN]	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s			

This defines the acceleration rate when executing phase 2 of the cleaning or de-ragging routine.

Parameter	2.014 Cleaning Phase 3 Acceleration Rate					
Minimum	VM_ACCEL_RATE[MIN]	Maximum	VM_ACCEL_RATE[MAX]			
Default	5.0	Units	s			

This defines the acceleration rate when executing phase 3 of the cleaning or de-ragging routine.

Parameter	2.022 Cleaning Phase 1 Deceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s		

This defines the deceleration rate when executing phase 1 of the cleaning or de-ragging routine.

Parameter	2.023 Cleaning Phase 2 Deceleration Rate				
Minimum	VM_ACCEL_RATE[MIN] Maximum VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s		

This defines the deceleration rate when executing phase 2 of the cleaning or de-ragging routine.

Parameter	2.024 Cleaning Phase 3 Deceleration Rate					
Minimum	VM_ACCEL_RATE[MIN]	VM_ACCEL_RATE[MAX]				
Default	5.0	Units	s			

This defines the deceleration rate when executing phase 3 of the cleaning or de-ragging routine.

Parameter	29.088 Clean On Start				
Minimum	0	Maximum	1		
Default	0	Units			

When set to On(1) and provided *Hand Select Input* Pr **29.013** = Off(0) and *Auto Select Input* Pr **29.015** = Off(0), this will manually start a cleaning cycle. The pump cleaning cycle will run for as long as *Clean Manual Input* Pr **29.088** remains set to On(1).

When set to Off(0), a manually started pump cleaning will stop wherever it is in the cleaning cycle.

Clean Manual Input (29.088) is superseded if Hand or Auto mode is selected via *Hand Select Input* Pr 29.013 and *Auto Select Input* Pr 29.015. See *Cleaning Phase 1 Time At Reference* Pr 29.093 for a complete cleaning cycle profile diagram.

Pump Drive F600 User Guide 291

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	29.089 Clean On Start				
Minimum	0	Maximum	1		
Default	0	Units			

When set to On(1), this activates the pump cleaning cycle when the system is first run in Auto mode i.e. if the system goes to sleep and then wakes in Auto mode cleaning on start will not be triggered. If the pipe fill function is enabled via *Pipe Fill Mode* Pr **29.075**(0.046), then the pipe fill will happen first.

When set to Off(0), pump cleaning on start is disabled.

Parameter	29.090 Clean On Interval			
Minimum	0	Maximum	1	
Default	0	Units		

When set to On, this activates cleaning on interval. The interval is started when Auto mode is selected where the pump cleaning cycle will happen at the end of the interval, each time the interval elapses. The interval is defined by *Clean On Interval Time* Pr **29.096**.

This method of cleaning is not available when *Pump Control Mode Pr* **29.011**(0.021) = *Cascade*.

Parameter	29.091 Clean On Load Current Threshold			
Minimum	0	1		
Default	0	Units		

When set to On(1), this activates cleaning on current load thresholds defined by *Clean On Load Current High Threshold* Pr **29.098** and *Clean On Load Current Low Threshold* Pr **29.099**. Intermittent cleaning load current conditions are filtered using the *Clean On Load Current Delay* Pr **29.097**. A high current can by caused by a blocked pump rotor, and low current can be caused by a blocked pump input. The low and high current threshold should be set outside of the normal pumping current range.

This method of cleaning is not available when Pump Control Mode Pr 29.011(0.021) = Cascade.

Parameter	29.092 Clean On Motor Over-load			
Minimum	0	Maximum	1	
Default	0	Units		

When set to On(1), this activates cleaning on motor over-load as indicated when *Motor Overload Alarm* Pr **10.017** = On(1). The *Motor Thermal Time Constant 1* Pr **4.015** must be set up correctly when using this feature; consult the pump motor manufacturer or documentation to find this value.

This method of cleaning is not available when Pump Control Mode Pr 29.011(0.021) = Cascade.

Parameter	29.093 Cleaning Phase 1 Time At Reference				
Minimum	0.1	6553.5			
Default	15.0	Units	s		

This defines the time in seconds that the pump will spend at *Cleaning Phase 1 Reference* Pr **1.025** before moving to phase 2 of the pump cleaning cycle.

Parameter	29.094 Cleaning Phase 2 Time At Reference			
Minimum	0.1	6553.5		
Default	10.0	Units	s	

This defines the time in seconds that the pump will spend at *Cleaning Phase 2 Reference* Pr **1.026** before moving to phase 3 of the pump cleaning cycle.

Parameter	29.095 Cleaning Phase 3 Time At Reference				
Minimum	0.1	Maximum	6553.5		
Default	10.0	Units	s		

This defines the time in seconds that the pump will spend at Cleaning Phase 3 Reference Pr 1.027 before completing the pump cleaning cycle.

0.1.	Б.,			Getting								
Safety information	Product information	Mechanical installation	Electrical installation	started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor				·	·			I

Parameter	29.096 Clean On Interval Time				
Minimum	1 Maximum 65535				
Default	1440	Units	minutes		

This defines the pump cleaning time interval in minutes used when *Clean On Interval* Pr **29.090** = *On(1)*. If the drive is running in Auto mode, when *Clean On Interval Time* Pr **29.096** elapses a cleaning cycle is actioned. If the drive is sleeping in Auto mode when the *Clean On Interval Time* Pr **29.096** elapses, a clean will be actioned next time the drive runs.

Parameter	29.097 Clean On Load Current Delay			
Minimum	0.1	6553.5		
Default	10.0	Units	S	

Clean On Load Current Delay Pr 29.097 is only used when Clean On Load Current Threshold Pr 29.091 = On(1).

This defines the continuous time in seconds that the motor load current must be below the Clean On Load Current Low Threshold Pr 29.099 or above the Clean On Load Current High Threshold Pr 29.098 to initiate a clean on load current. Clean On Load Current Delay Pr 29.097 filters out any intermittent load current conditions that would otherwise trigger a clean on load current.

A high current can by caused by a blocked pump rotor, and low current can be caused by a blocked pump input. The low and high current threshold should be set outside of the normal pumping current range.

Parameter	29.098 Clean On Load Current High Threshold							
Minimum	0.0	200.0						
Default	80.0	Units	%					

Clean On Load Current High Threshold Pr 29.098 is only used when Clean On Load Current Threshold Pr 29.091 = On(1).

This defines the high load current threshold above which a clean on load current is initiated. Clean On Load Current High Threshold Pr 29.098 is compared against Percentage Load Pr 4.020. Clean On Load Current Delay Pr 29.097 filters out any intermittent load current conditions that would otherwise trigger a clean on load current.

A high current can by caused by a blocked pump rotor, and low current can be caused by a blocked pump input. The low and high current threshold should be set outside of the normal pumping current range.

Parameter	29.099 Clean On Load Current Low Threshold								
Minimum	0.0	Maximum	50.0						
Default	10.0	Units	%						

Clean On Load Current Low Threshold Pr 29.099 is only used when Clean On Load Current Threshold Pr 29.091 = On(1).

This defines the low load current threshold below which a clean on load current is initiated. *Clean On Load Current Low Threshold* Pr **29.099** is compared against *Percentage Load* Pr **4.020**. *Clean On Load Current Delay* Pr **29.097** filters out any intermittent load current conditions that would otherwise trigger a clean on load current.

A high current can by caused by a blocked pump rotor, and low current can be caused by a blocked pump input. The low and high current threshold should be set outside of the normal pumping current range.

Parameter	29.100 Clean Per Hour Limit							
Minimum	1	Maximum	30					
Default	5	Units	Cleaning cycles					

This defines the maximum number of pump cleaning cycles per hour. The action taken when the limit is reached is configured by the Clean Per Hour Limit Mode Pr 29.101. When this limit is reached the Clean Per Hour Alarm Output Pr 29.105 = On(1).

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information		
Paramete	er		29.101 C	lean Per F	Hour Limit N	1ode								
Minimum			0			Maxim	Maximum			2				
Default		1			Units									

This sets the action taken when the Clean Per Hour Limit Pr 29.100 is reached. The following modes are available:

Mode	Value	Description
Alarm Only	0	An alarm will be raised where Clean Per Hour Alarm Output Pr 29.105 is set to On(1) when the limit is reached.
Stop Cleaning	1	An alarm will be raised where Clean Per Hour Alarm Output Pr 29.105 is set to On(1) and cleaning will be deactivated for the remainder of the current hour when the limit is reached
Trip	2	The drive will trip Clean Over-cycle when the clean per hour limit is reached. Resetting the trip will reset the internal clean per hour counters so that cleaning can continue after the reset if triggered.

Parameter	29.102 Pre-clean Load Current							
Minimum	-1000.0	Maximum	1000.0					
Default	0.0	Units	%					

This indicates the load current percentage sampled from Percentage Load Pr 4.020 prior to running the cleaning cycle. By using Preclean Load Current (29.102) and comparing it to Post-clean Load Current Pr 29.103 it is possible to see if the cleaning cycle was effective.

Pre-clean Load Current Pr 29.102 and Post-clean Load Current Pr 29.103 are not updated if the cleaning cycle was started either manually via Clean Manual Input Pr 29.088 or on start-up via Clean On Start Pr 29.089.

Parameter	29.103 Post-clean Load Current	29.103 Post-clean Load Current							
Minimum	-1000.0	Maximum	1000.0						
Default	0.0	Units	%						

This indicates the load current percentage sampled from Percentage Load Pr 4.020 after running the cleaning cycle. By using Preclean Load Current Pr 29.102 and comparing it to Post-clean Load Current Pr 29.103 it is possible to see if the cleaning cycle was effective.

Parameter	29.104 Clean Active Output							
Minimum	0	Maximum	1					
Default	0	Units						

This indicates when a pump cleaning cycle is running.

Parameter	29.105 Clean Per Hour Alarm Output							
Minimum	0	1						
Default	0	Units						

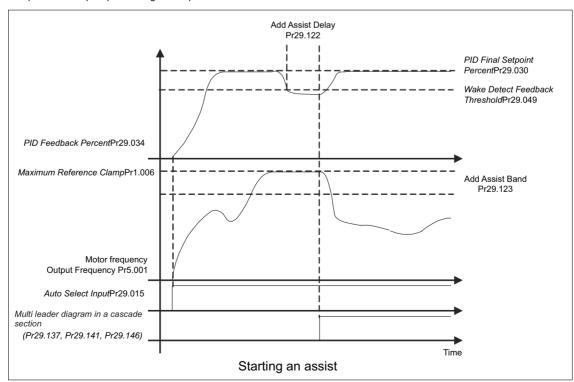

When Clean Per Hour Limit Mode Pr 29.101 = Alarm Only or Stop Cleaning, this indicates when the Clean Per Hour Limit Pr 29.100 has been reached.

294

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor				·	-			

7.20 Cascade mode

A Cascade system is where a single leader drive is assisted by parallel pumps controlled by up to 4 Soft Starters. The Soft Starters assists are commanded by 24V I/O signals or relay outputs provided by the Leader drive. Cascade mode is selected when Pump Control Mode Pr29.011 (0.021) = Cascade.

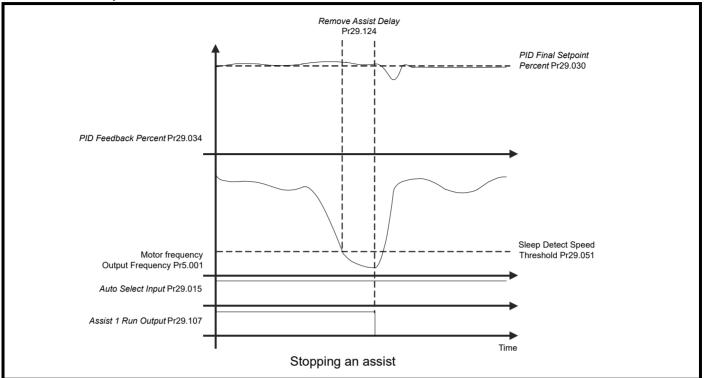


The F600 Pump drive is started and stopped using the logic described in section 7.10 Wake and sleep .

In a Cascade system, the leader drive commands assist soft starters to run or stop in order meet the setpoint demand. An assist soft starter is commanded to run when:

- The motor frequency or speed is within the Add Assist Band Pr 29.123 where the PID is at maximum output and unable to meet the demand.
- PID Final Feedback Pr 29.036 is < Wake Detect Feedback Threshold Pr 29.049(0.040) for Wake Detect Delay Pr 29.050(0.041) seconds, when PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005 = Off(0).
- PID Final Feedback Pr 29.036 is > Wake Detect Feedback Threshold Pr 29.049(0.040) for Wake Detect Delay Pr 29.050(0.041) seconds, when PID1 Feedback Source Pr 14.004 and PID1 Reference Invert Pr 14.005 = On(1).

It is important to note that *Wake Detect Feedback Threshold* Pr **29.049**(0.040) not only defines the feedback level when the soft starters will be commanded to assist the leader drive, but also the minimum operating pump system output level, e.g. if the setpoint is 80.00 psi and the wake threshold is 70.00 psi then the pump discharge will operate between these two levels.



The process shown in the previous diagram illustrates the starting behaviour for a single assist, however, the process is repeated for a second assist.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

In a Cascade system the assist soft starters run at full speed, where the leader drives main process PID loop trims the pump motor frequency or speed to match the setpoint. The system may run in this mode with a single assist or two assists as required by the pump system design.

An assist soft starter is commanded to stop when the motor frequency or speed drops within the Sleep Detect Speed Threshold Pr 29.051(0.042) for Remove Assist Delay Pr 29.124 seconds.

The process shown in the previous diagram illustrates the stopping behaviour for a single assist, however, the process is repeated for a second assist.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
mormation	IIIIOIIIIalioii	installation	installation	the Motor	parameters	descriptions		Орстаноп	parameters	data		illioilliation

When controlling an assist, the user has 2 different control I/O options, as configured by Assist Control Mode Pr 29.106:

• Run Only – In this mode assist Soft Starters are only provided a run command signal via Assist 1 Run Output Pr 29.107 and Assist 2 Run Output Pr 29.113. The assist run outputs must be routed to digital or relay outputs that are connected to Soft Starter run inputs.

It is assumed that a Soft Starter is running after the *Add Assist Delay* Pr **29.122** has elapsed. If the Soft Starter pump has contributed enough, the main process PID output will reduce and no further Soft Starters will be commanded to run. If the Soft Starter pump hasn't contributed enough, the main process PID output will remain high and another Soft Starter will be commanded to run, if another is installed.

- Full I/O In this mode assist soft starter controlled and monitored using the following control and status signals:
 - · Assist 1 Run Output Pr 29.107 and Assist 2 Run Output Pr 29.113.
 - Assist 1 Ready Input Pr 29.108 and Assist 2 Ready Input Pr 29.114.
 - · Assist 1 Running Input Pr 29.109 and Assist 2 Running Input Pr 29.115.

If the Soft Starter pump has contributed enough, the main process PID output will reduce and no further Soft Starters will be commanded to run. If the Soft Starter pump hasn't contributed enough, the main process PID output will remain high and another Soft Starter will be commanded to run, if another is installed.

The Ready input is used to determine whether to attempt to start a given Soft Starter. If the Soft Starter indicates that it is Ready then it will be started if required. If it does not indicate that it is Ready then an alternative Soft Starter will be started instead if available. If a Soft Starter does not give a Ready signal during pumping its run output will be set to off and it will not be retried until it gives a Ready signal again. If a Soft Started does not give a running signal within Add Assist Delay Pr 29.122 seconds, the Run output for that Soft Starter will be set to Off, and an alternative Soft Starter will be started instead if available.

The Running input is used to give a more accurate running time for a given starter, and to provide indication on whether the start was successful or not via Assist Last Failed Start Pr 29.119.

Note that the system may run with only 1 assist starter if required, where the assist 2 parameters can be left at their default value.

See section 10.9 for more information on how to configure the drive digital I/O and relay outputs. Additional I/O may be added to the drive with an SI I/O module.

The assist soft starters have their own individual over-cycle protection, where the user can configure *Assist Starts Per Hour* Pr **29.120** to protect the soft starters in the event that they are started more times in an hour than their rating, due to pump system demand. *Assist Over-cycle Mode* Pr **29.121** configures how the protection operates:

- Wait 1hr Cool In this mode the system will wait 1 hour from the last permitted start for the Soft Starter to cool down. After the cooling time has elapsed the Soft Starter will be allowed to run again, Automatically.
- Trip In this mode the drive will trip Assist 1 Cycle or Assist 2 Cycle indicating an over-cycle, and the system will wait 1 hour from the last permitted start for the Soft Starter to cool down. After the cooling time has elapsed and the trip is cleared the Soft Starter will be allowed to run again Automatically. By default, the system will Auto-reset the trip, but the Soft Starter over-cycle trip will be logged in the drives trip log, Trip 0 Pr 10.020 to Trip 9 Pr 10.029, for diagnostic purposes.


In the event of an assist over-cycle lockout, Assist 1 Lockout Output Pr 29.112 and Assist 2 Lockout Output Pr 29.118 will be set to On(1) and the remaining time cooling time for the soft starters is indicated by Assist 1 Lockout Countdown Pr29.111 and Assist 1 Lockout Countdown Pr 29.117 in seconds

To even wear on the assist pumps the starting order is alternated after the Alternation Time Pr 29.125 has elapsed.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

7.20.1 Cascade mode diagrams

The following diagram shows the parameters used by cascade mode.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor				·	·			

7.20.2 Cascade mode parameters

The following section shows the parameters used by cascade mode.

Parameter	29.106 Assist Control Mode					
Minimum	0	Maximum	1			
Default	0	Units				

Assist Control Mode Pr 29.106 is only used when Pump Control Mode Pr 29.011(0.021) = Cascade.

This selects how much I/O is required to control assist soft starters. Two options are available:

Mode	Value	Description
		In this mode assist Soft Starters are only provided a run command signal via Assist 1 Run Output Pr 29.107, Assist 2 Run Output Pr 29.113, *Assist 3 Run Output Pr 29.159 and *Assist 4 Run Output Pr 29.165. The assist run outputs must be routed to digital outputs that are connected to Soft Starter run inputs.
		*Pump firmware V01.00.01.00 onwards.
Run Only	0	It is assumed that a Soft Starter is running after the <i>Add Assist Delay</i> Pr 29.122 has elapsed. If the Soft Starter pump has contributed enough, the main process PID output will reduce and no further Soft Starters will be commanded to run. If the Soft Starter pump hasn't contributed enough, the main process PID output will remain high and another Soft Starter will be commanded to run.
		Note that the system may run with only 1 assist starter if required, where the assist 2 parameters can be left at their default value.
		In this mode assist soft starter controlled and monitored using the following control and status signals: • Assist 1 Run Output Pr 29.107, Assist 2 Run Output Pr 29.113, *Assist 3 Run Output Pr29.159 and *Assist 4 Run Output Pr 29.165. • Assist 1 Ready Input Pr 29.108, Assist 2 Ready Input Pr 29.114, *Assist 3 Ready Input Pr 29.160 and *Assist 4
		Ready Input Pr 29.166. • Assist 1 Running Input Pr 29.109, Assist 2 Running Input Pr 29.115, *Assist 3 Running Input Pr 29.161 and *Assist 4 Running Input Pr 29.167.
		*Pump firmware V01.00.01.00 onwards.
Full I/O		If the Soft Starter pump has contributed enough, the main process PID output will reduce and no further Soft Starters will be commanded to run. If the Soft Starter pump hasn't contributed enough, the main process PID output will remain high and another Soft Starter will be commanded to run.
Full I/O	1	The Ready input is used to determine whether to attempt to start a given Soft Starter. If the Soft Starter indicates that it is <i>Ready</i> then it will be started if required. If it does not indicate that it is <i>Ready</i> then an alternative Soft Starter will be started instead if available. If a Soft Starter does not give a Ready signal during pumping its run output will be set to off and it will not be retried until it gives a Ready signal again. If a Soft Started does not give a running signal within <i>Add Assist Delay</i> Pr 29.122 seconds, the Run output for that Soft Starter will be set to Off, and an alternative Soft Starter will be started instead, if available.
		The Running input is used to give a more accurate running time for a given starter, and to provide indication on whether the start was successful or not via Assist Last Failed Start Pr 29.119.
		Note that the system may run with only 1 assist starter if required, where the assist 2 parameters can be left at their default value.

The Soft Starter assists are called to run or stop using Add Assist Delay Pr 29.122, Add Assist Band Pr 29.123 and Remove Assist Delay Pr 29.124. The starting order of the Soft Starter assists is rotated using the Alternation Time Pr 29.125.

Parameter	29.107 Assist 1 Run Output					
Minimum	0	Maximum	1			
Default	0	Units				

This is the Run command output for Assist 1. A digital output must be routed to this parameter where the subsequent 24 V signal is connected to the run Input of Soft Starter Assist 1.

Parameter	29.108 Assist 1 Ready Input		
Minimum	0	Maximum	1
Default	0	Units	

Assist 1 Ready Input Pr 29.108 is only used when Assist Control Mode Pr 29.106 = Full I/O.

This is the Ready feedback input for Assist 1. A digital input must be routed to this parameter where a 24 V signal is connected to a ready or healthy output from Soft Starter Assist 1..

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor		Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Paramete	er		29.109 A	ssist 1 Ru	nning Input							
Minimum	1		0			Maxim	um	1				
Default			0			Units						

Assist 1 Running Input Pr 29.109 is only used when Assist Control Mode Pr 29.106 = Full I/O.

This is the Running feedback input for Assist 1. A digital input must be routed to this parameter where a 24 V signal is connected to a running output from Soft Starter Assist 1.

Parameter	29.110 Assist 1 Runtime		
Minimum	0	Maximum	2147483647
Default	0	Units	minutes

This indicates the running time for Assist Soft Starter 1 in minutes since the Leader drive was powered up.

Parameter	29.111 Assist 1 Lockout Countdown					
Minimum	0.0 Maximum 3600.0					
Default	0.0	Units	S			

In the event that Assist Starts Per Hour Pr 29.120 has been reached by Assist Soft Starter 1, Assist 1 Lockout Countdown Pr 29.111 indicates the remaining time in seconds that this Soft Starter is locked out for to allow time for it to cool down.

Parameter	29.112 Assist 1 Lockout Output					
Minimum	0	Maximum	1			
Default	0	Units				

In the event that Assist Starts Per Hour Pr 29.120 has been reached by Assist Soft Starter 1, Assist 1 Lockout Output Pr 29.112 indicates when this Soft Starter is locked out to allow time for it to cool down.

Parameter	29.113 Assist 2 Run Output					
Minimum	0	Maximum	1			
Default	0	Units				

This is the Run command output for Assist 2. A digital output must be routed to this parameter where the subsequent 24 V signal is connected to the run Input of Soft Starter Assist 2.

Parameter	29.114 Assist 2 Ready Input					
Minimum	0	Maximum	1			
Default	0	Units				

Assist 2 Ready Input Pr 29.114 is only used when Assist Control Mode Pr 29.106 = Full I/O.

This is the Ready feedback input for Assist 2. A digital input must be routed to this parameter where a 24 V signal is connected to a ready or healthy output from Soft Starter Assist 2.

Parameter	29.115 Assist 2 Running Input					
Minimum	0 Maximum 1					
Default	0	Units				

Assist 2 Running Input Pr 29.115 is only used when Assist Control Mode Pr 29.106 = Full I/O.

This is the Running feedback input for Assist 2. A digital input must be routed to this parameter where a 24 V signal is connected to a running output from Soft Starter Assist 2.

Parameter	29.116 Assist 2 Runtime					
Minimum	0	Maximum	2147483647			
Default	0	Units	minutes			

This indicates the running time for Assist Soft Starter 2 in minutes since the Leader drive was powered up..

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Parameter	29.117 Assist 2 Lockout Countdown					
Minimum	0.0	Maximum	3600.0			
Default	0.0	Units	s			

In the event that Assist Starts Per Hour Pr 29.120 has been reached by Assist Soft Starter 2, Assist 2 Lockout Countdown Pr 29.117 indicates the remaining time in seconds that this Soft Starter is locked out for to allow time for it to cool down.

Parameter	29.118 Assist 2 Lockout Output				
Minimum	0	Maximum	1		
Default	0	Units			

In the event that Assist Starts Per Hour Pr 29.120 has been reached by Assist Soft Starter 2, Assist 2 Lockout Output Pr 29.118 indicates when this Soft Starter is locked out to allow time for it to cool down.

Parameter	29.119 Assist Last Failed Start				
Minimum	0	Maximum	2		
Default	0	Units			

When Assist Control Mode Pr 29.106 = Full I/O, Assist Last Failed Start Pr 29.119 indicates which starter failed to run as indicated by Assist 1 Running Input Pr 29.109, Assist 2 Running Input Pr 29.101), Assist 3 Running Input Pr 29.101 or Assist 4 Running Input Pr 29.107 failing to change to On(1) within the Add Assist Delay Pr 29.122 + 1 second. When an assist soft starter fails to run it will be indicated as shown below:

- Assist 1 Fail
- Assist 2 Fail
- Assist 3 Fail *
- Assist 4 Fail *

When Assist Control Mode Pr 29.106 = Run Only, Assist Last Failed Start Pr 29.119 is set to No Failed Starts.

Parameter	29.120 Assist Starts Per Hour					
Minimum	1	60				
Default	5	Units				

This defines the maximum number of starts per hour for Soft Starter Assist 1 to 4. Please consult the Soft Starter documentation to find out how many starts per hour the particular Soft Starter used in the system is rated for.

^{*}Assist 3 and 4 - Pump firmware V01.00.01.00 onwards

Parameter	29.121 Assist Over-cycle Mode				
Minimum	0	Maximum	1		
Default	0	Units			

This defines how the assist over-cycle detection will be Handled by the Leader drive. Assist over-cycle is always enabled to protect the Soft Starter. The following options are available:

Mode	Value	Description
Wait 1hr Cool	0	In this mode the system will wait 1 hour from the last permitted start for the Soft Starter to cool down. After the cooling time has elapsed the Soft Starter will be allowed to run again Automatically
Trip	1	In this mode the drive will trip Assist x Cycle where x is starter number 1 to 4, indicating an over-cycle, and the system will wait 1 hour from the last permitted start for the Soft Starter to cool down. After the cooling time has elapsed and the trip is cleared the Soft Starter will be allowed to run again Automatically. By default, the system will Auto-reset the trip, but the Soft Starter over-cycle trip will be logged in the drives trip log (<i>Trip 0</i> Pr 10.020 to <i>Trip 9</i> Pr 10.029) for diagnostic purposes. *Assist 3 and 4 - Pump firmware V01.00.01.00 onwards

Over-cycle Starts Per Hour Pr 29.128 used to detect an assist over-cycle condition.

^{*}Pump firmware V01.00.01.00 onwards.

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Paramete	er		29.122 A	dd Assist I	Delay							
Minimum	1		0.0		Maxim	Maximum		6553.5				
Default			3.0			Units		S				

Add Assist Delay Pr 29.122 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This defines the continuous time period in seconds that the leader drive main process PID must set the drive output frequency or speed within the Add Assist Band Pr 29.123 until an assist drive or soft starter is requested. Add Assist Delay Pr 29.122 is used to filter intermittent entry to the Add Assist Band Pr 29.123.

In a Cascade or Multi-leader system the Wake Detect Feedback Threshold Pr 29.049(0.040) is used in combination with the Add Assist Band Pr 29.123 to decide when to start an assist i.e. both the add assist and wake thresholds must be satisfied to start an assist.

Parameter	29.123 Add Assist Band					
Minimum	0.0	Maximum	3000.0			
Default	30.0	Units	Hz or rpm			

Add Assist Band Pr 29.123 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This defines the frequency or speed band in which an assist Drive or Soft Starter will be requested by the Leader Drive, after the Add Assist Delay Pr 29.122 has elapsed. The top end of this band is aligned with the Maximum Reference Clamp Pr 1.006 i.e. the add assist band moves with the maximum reference clamp.

In a Cascade or Multi-leader system the Wake Detect Feedback Threshold Pr 29.049(0.040) is used in combination with the Add Assist Band Pr 29.123 to decide when to start an assist i.e. both the add assist and wake thresholds must be satisfied to start an assist.

This is used in both Cascade and Multi-leader systems to add an assist soft starter or drive.

Parameter	29.124 Remove Assist Delay				
Minimum	0.0	Maximum	6553.5		
Default	3.0	Units	s		

Remove Assist Delay Pr 29.124 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This defines the continuous time period in seconds that the leader drive main process PID must set the drive output frequency or speed below the Sleep Detect Speed Threshold Pr 29.051(0.052) until an assist drive or soft starter is stopped, (Sleeping). Remove Assist Delay Pr 29.124 is used to filter intermittent entry to the Sleep Detect Speed Threshold Pr 29.051(0.052).

This is used in both Cascade and Multi-leader systems to add an assist soft starter or drive.

Parameter	29.125 Alternation Time					
Minimum	0.0	3276.7				
Default	24.0	Units	hours			

In a Cascade system, where Pump Control Mode Pr 29.011(0.021) = Cascade, this defines the time period in hours that the a given assist starting order will be used for. When the time elapses the starting sequence of the Assists will be swapped. The starting sequences are:

Leader, Assist 1, Assist 2, Assist 3* then Assist 4*

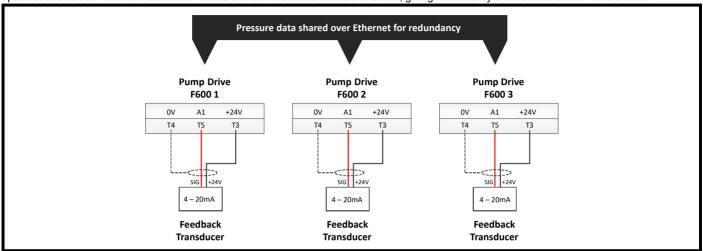
- Leader, Assist 2, Assist 3*, Assist 4* then Assist 1
- Leader, Assist 3*, Assist 4*, Assist 1 then Assist 2
- Leader, Assist 4*, Assist 1, Assist 2 then Assist 3*
- * Assist 3 and Assist 4 Pump software version V01.00.01.00 onwards

In a Multi-leader system, where Pump Control Mode Pr 29.011(0.021) = Multi-leader, this defines the time period in hours that in that an individual drive will be the system Leader. When the time elapses, the Leader will be passed to the next drive in the sequence. The drive starting sequences are 1-2-3, 2-3-1, 3-1-2.

The number of pumps that are physically in the system are set using Number Of Pumps Pr 29.171, e.g. in a system with 1 F600 and 3 assist Soft Starters Number Of Pumps Pr 29.171 is set to 4. This affects the starting order pattern e.g. if Number Of Pumps Pr 29.171 = 4 in a Cascade system, assist 4 is not included in the alternation pattern.

Parameter	29.126 Alternation Time Elapsed					
Minimum	0.0 Maximum 3276.7					
Default	0.0	Units	hours			

Alternation Time Elapsed Pr 29.126 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

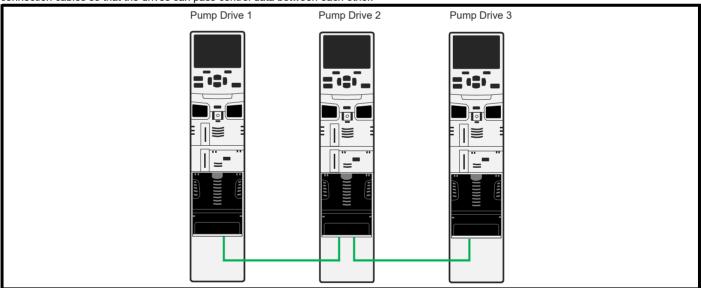

This indicates the alternation time elapsed so far in hours. When Alternation Time Elapsed Pr 29.126 = Alternation Time Pr 29.125 the system will alternate the running order of the connected Drives or Soft Starters. See Alternation Time Pr 29.125.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-			·	-			

7.21 Multi-leader mode

The system consists of up to 3 variable speed pump drives of similar size. The pumps are controlled to regulate the pressure of the system to an optimum pressure set point. Each pump drive will be run based on the system demand where the higher the demand, the more drive pumps that will be commanded to run. The first pump drive to run is known as the leader pump and the pumps that are run after are called assist pumps, with system response controlled by the lead pump.

This software can run up to 3 drive pump systems, in addition to running individual pumps in Single Pump mode when necessary. Each drive has the option of a local PID feedback transducer that is shared across the network of drives, giving redundancy should a transducer failure occur.

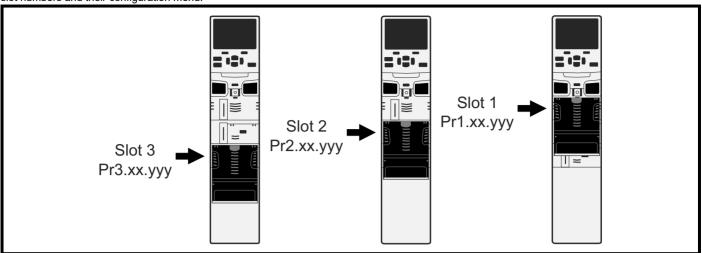


For more economic systems:

- A minimum of 1 sensor may be fitted to any drive on the network and shared over comms.
- A 4-20 mA signal duplicator may be used where a single feedback transducer signal can then be split between the drives.

In the event of a fault with the system leader, the lead will Automatically pass to the next available drive in the system.

To use multi-leader, all drives in the system must have SI-Ethernet modules fitted, (software version >=V01.07.03.03 loaded), with suitable Ethernet connection cables so that the drives can pass control data between each other.


Multi-leader mode is selected by setting Pump Control Mode Pr 29.011(0.021) to Multi-leader.

Each of the drives must have a unique static IP address configured, where it is recommended that the least significant IP Address number is 1, 2, 3, 4 or 5 to match pump 1, 2, 3, 4 or 5, for example:

- 192.168.1.1 for pump 1.
- 192.168.1.2 for pump 2.
- 192.168.1.3 for pump 3.

|--|

To set up the SI-Ethernet module, the slot number that the SI-Ethernet module is fitted in must be known. The following diagram illustrates the option slot numbers and their configuration menu:

To offer the best mechanical fit, option modules are fitted starting with slot 3 and ending with slot 1.

The steps required to configure the Ethernet IP Address are given below:

- Set DHCP Enable PrS.02.005 to Off(0). This configures a static IP Address.
- Set IP Address
- PrS.02.006 to a unique IP Address e.g. 192.168.1.1.
- Set Subnet Mask
- PrS.02.007 to 255.255.255.0.
- Set Reset PrS.00.007 to On(1). After 1s this will Automatically change back to Off(0).
- · Communications are now configured. Repeat this process for all drives in the system giving each a unique IP address.

S = the slot number.

After the IP Address configuration is completed, each pump must be assigned a node number which is configured by *Multi-leader Node ID* Pr **29.132**. The number must be either 1,2 or 3. If only 2 drives exist in the system then 1 or 2 should be selected. This tells the system software how to configure the Ethernet communications used to pass control and status data between the drives and is used by the Multi-leader control and scheduling. It is recommended to assign the pump node IDs as follows:

- Pump **1** = Node ID **1** = IP Address 192.168.1.**1**
- Pump 2 = Node ID 2 = IP Address 192.168.1.2
- Pump 3 = Node ID 3 = IP Address 192.168.1.3

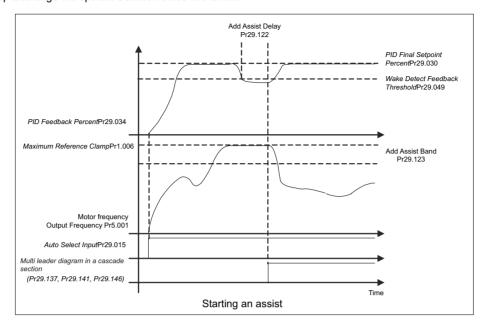
Note that the node ID configuration takes effect 2 seconds after *Multi-leader Node ID* Pr **29.132** stops changing, where the user must select Multi-leader mode by setting *Pump Control Mode* Pr **29.011**(0.021) to *Multi-leader* before setting the node ID. After the configuration takes place it can take up to 30s for the network to establish a connection between drives.

Once all the pump drives have a unique node ID, the communications should be checked to make sure they are operating correctly. To verify this check *Cyclic Messages Per Second* PrS.**10.004** where a 2 drive system should have 200 messages per second and a 3 drive system should have 300 messages per second.

If an incorrect number of messages per second is seen, verify that each drive has a unique IP address and a unique node number.

In the event that communications are lost by an assist drive to the system leader, the user can choose between running the drive as a single pump or tripping, as configured by *Multi-leader Network Loss Mode* Pr **29.133**.

The lead drive in a Multi-leader system is started and stopped using the logic described in section 7.10 Wake and sleep.


When running the system in Auto, the first drive that receives the command to run in Auto will become the system leader, and when running, will indicate this by displaying *Operating Status* Pr **29.003**(0.073) = *Auto Run Leader*. The assist drives in the system will display *Operating Status* Pr **29.003**(0.073) = *Auto Stop Assist* while system demand is too low to command the assists to run, and *Operating Status* Pr **29.003**(0.073) = *Auto Run Assist* when they are running in parallel with the system leader.

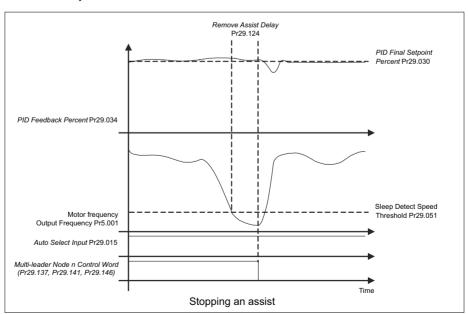
In a Multi-leader system, the leader drive commands assist drives to run or stop in order meet the setpoint demand. An assist drive is commanded to run by the leader when:

- The motor frequency or speed is within the Add Assist Band Pr 29.123 where the PID is at maximum output and unable to meet the demand.
- PID Final Feedback Pr 29.036 is < Wake Detect Feedback Threshold Pr 29.049(0.040) for Wake Detect Delay Pr 29.050(0.041) seconds, when PID1 Feedback Source Pr 14.004 and PID1 Reference Invert 14.005 = Off(0).
- PID Final Feedback Pr 29.036 is > Wake Detect Feedback Threshold Pr 29.049(0.040) for Wake Detect Delay Pr 29.050(0.041) seconds, when PID1 Feedback Source Pr 14.004 and PID1 Reference Invert 14.005 = On(1).

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

It is important to note that *Wake Detect Feedback Threshold* Pr **29.049**(0.040) not only defines the feedback level when the assist drives will be commanded to assist the leader, but also the minimum operating pump system output level, e.g. if the setpoint is 80.00 psi and the wake threshold is 70.00 psi then the pump discharge will operate between these two levels.

The process shown in the previous diagram illustrates the starting behaviour for a single assist drive, however, the process is repeated for a second assist drive.


NOTE

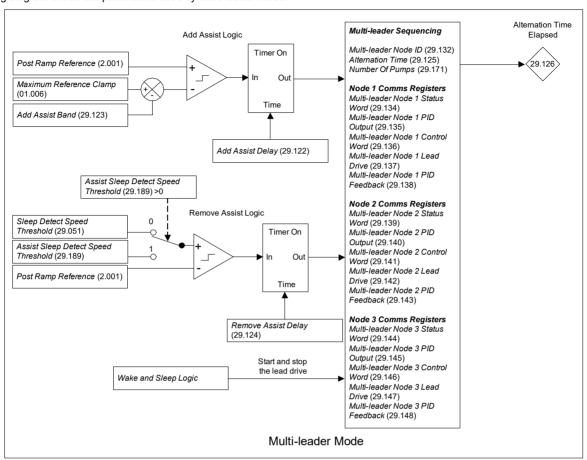
The Multi-leader Node n Control Word uses bits 0 to 2 to indicate which drives in the system must run where:

- If bit 0 = 1, Pump 1 is commanded to run.
- If bit 1 = 1, Pump 2 is commanded to run.
- If bit 2 = 1, Pump 3 is commanded to run.

In a Multi-leader system, the assist drives receive a frequency or speed reference from the leader drives, where the leader drives main process PID loop trims the pump motor frequency or speed on all drives running in the system to match the setpoint.

An assist drive is commanded to stop when the leader drive motor frequency or speed drops within the Sleep Detect Speed Threshold Pr 29.051(0.042) for Remove Assist Delay Pr 29.124 seconds.

The process shown in the previous diagram illustrates the stopping behaviour for a single assist drive, however, the process is repeated for a second assist drive.


If only a single drive in the system has Auto mode selected, it will behave in the same way as a drive when *Pump Control Mode* Pr **29.011**(0.021) = *Single pump*.

Each drive retains the ability to run totally independently in Hand mode if required.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.21.1 Multi-leader mode diagrams

The following diagram shows the parameters used by Multi-leader mode.

7.21.2 Multi-leader mode parameters

The following section shows the parameters used by multi-leader mode.

Parameter	29.122 Add Assist Delay					
Minimum	0.0 Maximum 6553.5					
Default	3.0	Units	s			

Add Assist Delay Pr 29.122 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This defines the continuous time period in seconds that the leader drive main process PID must set the drive output frequency or speed within the *Add Assist Band* Pr **29.123** until an assist drive or soft starter is requested. *Add Assist Delay* Pr **29.122** is used to filter intermittent entry to the *Add Assist Band* Pr **29.123**.

In a Cascade or Multi-leader system the *Wake Detect Feedback Threshold* Pr **29.049**(0.040) is used in combination with the *Add Assist Band* Pr **29.123** to decide when to start an assist i.e. both the add assist and wake thresholds must be satisfied to start an assist.

Parameter	29.123 Add Assist Band					
Minimum	0.0	Maximum	3000.0			
Default	OL: 1.0 Hz RFC: 30.0 rpm	Units	Hz or rpm			

Add Assist Band Pr 29.123 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This defines the frequency or speed band in which an assist Drive or Soft Starter will be requested by the Leader Drive, after the *Add Assist Delay* Pr **29.122** has elapsed. The top end of this band is aligned with the *Maximum Reference Clamp* Pr **1.006** i.e. the add assist band moves with the maximum reference clamp.

In a Cascade or Multi-leader system the *Wake Detect Feedback Threshold* Pr **29.049**(0.040) is used in combination with the *Add Assist Band* Pr **29.123** to decide when to start an assist i.e. both the add assist and wake thresholds must be satisfied to start an assist.

This is used in both Cascade and Multi-leader systems to add an assist soft starter or drive.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Parameter	29.124 Remove Assist Delay					
Minimum	0.0 Maximum 6553.5					
Default	3.0	Units	s			

Remove Assist Delay Pr 29.124 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This defines the continuous time period in seconds that the leader drive main process PID must set the drive output frequency or speed below the *Sleep Detect Speed Threshold* Pr **29.051**(0.052) until an assist drive or soft starter is stopped, (Sleeping). *Remove Assist Delay* Pr **29.124** is used to filter intermittent entry to the *Sleep Detect Speed Threshold* Pr **29.051**(0.052).

This is used in both Cascade and Multi-leader systems to add an assist soft starter or drive.

Parameter	29.125 Alternation Time					
Minimum	0.0 Maximum 3276.7					
Default	0.0	Units	hours			

In a Cascade system, where *Pump Control Mode* Pr **29.011**(0.021) = *Cascade*, this defines the time period in hours that the a given assist starting order will be used for. When the time elapses the starting sequence of the Assists will be swapped. The starting sequences are Leader - Assist 1 - Assist 2, or Leader - Assist 2 - Assist 1.

In a Multi-leader system, where *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*, this defines the time period in hours that in that an individual drive will be the system Leader. When the time elapses, the Leader will be passed to the next drive in the sequence. The drive starting sequences are 1- 2-3, 2-3-1, 3-1-2.

Parameter	29.126 Alternation Time Elapsed					
Minimum	0.0 Maximum 3276.7					
Default	0.0	Units	hours			

Alternation Time Elapsed Pr 29.126 is used when Pump Control Mode Pr 29.011(0.021) = Cascade or Multi-leader.

This indicates the alternation time elapsed so far in hours. When *Alternation Time Elapsed* Pr **29.126** = *Alternation Time* Pr **29.125** the system will alternate the running order of the connected Drives or Soft Starters. See *Alternation Time* Pr **29.125**.

Parameter	29.132 Multi-leader Node ID					
Minimum	1	Maximum	3			
Default	1	Units				

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

This defines the node ID of this drive within a Multi-leader pump system. The number must be either 1,2 or 3. Note that if only 2 drives exist in the system then 1 or 2 should be selected. This tells the system software how to configure the Ethernet communications used to pass control and status data between the drives and is used by the Multi-leader control and scheduling.

The drive assists are called to run or stop using Add Assist Delay Pr 29.122, Add Assist Band (29.123) and Remove Assist Delay (29.124). The starting order of the Leader and drive assists is rotated using the Alternation Time (29.125).

Parameter	29.133 Multi-leader Network Loss Mode					
Minimum	0	Maximum	1			
Default	Run Single Pump (0)	Units				

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

This defines how the pump drive will respond in the event that Ethernet communications are lost to the Leader while running in Auto mode.

When Set to Run Single Pump, the system will switch internally to run as a Single Pump using its own feedback and main process PID.

When set to Trip, the system will trip Network Loss if the connection is lost to the leader drive.

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Parameter			29.134 <i>M</i>	29.134 Multi-leader Node 1 Status Word								
Minimum			0 (Display: 0000000000000000) Maximum				5535 Display: 11	11111111	111111)			
Default			0 (Display:	00000000	000000000)	Units						

Multi-leader Node 1 Status Word Pr 29.134 is used by the Pump software as part of a Multi-leader system for drive node 1. The user is not intended to modify this value.

The following status bits are available:

Status Bit	Description
0	Drive On Network
1	Ready
2	Auto running
3	Drive Active
4	Loss Of Feedback
5	Hand Selected
6	Auto Selected
7	Pipe Fill Complete
8	Clean Request
9	Clean Permit

Parameter	29.135 Multi-leader Node 1 PID Output					
Minimum	-3276.8	Maximum	3276.7			
Default	0.0	Units				

This parameter is only used when Pump Control Mode Pr 29.011(0.021) = Multi-leader.

Multi-leader Node 1 PID Output Pr 29.135 is used by the Pump software as part of a Multi-leader system for drive node 1. The user is not intended to modify this value.

This indicates the main process PID output represented as a frequency or speed.

Parameter	29.136 Multi-leader Node 1 Control Word				
Minimum	0 (Display: 0000000000000000)	Maximum	65535 (Display: 111111111111111)		
Default	0 (Display: 0000000000000000)	Units			

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 1 Control Word Pr 29.136 is used by the pump software as part of a Multi-leader system for drive node 1. The user is not intended to modify this value.

Control Bit	Description
0	Run drive node 1
1	Run drive node 2
2	Run drive node 3

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions		NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Parameter			29.137 M	ulti-leader	Node 1 Lea	ad Drive						
Minimum	1		0			Maximu	um	3				

Units

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 1 Lead Drive Pr 29.137 is used by the pump software as part of a Multi-leader system for drive node 1. The user is not intended to modify this value.

This indicates the current system leader and is used to change the Leader drive over after the Alternation Time Pr 29.125 has elapsed.

Parameter	29.138 Multi-leader Node 1 PID Feedback					
Minimum	0 (Display: 0000000000000000)	Maximum	65535 (Display: 111111111111111)			
Default	0 (Display: 0000000000000000)	Units				

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = Multi-leader.

Multi-leader Node 1 PID Feedback Pr 29.138 is used by the pump software as part of a Multi-leader system for drive node 1. The user is not intended to modify this value.

This indicates the main process PID feedback after the filter has been applied, *PID Final Feedback Percent* Pr **29.035**. This is used by other drive nodes if the local PID feedback is not working.

Parameter	29.139 Multi-leader Node 2 Status Word				
Minimum	0 (Display: 0000000000000000)	Maximum	65535 (Display: 111111111111111)		
Default	0 (Display: 0000000000000000)	Units			

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 2 Status Word Pr 29.139 is used by the pump software as part of a Multi-leader system for drive node 2. The user is not intended to modify this value.

The following status bits are available:

Default

Status Bit	Description
0	Drive On Network
1	Ready
2	Auto running
3	Drive Active
4	Loss Of Feedback
5	Hand Selected
6	Auto Selected
7	Pipe Fill Complete
8	Clean Request
9	Clean Permit

Parameter	29.140 Multi-leader Node 2 PID Output				
Minimum	-3276.8	3276.7			
Default	0.0	Units			

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 2 PID Output Pr 29.140 is used by the pump software as part of a Multi-leader system for drive node 2. The user is not intended to modify this value.

This indicates the main process PID output represented as a frequency or speed.

information	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
Paramet	er		29.141 <i>M</i>	29.141 Multi-leader Node 2 Control Word								
Minimum			0 (Display: 0000000000000000)			Maxim	Maximum 65535 (Display: 1111111111111)					
Default			0 (Display:	00000000	00000000)	Units						

Multi-leader Node 2 Control Word Pr 29.141 is used by the pump software as part of a Multi-leader system for drive node 2. The user is not intended to modify this value.

The following control bits are available:

Control bit	Description
0	Run drive node 1
1	Run drive node 2
2	Run drive node 3

Parameter	29.142 Multi-leader Node 2 Lead Drive						
Minimum	0 Maximum 3						
Default	0	Units					

This parameter is only used when *Pump Control Mode Pr* **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 2 Lead Drive Pr 29.142 is used by the pump software as part of a Multi-leader system for drive node 2. The user is not intended to modify this value.

This indicates the current system leader and is used to change the Leader drive over after the Alternation Time Pr 29.125 has elapsed.

Parameter	29.143 Multi-leader Node 2 PID Feedback						
Minimum	-327.68 Maximum 327.67						
Default	0.00	Units	%				

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 2 PID Feedback Pr 29.143 is used by the pump software as part of a Multi-leader system for drive node 2. The user is not intended to modify this value.

This indicates the main process PID feedback after the filter has been applied, *PID Final Feedback Percent* Pr **29.035**. This is used by other drive nodes if the local PID feedback is not working.

310

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Parameter	29.144 Multi-leader Node 3 Status Word							
Minimum	0 (Display: 0000000000000000)	Maximum	65535 (Display: 111111111111111)					
Default	0 (Display: 0000000000000000)	Units	%					

Multi-leader Node 3 Status Word Pr 29.144 is used by the pump software as part of a Multi-leader system for drive node 3. The user is not intended to modify this value.

The following status bits are available:

Status Bit	Description
0	Drive On Network
1	Ready
2	Auto running
3	Drive Active
4	Loss Of Feedback
5	Hand Selected
6	Auto Selected
7	Pipe Fill Complete
8	Clean Request

Parameter	29.145 Multi-leader Node 3 PID Output							
Minimum	-3276.8	Maximum	3276.7					
Default	0.00	Units						

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 3 PID Output Pr **29.145** is used by the pump software as part of a Multi-leader system for drive node 3. The user is not intended to modify this value.

This indicates the main process PID output represented as a frequency or speed.

Parameter	29.146 Multi-leader Node 3 Control Word							
Minimum	0 (Display: 0000000000000000)	Maximum	65535 (Display: 111111111111111)					
Default	0 (Display: 0000000000000000)	Units	%					

This parameter is only used when *Pump Control Mode* Pr **29.011**(0.021) = *Multi-leader*.

Multi-leader Node 3 Control Word Pr 29.146 is used by the pump software as part of a Multi-leader system for drive node 3. The user is not intended to modify this value.

The following control bits are available:

Control bit	Description					
0	Run drive node 1					
1	Run drive node 2					
2	Run drive node 3					

information	information	installation	installation	Running the Motor	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
Parameter 29.1			29.147 <i>M</i>	ulti-leadei	Node 3 Le	ad Drive						
Minimum			0			Maxim	Maximum					
Default		0			Units	Units						

Multi-leader Node 3 Lead Drive Pr 29.147 is used by the pump software as part of a Multi-leader system for drive node 3. The user is not intended to modify this value.

This indicates the current system leader and is used to change the Leader drive over after the Alternation Time Pr 29.125 has elapsed.

Parameter	29.148 Multi-leader Node 3 PID Feedback						
Minimum	-327.68 Maximum 327.67						
Default	0.00	Units	%				

This parameter is only used when Pump Control Mode Pr 29.011(0.021) = Multi-leader.

Multi-leader Node 3 PID Feedback Pr 29.148 is used by the pump software as part of a Multi-leader system for drive node 3. The user is not intended to modify this value.

This indicates the main process PID feedback after the filter has been applied, *PID Final Feedback Percent* Pr **29.035**. This is used by other drive nodes if the local PID feedback is not working.

Parameter	29.171 Number Of Pumps		
Minimum	068	Maximum	5
Default	0	Units	

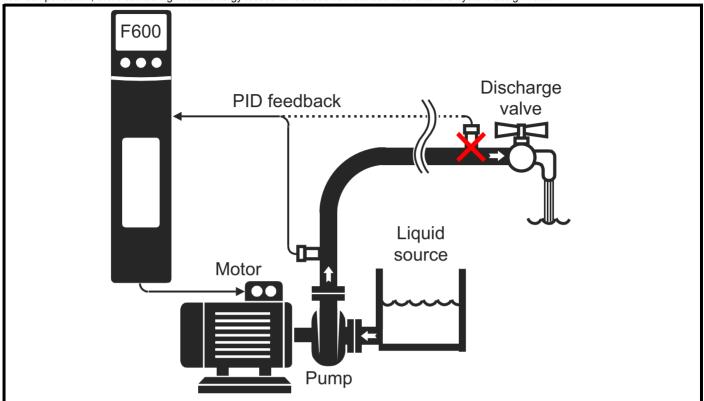
This defines the total number of pumps in the system, when *Pump Control Mode* Pr **29.011** = Cascade or Multi-leader. When *Pump Control Mode* Pr **29.011** = Single Pump it is assumed that there is 1 pump operating where the setting of this parameter has no effect. *Changes to Number Of Pumps* Pr **29.171** are only accepted when the drive is not active, i.e. *Drive Active* Pr **10.002** = Off(0).

When set to 0, it is assumed that the maximum number of pumps are available to run. When *Pump Control Mode* Pr **29.011** = Cascade the maximum is 5 pumps (1 Leader drive and 4 soft starter assists). When *Pump Control Mode* Pr **29.011** = Multi-leader the maximum is 3 pumps (1 Leader drive and 2 assist drives)

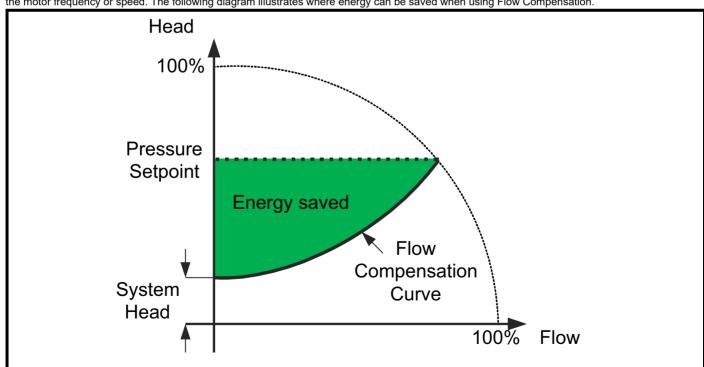
When set >0 this defines the specific number of pumps in the system. Note that When *Pump Control Mode* Pr **29.011** = Multi-leader values >3 are internally limited to 3.

When Pump Control Mode Pr 29.011 = Cascade, Number Of Pumps Pr 29.171 affects which assists will be considered as part of the system:

- 0 The leader drive will attempt to start all available assists according to system demand. The Flow compensation calculation setpoint limit curve will be adjusted depending on the number of running assists.
- 1 The leader drive will run on its own, no assists will be called. This may be useful for diagnostic purposes. The Flow compensation calculation operates only using the Leader drive.
- 2 The leader drive will attempt to start assist 1 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and single assist are running.
- 3 The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.
- 4 The leader drive will attempt to start assist 1, assist 2 and assist 3 according to system demand in Cascade mode only. The flow
 compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1, assist 2 and assist 3 are
 running.
- 5 The leader drive will attempt to start assist 1, assist 2, assist 3 and assist 4 according to system demand in Cascade mode only. The flow
 compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1, assist 2, assist 3 and assist 4
 are running.

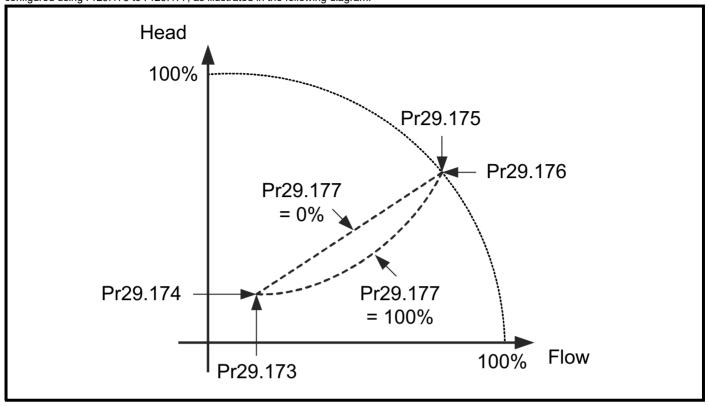

Pump Control Mode Pr 29.011 = Multi-leader, Number Of Pumps Pr 29.171 affects which assists will be considered as part of the system:

- 0 The leader drive will attempt to start all available assists according to system demand. The Flow compensation calculation setpoint limit curve will be adjusted depending on the number of running assists.
- 1 The leader drive will run on its own, no assists will be called. This may be useful for diagnostic purposes. The Flow compensation calculation operates only using the Leader drive.
- 2 The leader drive will attempt to start a single assist drive according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and single assist are running.
- 3 The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.
- 4 Internally limited to 3. The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.
- 5 Internally limited to 3. The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.


				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.22 Flow Compensation

The ideal setup for a constant pressure pumping system is to have the pressure transducer located near the end of the water distribution pipeline. For practical reasons this is not always possible, and in this situation the pressure transducer is fitted close to the pump discharge outlet, where without flow compensation, there can be significant energy losses at reduced flow i.e. flow less than the system design value.



In the previous image the feedback is fitted close to the pump instead of at the end of the water distribution network some distance away, as indicated by the second sensor with dotted connection. Energy is saved when Flow Compensation is enabled by reducing the pressure setpoint in proportion to the motor frequency or speed. The following diagram illustrates where energy can be saved when using Flow Compensation.

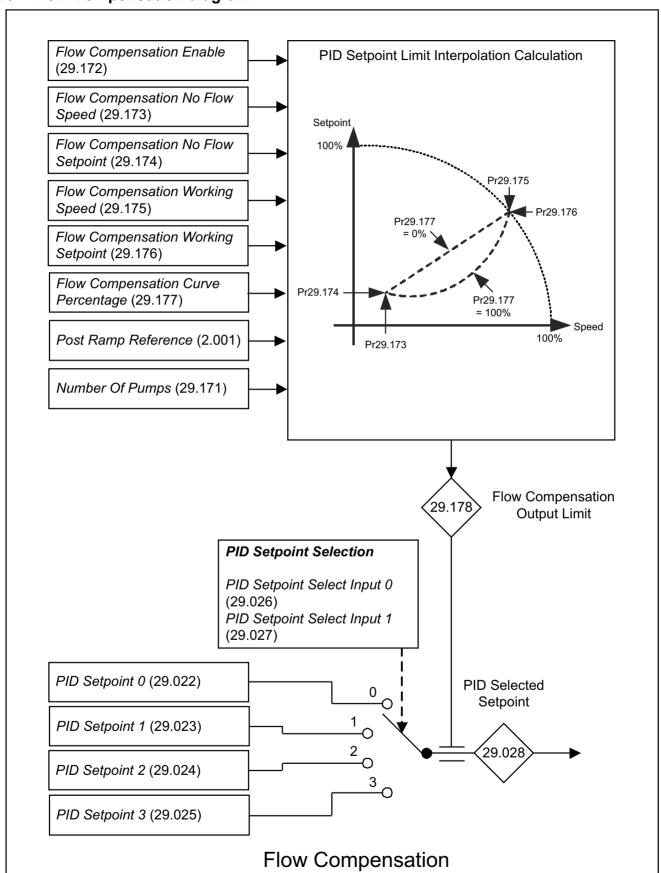
Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

Flow Compensation is enabled by setting Flow Compensation Enable Pr29.172 to 1. The flow compensation curve start and end points are configured using Pr29.173 to Pr29.177, as illustrated in the following diagram:

Flow Compensation No Flow Speed Pr 29.173 and Flow Compensation No Flow Setpoint Pr 29.174 define the starting point for the flow compensation curve. Flow Compensation Working Speed Pr 29.175 and Flow Compensation Working Setpoint Pr 29.176 define the end point for the flow compensation curve.

Where the motor frequency or speed is in between start and end point, an interpolation calculation is used to define the maximum setpoint, where shape of interpolation and shape of the pressure profile is set using *Flow Compensation Curve Percentage* Pr **29.177**. When *Flow Compensation Curve Percentage* Pr **29.177** = 0% linear interpolation is used, when *Flow Compensation Curve Percentage* Pr **29.177** = 100% square interpolation is used, values in the range 1% to 99% adopt a hybrid curve blended between linear and square.

The data for the pump curve may be derived from the system design or made using an estimation using the pump data sheet.


The output from the interpolator, as indicated by Flow Compensation Limit Pr 29.178, limits the value seen in PID Selected Setpoint Pr 29.028. When Flow Compensation Enable Pr 29.172 = 0, Flow Compensation Limit Pr 29.178 does not apply.

For Cascade and Multi-leader systems *Number Of Pumps* Pr **29.171** must be set so that the PID setpoint limit interpolation calculation operates in the correct region of the curve for a given number of running pumps. E.g. for a Cascade system operating with 1 drive and 2 assist soft starters, *Number Of Pumps* Pr **29.171** = 3. Note that in a multi-pump system the No Flow end of the curve is used when only the leader is operating, but the running end of the curve is when all of the pumps are running at the design flow and pressure.

314

UL listing Safety Functional descriptions NV Media Card Product Mechanical Flectrical Basic Advanced Technical started / Optimization Diagnostics information installation information installation Running parameters Operation parameters information

7.23 Flow Compensation diagram

		()ntimization	Advanced parameters Technical data Diagnostics	UL listing information
--	--	---------------	--	------------------------

7.23.1 Flow Compensation Parameters

Parameter	29.171 Number Of Pumps		
Minimum	068	Maximum	5
Default	0	Units	

This defines the total number of pumps in the system, when *Pump Control Mode* Pr **29.011** = Cascade or Multi-leader. When *Pump Control Mode* Pr **29.011** = Single Pump it is assumed that there is 1 pump operating where the setting of this parameter has no effect. *Changes to Number Of Pumps* Pr **29.171** are only accepted when the drive is not active, i.e. *Drive Active* Pr **10.002** = Off(0).

When set to 0, it is assumed that the maximum number of pumps are available to run. When *Pump Control Mode* Pr **29.011** = Cascade the maximum is 5 pumps (1 Leader drive and 4 soft starter assists). When *Pump Control Mode* Pr **29.011** = Multi-leader the maximum is 3 pumps (1 Leader drive and 2 assist drives)

When set >0 this defines the specific number of pumps in the system. Note that When *Pump Control Mode* Pr **29.011** = Multi-leader values >3 are internally limited to 3.

When Pump Control Mode Pr 29.011 = Cascade, Number Of Pumps Pr 29.171 affects which assists will be considered as part of the system:

- 0 The leader drive will attempt to start all available assists according to system demand. The Flow compensation calculation setpoint limit curve will be adjusted depending on the number of running assists.
- 1 The leader drive will run on its own, no assists will be called. This may be useful for diagnostic purposes. The Flow compensation calculation operates only using the Leader drive.
- 2 The leader drive will attempt to start assist 1 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and single assist are running.
- 3 The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.
- 4 The leader drive will attempt to start assist 1, assist 2 and assist 3 according to system demand in Cascade mode only. The flow
 compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1, assist 2 and assist 3 are
 running.
- 5 The leader drive will attempt to start assist 1, assist 2, assist 3 and assist 4 according to system demand in Cascade mode only. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1, assist 2, assist 3 and assist 4 are running.

Pump Control Mode Pr 29.011 = Multi-leader, Number Of Pumps Pr 29.171 affects which assists will be considered as part of the system:

- 0 The leader drive will attempt to start all available assists according to system demand. The Flow compensation calculation setpoint limit curve will be adjusted depending on the number of running assists.
- 1 The leader drive will run on its own, no assists will be called. This may be useful for diagnostic purposes. The Flow compensation calculation operates only using the Leader drive.
- 2 The leader drive will attempt to start a single assist drive according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and single assist are running.
- 3 The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve
 will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.
- 4 Internally limited to 3. The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.
- 5 Internally limited to 3. The leader drive will attempt to start assist 1 and assist 2 according to system demand. The flow compensation calculation setpoint limit curve will be adjusted depending on whether the leader drive and assist 1 and assist 2 are running.

Parameter	29.172 Flow Compensation Enable			
Minimum	0	Maximum	1	
Default	0	Units		

When set to Off(0), Flow Compensation is disabled and Flow Compensation Output Limit Pr 29.178 has no effect on PID Selected Setpoint Pr 29.028. When set to On(1), Flow Compensation is enabled, and Flow Compensation Output Limit Pr 29.178 modifies PID Selected Setpoint Pr 29.028 with changes in output speed or frequency to simulate the effect of a pressure sensor fitted at the end of a water distribution network, where the sensor has been fitted close to the pump instead. In this situation there is a significant energy saving at reduced flow.

Parameter	29.173 Flow Compensation No Flow Speed				
Minimum	0.0	60. Hz or 3000 rpm			
Default	25.0 Hz or 750 rpm	Units	Hz or rpm		

This defines the flow compensation feature no flow frequency or speed. This is found by running the system in hand mode, with any balancing valves shut, and the furthest valve or tap on the water distribution network open. Increase the hand mode reference in small steps until flow begins at the furthest valve or tap, then set *Flow Compensation No Flow Speed* Pr **29.173** to the hand mode reference value as seen *Post Ramp Reference* Pr **2.001**. In a Multi-Leader system, this value must be set in the other drives *Flow Compensation No Flow Speed* Pr **29.173** parameter.

316

Uptimization Control of the contro	Safety information	Product information	Mechanical installation	Electrical installation	J	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation		Technical data	Diagnostics	UL listing information
--	-----------------------	---------------------	-------------------------	-------------------------	---	------------------	-------------------------	--------------	----------------------------	--	-------------------	-------------	------------------------

Parameter	29.174 Flow Compensation No Flow Setpoint				
Minimum	0.00	327.67			
Default	50.00	Units	user feedback units		

This defines the flow compensation feature no flow setpoint. This is found by running the system in hand mode, with any balancing valves shut, and the furthest valve on the water distribution network open. Increase the hand mode reference in small steps until flow begins at the furthest valve, then set *Flow Compensation No Flow Setpoint* Pr **29.174** to the value seen in *PID Final Feedback* Pr **29.036**.

In a Multi-Leader system, this value must be set in the other drives Flow Compensation No Flow Setpoint Pr 29.174 parameter.

Parameter	29.175 Flow Compensation No Flow Setpoint				
Minimum	0	Maximum	1		
Default	50.0 Hz or 1500 rpm	Units	Hz or rpm		

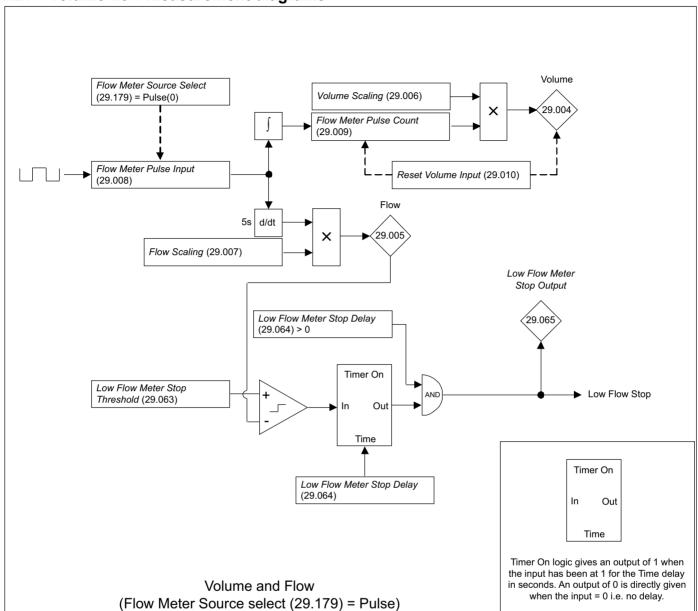
This defines the frequency or speed at which the design pressure and flow are met when all pumps in the system are working at full capacity. This may be found from the system design or by reading the pump data sheet, whichever is available.

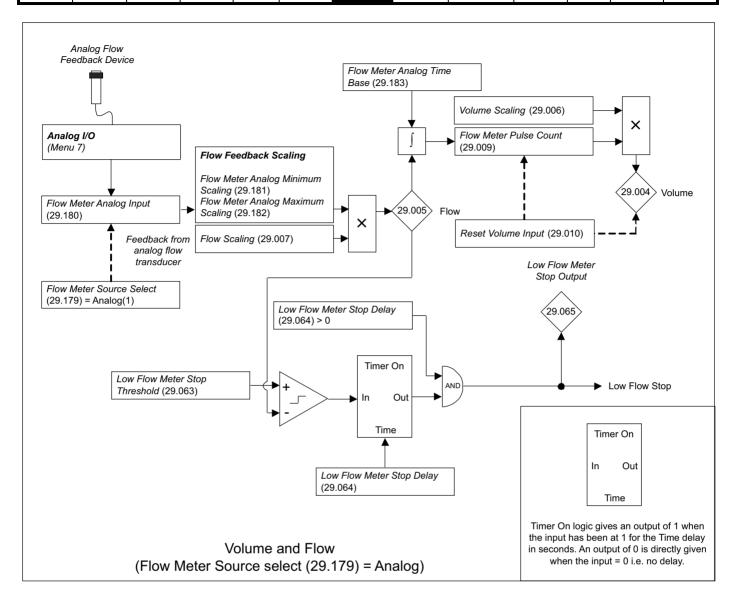
In a Multi-Leader system, this value must be set in the other drives Flow Compensation Working Speed Pr 29.175 parameter.

Parameter	29.176 Flow Compensation Working Setpint				
Minimum	0.00	Maximum	327.67		
Default	100.00	Units	user feedback units		

This defines the setpoint where the system design pressure and flow are met when all pumps in the system are working at full capacity. This may be found from the system design or by reading the pump data sheet, whichever is available.

In a Multi-Leader system, this value must be set in the other drives Flow Compensation Working Setpoint Pr 29.176 parameter.


Parameter	29.177 Flow Compensation Curve Percentage				
Minimum	0.00	Maximum	100.00		
Default	100.00 %	Units	user feedback units		


This defines the setpoint limit curve used during flow compensation. Where the motor frequency or speed is in between start and end point, an interpolation calculation is used to define the maximum setpoint, where shape of interpolation and shape of the pressure profile is set using *Flow Compensation Curve Percentage* Pr **29.177**. When *Flow Compensation Curve Percentage* Pr **29.177** = 100% square interpolation is used, values in the range 1% to 99% adopt a hybrid curve blended between linear and square interpolation.

Parameter	29.177 Flow Compensation Curve Percentage							
Minimum	0.00	0.00 Maximum 100.00						
Default	100.00 %	Units	user feedback units					

This indicates the limit applied to *PID Selected Setpoint* Pr 29.028 for flow compensation, at a given motor speed or frequency and number of running assists.

7.24 Volume flow measurement diagrams

7.24.1 Volume flow measurement parameters

To allow flow measurement from an analog sensor where the resulting flow will be displayed in Pr29.005. The volume will be integrated back from the analog flow signal every 4 ms, and result placed in Pr 29.004. To facilitate this a number of parameters added:

Parameter	29.179 Flow Meter Source Selector						
Minimum	0	0 Maximum 1					
Default	0	Units					

When set to Pulse, pulsed flow meter is selected where the pulsed flow transducer is connected to a digital input routed to Pr 29.008, where the pulses are counted, and the flow is derived using the *Flow Scaling* Pr 29.007. The result is displayed in *Flow* Pr 29.005.

When set to Analog, a 4-20 mA or 0 to 10 V flow transducer is connected to an analog input routed to Pr 29.180, where the feedback is displayed as a percentage. Flow Meter Analog Minimum Scaling Pr 29.181 and Flow Meter Analog Maximum Scaling Pr 29.182 are used to scale value seen in Flow Meter Analog Input Pr 29.180 from percentage to flow units. The result is displayed in Pr 29.005.

In both modes the Volume Pr 29.004 is calculated.

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Parameter			29.180 <i>FI</i>	ow Meter	Analog Inp	ut						
Minimum		-100.00			Maxim	Maximum			100.00			
Default		0.00			Units	Units		%				

Indicates an analog flow sensor, flow measurement as a percentage. A drive analog input with a flow transducer connected must be routed to this parameter. Flow Meter Analog Minimum Scaling Pr 29.181 and Flow Meter Analog Maximum Scaling Pr 29.182 are used to scale value seen in Flow Meter Analog Input Pr 29.180 from percentage to flow units, e.g. litres / min. The result is displayed in Pr 29.005.

This parameter is only used when Flow Meter Source Selector = Analog.

Parameter	29.181 Flow Meter Analog Minimum Scaling					
Minimum	0.0 Maximum 3276.7					
Default	0.0	Units				

Defines the minimum scaling value when an analog flow sensor is used. Flow Meter Analog Minimum Scaling Pr 29.181 and Flow Meter Analog Maximum Scaling Pr 29.182 are used to scale value seen in Flow Meter Analog Input Pr 29.180 from percentage to flow units, e.g. litres / min. The result is displayed in Pr 29.005.

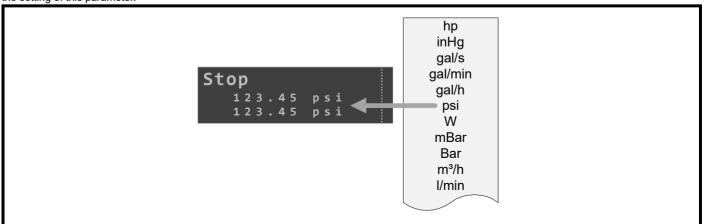
Parameter	29.182 Flow Meter Analog Maximum Scaling						
Minimum	0.1	0.1 Maximum 3276.7					
Default	100.0	Units					

Defines the maximum scaling value when an analog flow sensor is used. Flow Meter Analog Minimum Scaling Pr 29.181 and Flow Meter Analog Maximum Scaling Pr 29.182 are used to scale value seen in Flow Meter Analog Input Pr 29.180 from percentage to flow units, e.g. litres / min. The result is displayed in Pr 29.005.

This parameter is only used when Flow Meter Source Selector = Analog.

Parameter	29.183 Flow Meter Analog Time Base					
Minimum	0 Maximum 2					
Default	1	Units				

This defines the time base of the analog flow sensor, e.g. if the sensor is in I/min then this parameter is set to "Per minute". The correct setting of this parameter is essential for the correct calculation of the volume from the flow data when Flow


Meter Source Selector = Analog.

7.25 Parameters for the keypad update

The keypad update requires two parameters to control the units and number of decimal places shown for all parameters related to the main process PID.

Parameter	29.184 PID Unit Select						
Minimum	0	0 Maximum 158					
Default	71	Units					

Defines the units shown on the keypad by all parameters related to PID control in Menu 29. The units of parameters 29.022, 29.023, 29.024, 29.025, 29.028, 28.029, 29.031, 29.032, 29.036, 29.037, 29.039, 29.041, 29.044, 29.045, 29.049, 29.073, 29.076, 29.174, 29.176 and 29.178 are affected by the setting of this parameter.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

The unit type that will be displayed is shown along with the units numerical reference in the format "nnn Unit" where nnn is a leading 0 padded numerical unit ID, and Unit is the unit that will be displayed by the affected parameters.

Min = 0 max = 160. Default is "071 psi".

See the table below for the complete list of units selectable:

Unit ID	Unit	Units String (nnn unit)
0	No units	000 No unit
1	Custom units	001 CU
2	Millimetres	002 mm
3	Metres	003 m
4	User units	004 UU
5	Revolutions	005 Revs
6	Degrees	006 °
7	UserUnitsPerMillisecondCubed	007 UU/ms³
8	General position unit	008 GPU
9	Millimetres per second	009 mm/s
10	User units per millisecond	010 User/ms
11	Revolutions per minute	011 rpm
12	Hertz	012 Hz
13	Kilohertz	013 kHz
14	Megahertz	014 MHz
15	General speed unit (Hz, rpm, mm/s)	015 GSU
16	Closed loop speed unit (rpm, mm/s)	016 CLSU
17	Seconds per one thousand millimetres per second	017 s/1000mm/s
18	User units per millisecond per millisecond	018 User/ms ²
19	Seconds per one thousand revolutions per minute	019 s/1000rpm
20	Seconds per one hundred hertz	020 s/100Hz
21	General acceleration unit	021 GAU
22	Closed loop acceleration unit	022 CLAU
23	Seconds squared per one thousand millimetres per second	023 s²/1000mm/s
24	Seconds squared per user units per millisecond	024 s²/User/ms
25	Seconds squared per one thousand revolutions per minute	025 s²/1000rpm
26	Seconds squared per one hundred hertz	026 s²/100Hz
27	General jerk unit	027 GJU
21		

Unit ID	Unit	Units String (nnn unit)				
29	Messages per second	029 Msgs/s				
30	Hours	030 Hours				
31	Minutes	031 Mins				
32	Seconds	032 s				
33	Milliseconds	033 ms				
34	Microseconds	034 us				
35	Nanoseconds	035 ns				
36	Volts	036 V				
37	Amperes	037 A				
38	Ohms	038 Ω				
39	Millihenrys	039 mH				
40	Kilowatts	040 kW				
41	Kilo-Volt-Amps-Reactive	041 kVAr				
42	Megawatt-hours	042 MWh				
43	Kilowatt-hours	043 kWh				
44	Degrees Celsius	044 °C				
45	Reciprocal of degrees-Celsius	045 1/°C				
46	Kilogram-metres squared	046 kgm²				
47	Newton-Metres	047 Nm				
48	Newtown-Metres per Amperes	048 Nm/A				
49	Open-circuit volts per 1000rpm	049 V/1000rpm				
50	Bits	050 bits				
51	Bytes	051 Bytes				
52	Kilobytes	052 kB				
53	Megabytes	053 MB				
54	Bits per second	054 bit/s				
55	Baud	055 Baud				
56	Kilo baud	056 kBaud				
57	Mega baud	057 MBaud				

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Opumzauon	Operation	parameters	data	Diagnostics	information
				the Motor								

135

Litres**

		u	ne Motor
Unit ID	Unit		Units String (nnn unit)
58	Pole Pairs	058 PolePairs	
59	Percent	59 %	
60	Volts per millisecond		060 V/ms
61	Seconds per radian		061 s/rad
62	Seconds squared per radi	an	062 s²/rad
63	Reciprocal of radians		063 1/rad
64	Millimetres per second sq	uared	064 mm/s ²
65	TensMillimetres per secon	d cube	065 mm/s³x10
66	Poles		066 Poles
67	Pulses per rev		067 ppr
68	HundredMillimetres per se squared	econd	068 mm/s²x100
69	Milliamperes		069 mA
70	Fahrenheit		070 °F
71	pound/square inch		071 psi
72	Watt		072 W
73	MilliBar		073 mBar
74	Bar		074 Bar
75	MetresCubedPerHour		075 m³/h
76	LitresPerMinute		076 I/min
77	Horsepower		077 hp
78	Inches of mercury		078 inHg
79	Gallons per second		079 gal/s
80	Gallons per minute		080 gal/min
81	Gallons per hour		081 gal/h
82	Feet cubed per second		082 ft³/s
83	Feet cubed per minute		083 ft³/min
84	Feet cubed per hour		084 ft³/h
85	Pound		085 lb
86	Pounds per second		086 lb/s
87	Pounds per minute		087 lb/min
88	Pounds per hour		088 Lb/h
89	Feet		089 ft
90	Feet per second		090 ft/s
91	Feet per second squared	091 ft/s²	
92	Feet per minute	092 ft/min	
93	Inches	093 inch	
94	Inches per millisecond		094 inch/ms
95	Inches per millisecond squ	095 inch/ms²	
96	Inches per second		096 inch/s
			ė .

Unit ID	Unit	Units String (nnn unit)					
97	Inches per second squared	097 inch/s²					
98	Degrees per millisecond	098 °/ms					
99	Degrees per millisecond squared	099 °/ms²					
100	Degrees per second	100 °/s					
101	Degrees per second squared	101 °/s²					
102	Counts	102 counts					
103	Counts per millisecond	103 counts/ms					
104	Counts per millisecond squared	104 counts/ms²					
105	Counts per second	105 counts/s					
106	Counts per second squared	106 counts/s²					
107	Inches of water column	107 inch wc					
108	General PID Unit*	108 GPU					
109	Parts per million**	109 PPM					
110	1/min**	110 1/min					
111	Pulse per second**	111 Pulse/s					
112	Litres per second**	112 l/sec					
113	Litres per minute**	113 l/min					
114	Litres per hour**	114 l/h					
115	Metres cubed per second**	115 m ³ /s					
116	Metres cubed per minute**	116 m ³ /min					
117	Metres cubed per hour**	117 m ³ /h					
118	Kilograms per second**	118 kg/s					
119	Kilograms per minute**	119 kg/min					
120	Kilograms per hour**	120 kg/h					
121	Tonne per minute**	121 t/min					
122	Tonne per hour**	122 t/h					
123	Metres per second**	123 m/s					
124	Metres per minute**	124 m/min					
125	Pascals**	125 Pa					
126	Kilopascals**	126 kPa					
127	Metres water gauge**	127 m WG					
128	Millimetres mercury**	128 mmHg					
129	Gallons per minute 2**	129 GPM					
130	Cubic feet per minute**	130 CFM					
131	Pounds per inch squared**	131 lb/in ²					
132	Inches water gauge**	132 i WG					
133	Feet water gauge**	133 ft WG					
134	Gallons**	134 gal					
425	111 44	1051					

135 I

Safet informa		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functi descrip		Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
l Unit				Units (nnn	String unit)		Unit ID	Unit				Jnits String nnn unit)	J
136	Cubic feet**		136 ft	136 ft ³		149	Radians per second cubed**				149 rad/s ³		
137	Cubic metres**		137 m	137 m ³		150	Metres per minute per second**		,	150 m/min/s			
138	Cubic yard**		138 y	138 yd ³		151	Feet per	Feet per minute per second**		•	151 ft/min/s		
139	Acre-foot**		139 a	139 af		152	Metres per second cubed**		,	152 m/s ³			
140	Cubic Kilometres**		140 kı	140 km ³		153	Feet per second cubed**		,	153 ft/s ³			
141	Miles**		141 m	141 mi		154	Counts Per Revolution**			•	154 CPR		

155

156

157

158

159

160

Units Per Revolution**

Inches per revolution**

Cubic Metres per Hour**

Millifarads**

Newtons force**

Millimetres per revolution**

155 UPR

156 mm/rev

157 inch/rev

158 mF

160 N

159 CMH

142 km

143 lbF

144 PLI

145 lb/ft³

146 kg/m³

147 rad/s

148 rad/s²

	148	Radians per second squared**
*	= Spe	cial unit to allow user setup of PID units

^{** =} New units for industry

Kilometres**

Pounds force**

Pounds per Linear Inch**

Pounds per cubic foot**

Radians per second**

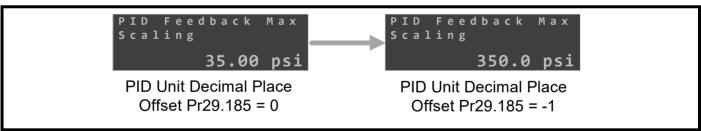
Kilograms per cubic metre**

142

143

144

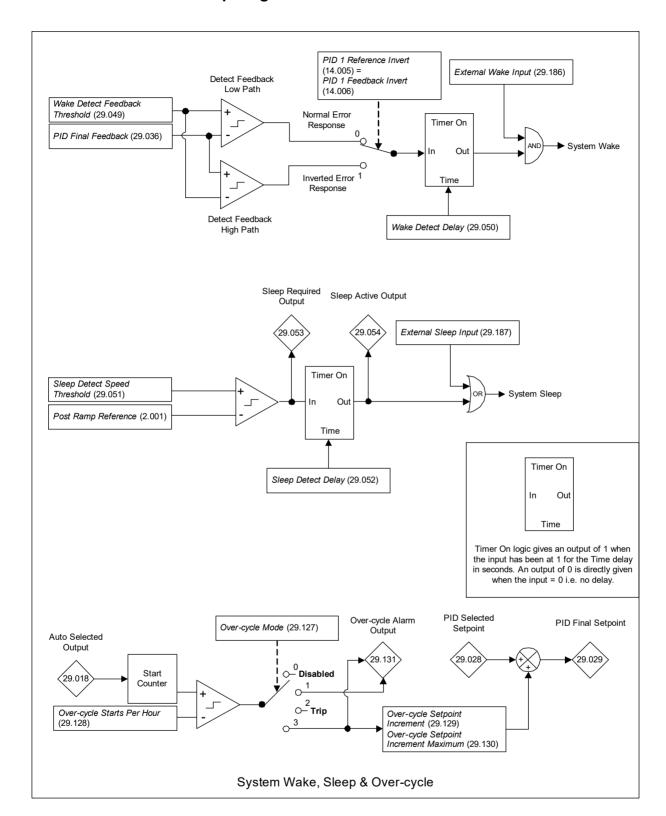
145


146

147

Parameter	29.185 PID Unit Decimal Places							
Minimum	0	Maximum	5					
Default	2	Units						

This parameter allows the decimal places shown on the keypad display for PID related units to be adjusted allowing for PID feedback sensors with a large integer range to be accommodated. Setting a value of 2, (the default), gives 2 decimal places on the display, setting a value of 1, (the default), gives 1 decimal place on the display.


E.g. a sensor has a range of 0 to 350 psi, but the default range of Pr 29.032 is 0.01 to 327.67, by setting Pr 29.185 to 1, the range becomes 0.1 to 3276.7 where 350 may be accommodated.

The decimal places of parameters 29.022, 29.023, 29.024, 29.025, 29.028, 28.029, 29.031, 29.032, 29.036, 29.037, 29.039, 29.041, 29.044, 29.045, 29.049, 29.073, 29.076, 29.174, 29.176 and 29.178 are affected by the setting of this parameter.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

7.26 External wake and sleep diagram

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

7.27 External wake and sleep parameters

To support external controls allowing software written on an MCi module to interact with the drives wake and sleep controls are required. The wake system requires a bit parameter that is ANDed to the wake threshold where the User wake bit must be set to 1 to permit the system to wake, such as a minimum suction pressure to allow the system to start. The sleep system requires a bit parameter that is ORed to the sleep threshold mechanism such that external code can cause the drive to enter the sleep state, such as a minimum pump suction pressure control.

Parameter	29.186 External Wake Input		
Minimum	0	Maximum	1
Default	1	Units	

This bit allows a plug-in option such as an MCi200 or MCi210 to affect when the F600 wakes by logical ANDing this bit with the result of the F600 wake logic, (as controlled by Pr **29.049** and Pr **29.050**).

When set to 1 and provided the drive is sleeping, this indicates that the External wake control is satisfied that the system must wake, and provided the F600 wake logic is satisfied, the drive will wake.

When set to 0 and provided the drive is sleeping, this indicates that the External wake control isn't satisfied where the system must remain in the sleeping state and will do so regardless of the state of the F600 wake logic.

The F600 wake detect delay Pr **29.050** has no effect on when the external wake is actioned i.e. the wake bit is applied directly with no delay. It is expected that the user will program the external wake delay into their software.

Where external wake control isn't required set this parameter to 1.

This parameter has no effect if the drive is already running.

Parameter	29.187 External Sleep Input		
Minimum	0	Maximum	1
Default	0	Units	

This bit allows a plug-in option such as an MCi200 or MCi210 to affect when the F600 sleeps by logical ORing this bit with the result of the F600 sleep logic, (as controlled by Pr 29.051 and Pr 29.052).

When set to 1 and provided the drive is in a running state, this indicates that the External Sleep control is satisfied that the system must go to sleep. This control acts in parallel with the F600 sleep system, where either can cause the system to sleep. It is recommended that once the system is in the sleeping state as indicated by Pr **29.003**, the External sleep bit must be set back to 0.

When set to 0, this indicates F600 External sleep control doesn't require a sleep, where the system sleep control is handled by F600 sleep logic.

In a Cascade or Multi-leader system, when an external sleep request has been made, all assist drives / soft starters will be shut down prior the leader drive shutting down, regardless of the demand from the main process PID.

The F600 sleep detect delay Pr **29.052** has no effect on when the external sleep is actioned, i.e. the sleep bit is applied directly with no delay. It is expected that the user will program the external wake delay into their software.

Where external sleep control isn't required set this parameter to 0.

This parameter has no effect if the drive is already sleeping.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

7.28 Additional features

To extend the pump specific functionality, additional logic is provided in menus 9, 12 and 14. The following table indicates the functionality available.

Menu	Function	Use
9	Logic functions	Perform simple binary logic like ANDing
9	Motorised Pot	Bit type control to numerical output
9	Binary Sum	Bit type to numerical conversion
9	Timers	Perform actions after specified times using the keypad real time clock.
12	Threshold detectors	Numerical level to binary output.
12	Variable selectors	Numerical signal processing and selection
14	Second PID controller	Trim the main PID e.g. to implement anti-cavitation or control external valves.

Please see the advanced parameters diagrams for more information on these functions.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-			Ť			

8 Optimization

This chapter takes the user through methods of optimizing the drive set-up and maximize the performance. The auto-tuning features of the drive simplify the optimization tasks.

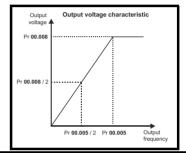
8.1 Motor map parameters

8.1.1 Open loop motor control

Pr 00.006 {05.007} Rated Current

Defines the maximum continuous motor current

- The rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:
- Current limits (see section 8.3 Switching frequency on page 338, for more information).
- Motor thermal overload protection (see section 8.1.4 RFC-S mode Permanent magnet motor with Position feedback on page 335, for more information)
- Slip compensation (see Enable Slip Compensation (05.027), later in this table)
- Dynamic V/F control


Pr 00.008 {05.009} Rated Voltage

Pr 05.006 Rated Frequency

Defines the voltage applied to the motor at rated frequency

Defines the frequency at which rated voltage is applied

The Rated Voltage (00.008) and the Rated Frequency (00.005) are used to define the voltage to frequency characteristic applied to the motor (see Open Loop Control Mode (05.014), later in this table). The Rated Frequency (00.006) is also used in conjunction with the motor rated speed to calculate the rated slip for slip compensation (see Rated Speed (00.007), later in this table).

Pr 00.007 {05.008} Rated Speed

Pr 00.010 {05.011} Number Of Motor Poles

Defines the full load rated speed of the motor

Defines the number of motor poles

The motor rated speed and the number of poles are used with the motor rated frequency to calculate the rated slip of induction machines in Hz.

Rated slip (Hz) = Motor rated frequency - (Number of pole pairs x [Motor rated speed / 60]) = $00.047 = \left(\frac{00.010}{2} \times \frac{00.007}{60}\right)$

If Pr **00.007** is set to 0 or to synchronous speed, slip compensation is disabled. If slip compensation is required this parameter should be set to the nameplate value, which should give the correct rpm for a hot machine. Sometimes it will be necessary to adjust this when the drive is commissioned because the nameplate value may be inaccurate. Slip compensation will operate correctly both below base speed and within the field-weakening region. Slip compensation is normally used to correct for the motor speed to prevent speed variation with load. The rated load rpm can be set higher than synchronous speed to deliberately introduce speed droop. This can be useful to aid load sharing with mechanically coupled motors.

Pr **00.010** is also used in the calculation of the motor speed display by the drive for a given output frequency. When Pr **00.010** is set to 'Automatic', the number of motor poles is automatically calculated from the rated frequency Pr **00.005**, and the motor rated speed Pr **00.007**.

Number of poles = 120 x (Rated Frequency (00.005) / Rated Speed (00.007)) rounded to the nearest even number.

Pr 00.009 {05.010} Rated Power Factor

Defines the angle between the motor voltage and current

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. The power factor is used in conjunction with the *Rated Current* (00.006), to calculate the rated active current and magnetising current of the motor. The rated active current is used extensively to control the drive, and the magnetising current is used in vector mode stator resistance compensation. It is important that this parameter is set up correctly. The drive can measure the motor rated power factor by performing a rotating autotune (see Autotune (Pr 05.012), below).

Safety	Product	Mechanical	Electrical	Getting	Basic	Eupotional		NV Media Card	Advanced	Tochnical		UL listing
information	information	installation	installation	started / Running	parameters	Functional descriptions	Optimization	Operation	parameters	Technical data	Diagnostics	information
IIIIOIIIIalioii	illioilliation	IIIStaliation	IIIStaliatiOII	the Motor	parameters	descriptions		Operation	parameters	uala		IIIIOIIIIalioii

Pr 00.013 {05.012} Autotune

There are two autotune tests available in open loop mode, a stationary and a rotating test. A rotating autotune should be used whenever possible so the measured value of power factor of the motor is used by the drive.

- A stationary autotune can be used when the motor is loaded and it is not possible to remove the load from the motor shaft. The stationary test measures the Stator Resistance (05.014) and Transient Inductance (05.024) which are required for good performance in vector control modes (see Open Loop Control Mode (00.007), later in this table). The stationary autotune does not measure the power factor of the motor so the value on the motor nameplate must be entered into Pr 00.009. To perform a Stationary autotune, set Pr 05.012 to 1, and provide the drive with both an enable signal (on terminal 29) and a Hand select signal (on terminal 25).
- A rotating autotune should only be used if the motor is unloaded. A rotating autotune first performs a stationary autotune, as above, then a rotating test is performed in which the motor is accelerated with currently selected ramps up to a frequency of *Rated Frequency* (05.006) x ²/₃, and the frequency is maintained at that level for 4 seconds. *Stator Inductance* (05.025) is measured and this value is used in conjunction with other motor parameters to calculate *Rated Power Factor* (05.010). To perform a Rotating autotune, set Pr 05.012 to 2, and provide the drive with both an enable signal (on terminal 29) and a Hand select signal (on terminal 25).

Following the completion of an autotune test the drive will go into the inhibit state. The drive must be placed into a controlled disable condition before the drive can be made to run at the required reference. The drive can be put in to a controlled disable condition by removing the Safe Torque Off signal from terminal 29, setting the *Drive Enable* (06.015) to OFF (0) or disabling the drive via the *Control Word* (06.042) and *Control Word Enable* (06.043).

Pr 05.014 Open Loop Control Mode

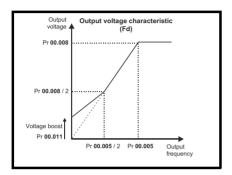
There are several voltage modes available which fall into two categories, vector control and fixed boost.

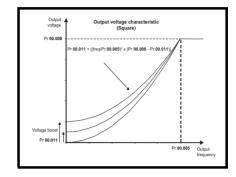
Vector control

Vector control mode provides the motor with a linear voltage characteristic from 0 Hz to motor *Rated Frequency* (**00.005**), and then a constant voltage above motor rated frequency. When the drive operates between motor rated frequency/50 and motor rated frequency/4, full vector based stator resistance compensation is applied. When the drive operates between motor rated frequency/4 and motor rated frequency/2 the stator resistance compensation is gradually reduced to zero as the frequency increases. For the vector modes to operate correctly the *Rated Power Factor* (**00.009**) and *Stator Resistance* (**05.017**) are required to be set up accurately. The drive can be made to measure these by performing an autotune (see Pr **05.012** *Autotune*). The drive can also be made to measure the stator resistance automatically every time the drive is enabled or the first time the drive is enabled after it is powered up, by selecting one of the vector control voltage modes.

- (0) **Ur S** = The stator resistance is measured and the parameter for the selected motor map are over-written each time the drive is made to run. This test can only be done with a stationary motor where the flux has decayed to zero. Therefore this mode should only be used if the motor is guaranteed to be stationary each time the drive is made to run. To prevent the test from being done before the flux has decayed there is a period of 1 second after the drive has been in the ready state during which the test is not done if the drive is made to run again. In this case, previously measured values are used. Ur S mode ensures that the drive compensates for any change in motor parameters due to changes in temperature. The new value of stator resistance is not automatically saved to the drive's EEPROM.
- (4) **Ur I** = The stator resistance is measured when the drive is first made to run after each power-up. This test can only be done with a stationary motor. Therefore this mode should only be used if the motor is guaranteed to be stationary the first time the drive is made to run after each power-up. The new value of stator resistance is not automatically saved to the drive's EEPROM.
- (1) **Ur** = The stator resistance is not measured. The user can enter the motor and cabling resistance into the *Stator Resistance* (**05.017**). However this will not include resistance effects within the drive inverter. Therefore if this mode is to be used, it is best to use an autotune test initially to measure the stator resistance.
- (3) **Ur_Auto** = The stator resistance is measured once, the first time the drive is made to run. After the test has been completed successfully the *Open Loop Control Mode* (05.014) is changed to Ur mode. The *Stator Resistance* (05.017) parameter is written to, and along with the *Open Loop Control Mode* (05.014), are saved in the drive's EEPROM. If the test fails, the voltage mode will stay set to Ur Auto and the test will be repeated next time the drive is made to run.

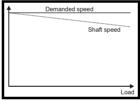
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor					-			


Pr 05.014 Open Loop Control Mode (cont)


Fixed boost

The stator resistance is not used in the control of the motor, instead a fixed characteristic with low frequency voltage boost as defined by parameter Pr **00.008**, is used. Fixed boost mode should be used when the drive is controlling multiple motors. There are two settings of fixed boost available: (2) **Fixed** = This mode provides the motor with a linear voltage characteristic from 0 Hz to *Rated Frequency* (**00.005**), and then a constant voltage above rated frequency.

(5) **Square** = This mode provides the motor with a square law voltage characteristic from 0 Hz to *Rated Frequency* (**00.005**), and then a constant voltage above rated frequency. This mode is suitable for variable torque applications like fans and pumps where the load is proportional to the square of the speed of the motor shaft. This mode should not be used if a high starting torque is required.


For both these modes, at low frequencies (from 0 Hz to ½ x Pr 00.005) a voltage boost is applied defined by Pr 00.011 as shown below:

Pr 05.027 Enable Slip Compensation

When a motor, being controlled in open loop mode, has load applied a characteristic of the motor is that the output speed droops in proportion to the load applied as shown:

In order to prevent the speed droop shown above slip compensation should be enabled. To enable slip compensation Pr **05.027** must be set to a 1 (this is the default setting), and the motor rated speed must be entered in Pr **00.007** (Pr **05.008**).

The motor rated speed parameter should be set to the synchronous speed of the motor minus the slip speed. This is normally displayed on the motor nameplate, i.e. for a typical 18.5 kW, 50 Hz, 4 pole motor, the motor rated speed would be approximately 1465 rpm. The synchronous speed for a 50 Hz, 4 pole motor is 1500 rpm, so therefore the slip speed would be 35 rpm. If the synchronous speed is entered in Pr 00.007, slip compensation will be disabled. If too small a value is entered in Pr 00.007, the motor will run faster than the demanded frequency. The synchronous speeds for 50 Hz motors with different numbers of poles are as follows:

2 pole = 3000 rpm, 4 pole = 1500 rpm, 6 pole =1000 rpm, 8 pole = 750 rpm

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

8.1.2 RFC-A mode

Induction motor with position feedback

Pr 00.006 {05.007} Motor Rated Current

Defines the maximum motor continuous current

The motor rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:

- Motor thermal overload protection (see section 8.1.4 RFC-S mode Permanent magnet motor with Position feedback on page 335, for more information)
- · Vector control algorithm

Pr 00.008 {05.009} Rated Voltage

Defines the voltage applied to the motor at rated frequency

Defines the frequency at which rated voltage is applied

Pr 05.006 Rated Frequency

The motor rated voltage Pr 00.008 and the motor rated frequency Pr 00.006 are used to define the relationship between the voltage and frequency applied to the motor.

The motor rated voltage is used by the field controller to limit the voltage applied to the motor. Normally this is set to the nameplate value. To allow current control to be maintained, it is necessary for the drive to leave some 'headroom' between the motor terminal voltage and the maximum available drive output voltage. For good transient performance at high speed, the motor rated voltage should be set below 95 % of the minimum supply voltage to the drive.

The motor rated voltage and motor rated frequency are also used during the rotating autotune test (see Autotune Pr **05.012** later in this table) therefore, it is important that the correct value for motor rated voltage is used.

Pr 00.007 {05.008} Rated Speed

Defines the full load rated speed of the motor

Pr 00.010 {05.011} Number Of Motor Poles

Defines the number of motor poles

The motor rated speed and motor rated frequency are used to determine the full load slip of the motor which is used by the vector control algorithm. Incorrect setting of this parameter has the following effects:

- · Reduced efficiency of motor operation
- · Reduction of maximum torque available from the motor
- · Reduced transient performance
- · Inaccurate control of absolute torque in torque control modes

The nameplate value is normally the value for a hot motor; however, some adjustment may be required when the drive is commissioned if the nameplate value is inaccurate.

When Pr **00.010** is set to 'Automatic', the number of motor poles is automatically calculated from the motor *Rated Frequency* (**00.005**), and the motor *Rated Speed* (**00.007**).

Number of poles = 120 x (Motor Rated Frequency (00.006 / Motor Rated Speed (00.007) rounded to the nearest even number.

Pr 00.009 {5.010} Rated Power Factor

Defines the angle between the motor voltage and current

The power factor is the true power factor of the motor, i.e. the angle between the motor voltage and current. If the *Stator Inductance* (05.025) is set to zero then the power factor is used in conjunction with the motor *Rated Current* (00.006) and other motor parameters to calculate the rated active and magnetising currents of the motor, which are used in the vector control algorithm. If the stator inductance has a non-zero value this parameter is not used by the drive, but is continuously written with a calculated value of power factor. The stator inductance can be measured by the drive by performing a rotating autotune (see *Autotune* (Pr 05.012), later in this table).

Pr 05.012 Autotune

The following describes how an auto-tune test can be initiated and normal operation can be resumed after the test for RFC-A mode:

- An auto-tune test cannot be initiated if the drive is tripped or the drive inverter is active, i.e. Drive Healthy (10.001) = 0 or Drive Active (10.002) = 1. The inverter can be made inactive by ensuring that the Final drive enable is inactive, or the Final drive run is inactive and Hold Zero Speed (06.008) = 0.
- 2. An auto-tune test is initiated by setting Auto-tune (05.012) to a non-zero value and making the Final drive enable and the Final drive run active.
- 3. All tests that move the motor will move the motor in the forward direction if *Reverse Select* (01.012) = 0 or the reverse direction if *Reverse Select* (01.012) = 1.
- 4. If the auto-tune sequence is completed successfully the Final drive enable is set to the inactive state and *Auto-tune* (**05.012**) is set to zero. The Final drive enable can only be set to the active state again by removing the enable and reapplying it. The enable can be removed by setting *Drive Enable* (**06.015**) = 0, or by setting bit 0 of the *Control Word* (**06.042**) to 0 provided *Control Word Enable* (**06.043**) = 1, or by making *Hardware Enable* (**06.029**) = 0.
- 5. If a trip occurs during the auto-tune sequence the drive will go into the trip state and *Auto-tune* (05.012) is set to zero. As in 4. above the enable must be removed and re-applied before the drive can be restarted after the trip has been reset. However, care should be taken because if the auto-tune was not completed the drive parameters that should have been measured and set up will still have their original values.
- 6. If the Final drive enable is made active, the Final drive run is inactive and *Hold Zero Speed* (**06.008**) = 1 the drive would normally be in the Stop state (i.e. the inverter is active, but the frequency or speed reference is 0).

The following describes the effects of the auto-tune test on the drive parameters for RFC-A mode:

- 1. All auto-tune tests rely on the motor being stationary when the test is initiated to give accurate results.
- 2. If Select Motor 2 Parameters (11.045) = 0 then the parameters associated with motor map 1 are updated as a result of the test, and if Select Motor 2 Parameters (11.045) = 1 the parameters associated with motor map 2 are updated.
- 3. When each stage of the test is completed the results written to the appropriate parameters and these parameters saved in the drive non-volatile memory. If *Parameter Cloning* (11.042) is set to 3 or 4 the parameters are also written to a non-volatile media card fitted in the drive.

ı					Getting								
ı	Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
	information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
					the Motor	-			-	-			

Pr 04.013 / Pr 04.014 Current Loop Gains

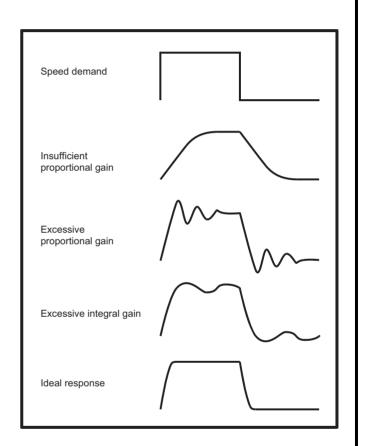
The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The *Current Controller Kp Gain* (04.013) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by performing a stationary or rotating autotune (see *Autotune Pr* 05.012, earlier in this table) the drive measures the *Stator Resistance* (05.017) and *Transient Inductance* (00.016) of the motor and calculates the current loop gains.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5 % overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed Sensorless RFC-A induction motor applications) the integral gain may need to have a significantly higher value.

Speed Loop Gains 03.010, 03.011, 03.012

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term

Speed Controller Proportional Gain (Kp), Pr 03.010


If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the stability limit is reached.

Speed Controller Integral Gain (Ki), Pr 03.011

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application. For RFC-A Sensorless mode, it is unlikely that the integral gain can be increased much above 0.50.

Differential Gain (Kd), Pr 03.012

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
	omaaon	otaliation	otaliation	the Motor	parametere	u o o o i i p ii o i i o		opolulo	parameters	444		oauo

8.1.3 RFC-S Sensorless mode

Permanent magnet motor without Position feedback

Pr 00.006 {05.007} Rated Current

Defines the maximum motor continuous current

The motor rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:

 Motor thermal overload protection (see section 8.1.4 RFC-S mode Permanent magnet motor with Position feedback on page 335, for more information)

Pr 00.010 {05.011} Number Of Motor Poles

Defines the number of motor poles

The number of motor poles parameter defines the number of electrical revolutions in one whole mechanical revolution of the motor. This parameter must be set correctly for the control algorithms to operate correctly. When Pr **00.010** is set to "Automatic" the number of poles is 6.

Pr 00.013 {05.012} Autotune

The following describes how an auto-tune test can be initiated and normal operation can be resumed after the test for RFC-S mode:

An auto-tune test cannot be initiated if the drive is tripped or the drive inverter is active, i.e. *Drive Healthy* (10.001) = 0 or *Drive Active* (10.002) = 1. The inverter can be made inactive by ensuring that the Final drive enable is inactive, or the Final drive run is inactive and *Hold Zero Speed* (06.008) = 0.

An auto-tune test is initiated by setting Auto-tune (05.012) to a non-zero value and making the Final drive enable and the Final drive run active.

All tests that move the motor will move the motor in the forward direction if Reverse Select (01.012) = 0 or the reverse direction if Reverse Select (01.012) = 1.

If the auto-tune sequence is completed successfully the Final drive enable is set to the inactive state and *Auto-tune* (**05.012**) is set to zero. The Final drive enable can only be set to the active state again by removing the enable and re-applying it. The enable can be removed by setting *Drive Enable* (**06.015**) = 0, or by setting bit 0 of the *Control Word* (**06.042**) to 0 provided *Control Word Enable* (**06.043**) = 1, or by making *Hardware Enable* (**06.029**) = 0.

If a trip occurs during the auto-tune sequence the drive will go into the trip state and *Auto-tune* (**05.012**) is set to zero. As in 4 above the enable must be removed and re-applied before the drive can be restarted after the trip has been reset. However, care should be taken because if the auto-tune was not completed the drive parameters that should have been measured and set up will still have their original values.

If the Final drive enable is made active, the Final drive run is inactive and *Hold Zero Speed* (**06.008**) = 1 the drive would normally be in the Stop state (i.e. the inverter is active, but the frequency or speed reference is 0).

The following describes the effects of the auto-tune test on the drive parameters for RFC-S mode:

All auto-tune tests rely on the motor being stationary when the test is initiated to give accurate results.

When each stage of the test is completed, the results are written to the appropriate parameters and these parameters saved in the drive non-volatile memory. If *Parameter Cloning* (11.042) is set to 3 or 4 the parameters are also written to a non-volatile media card fitted in the drive.

Pr 00.019 {03.079} Sensorless Mode Filter

When RFC-S sensorless mode is active the measured speed can include some ripple, which increases as the drive passes into field weakening. A filter is applied to the estimated speed and *Sensorless Mode Filter* (03.079) defines the time constant. The default time constant is 64 ms. This is particularly useful when using standard ramp or spinning start with a low friction high inertia load, and can prevent over voltage trips when the drive has no braking resistor.

332

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor					-			

Pr 00.014 (05.064) RFC Low Speed Mode | Pr 00.015 (05.071) Low Speed Sensorless Mode Current

(0) Injection mode

For low speed sensorless operation with signal injection (*RFC Low Speed Mode* (**05.064**) = 0) it is necessary to have a ratio of Lq/Ld = 1.1. Even if a motor has a larger ratio on no load, this ratio normally reduces as the q axis current is increased from zero. *Low Speed Sensorless Mode Current* (**05.071**) should be set at a level that is lower than the point where the inductance ratio falls to 1.1. The value of this parameter is used to define the drive current limits when signal injection is active and prevent loss of control of the motor.

(1) Non-salient mode

For low speed sensorless operation for non-salient motors (*RFC Low Speed Mode* (**05.064**) = 1) this defines a current applied in the d axis to aid starting. For most motors and application requiring up to 60 % torque on starting the default value is suitable. However the level of current may need to be increased to make the motor start.

(2) Current

This method, which applies a rotating current vector at the frequency defined by the speed reference, can be used with any motor with no saliency or moderate saliency. It should only be used with motors where more of the torque is produced in conjunction with the magnet flux rather than from saliency torque. This mode does not provide the same level of control at low speed as injection mode, but is easier to set up and more flexible than "Non-salient" mode. The following should be considered:

- 1. A current specified by Low Speed Sensorless Mode Current (05.071) is applied when low speed mode is active. This current should be sufficient to start the motor with the highest expected load. If the motor has some saliency with no-load applied, and a suitable saturation characteristic, the drive can detect the rotor position and apply the current at the correct angle to avoid starting transient. If the motor is non-salient as defined by the conditions for Inductance trip then the drive will not attempt to detect the rotor position and the current will be applied at an arbitrary angle. This could cause a starting transient if the level of current applied is high, and so Low Speed Sensorless Mode Current (05.071) should not be set to a higher level than necessary. To minimise the movement as a result of applying the current, it is increased over the period defined by Sensorless Mode Current Ramp (05.063) in the form of a squared characteristic (i.e. it is increased with a low rate of change at the beginning and the rate of change is gradually increased).
- 2. As the level of current when low speed mode is active is not dependent on the applied load, but is as defined by Low Speed Sensorless Mode Current (05.071), and so the motor may become too hot if low speed mode is active for a prolonged period of time.
- 3. Generally Low Speed Sensorless Mode Current (05.071) should be set to a level higher than the expected maximum load, and can be set to a much higher level than the load if the saliency and saturation characteristic allow the position of the rotor to be detected on starting. However, Low Speed Sensorless Mode Current (05.071) should be matched more closely to the expected load under the following conditions: the load inertia is high compared to the motor interia, or there is very little damping/loss in the load system, or where the q axis inductance of the motor changes significantly with load.

(3) Current no test

The "Current" method is used, but no attempt is made to determine the position of the rotor before applying the current. This can be selected for example, if the motor does not have a suitable saturation characteristic to allow the rotor position to be determined during starting, or if faster starting is required. The initial current vector angle will be at an arbitary position with respect to the actual rotor position. As the vector sweeps round it must make the rotor start to rotate. If the ramp rate is too high the rotor may not keep up with the current vector and the motor may not start. If this is the case then the ramp rate should be reduced and/or the current used to start the motor should be increased.

(4) Current step

The current starting modes normally provide a smooth transition between the low speed current mode and normal running at higher speeds. If the drive accelerates very rapidly and only spends short periods of time in each mode the transition smoothing can malfunction. "Current step" mode is similar to "Current no test" mode except that the transition smoothing is disabled. It is not advisable to use this mode unless it is necessary as torque current and torque transients will occur when changing between low speed and normal running operation.

(5) Current only

The "Current" method is used, but no attempt is made to determine the position of the rotor before applying the current. The system remains in this starting mode at all speeds and does not change to the normal operating algorithms. This provides a very basic open-loop control method, that is not recommended for most applications. Flux weakening is not possible, and so this method will not operate correctly when the motor voltage approaches the maximum voltage available from the drive.

Pr 04.012 Current Reference Filter 1 Time Constant

Current Reference Filter 1 Time Constant (04.012) defines the time constant of a first order filter that can be applied to the Final Current Reference (04.004). The filter is provided to reduce acoustic noise and vibration produced as a result of position feedback quantisation. The filter introduces a lag in the speed controller loop, and so the speed controller gains may need to be reduced to maintain stability as the filter time constant is increased.

Pr 04.013 / Pr 04.014 Current Loop Gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. The proportional gain (Pr 04.013) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by performing a stationary or rotating autotune (see *Autotune* Pr 05.012, earlier in this table) the drive measures the *Stator Resistance* (05.017) and *Transient Inductance* (05.071) of the motor and calculates the current loop gains.

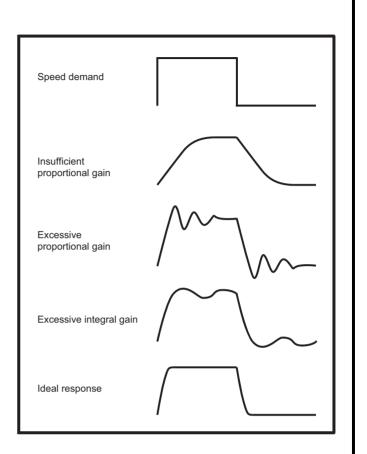
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
			,	the Motor								

Speed Loop Gains Pr 03.010, Pr 03.011, Pr 03.012

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term.

NOTE: In sensorless mode, the speed controller bandwidth may need to be limited to 10 Hz or less for stable operation.

Speed Controller Proportional Gain (Kp), Pr 03.010


If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the stability limit is reached.

Speed Controller Integral Gain (Ki), Pr 03.011

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential Gain (Kd), Pr 03.012

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

334

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-			-			

8.1.4 RFC-S mode Permanent magnet motor with Position feedback

Pr 00.046 {05.007} Rated Current

Defines the maximum motor continuous current

The motor rated current parameter must be set to the maximum continuous current of the motor. The motor rated current is used in the following:

- Current limits
- · Motor thermal overload protection (see section 8.2 Motor thermal protection on page 337, for more information)

Pr 00.042 {05.011} Number Of Motor Poles

Defines the number of motor poles

The number of motor poles parameter defines the number of electrical revolutions in one whole mechanical revolution of the motor. This parameter must be set correctly for the control algorithms to operate correctly. When Pr **00.042** is set to "Automatic" the number of poles is 6.

Pr 00.040 {05.012} Autotune

The following describes how an auto-tune test can be initiated and normal operation can be resumed after the test for RFC-S mode:

An auto-tune test cannot be initiated if the drive is tripped or the drive inverter is active, i.e. *Drive Healthy* (10.001) = 0 or *Drive Active* (10.002) = 1.

The inverter can be made inactive by ensuring that the Final drive enable is inactive, or the Final drive run is inactive and Hold Zero Speed (06.008) = 0

- 1. An auto-tune test is initiated by setting Auto-tune (05.012) to a non-zero value and making the Final drive enable and the Final drive run active.
- 2. All tests that move the motor will move the motor in the forward direction if Reverse Select (01.012) = 0 or the reverse direction if Reverse Select (01.012) = 1.
- 3. If the auto-tune sequence is completed successfully the Final drive enable is set to the inactive state and *Auto-tune* (**05.012**) is set to zero. The Final drive enable can only be set to the active state again by removing the enable and re-applying it. The enable can be removed by setting *Drive Enable* (**06.015**) = 0, or by setting bit 0 of the *Control Word* (**06.042**) to 0 provided *Control Word Enable* (**06.043**) = 1, or by making *Hardware Enable* (**06.029**) = 0.
- 4. If a trip occurs during the auto-tune sequence the drive will go into the trip state and *Auto-tune* (**05.012**) is set to zero. As in 4 above the enable must be removed and re-applied before the drive can be restarted after the trip has been reset. However, care should be taken because if the auto-tune was not completed the drive parameters that should have been measured and set up will still have their original values.
- 5. If the Final drive enable is made active, the Final drive run is inactive and *Hold Zero Speed* (06.008) = 1 the drive would normally be in the Stop state (i.e. the inverter is active, but the frequency or speed reference is 0).

The following describes the effects of the auto-tune test on the drive parameters for RFC-S mode:

- 1. All auto-tune tests rely on the motor being stationary when the test is initiated to give accurate results.
- 2. When each stage of the test is completed, the results are written to the appropriate parameters and these parameters saved in the drive non-volatile memory. If *Parameter Cloning* (11.042) is set to 3 or 4 the parameters are also written to a non-volatile media card fitted in the drive.

Pr 00.038 {04.013} / Pr 00.039 {04.014} Current Loop Gains

The current loop gains proportional (Kp) and integral (Ki) gains control the response of the current loop to a change in current (torque) demand. The default values give satisfactory operation with most motors. However, for optimal performance in dynamic applications it may be necessary to change the gains to improve the performance. The proportional gain (Pr 00.038) is the most critical value in controlling the performance. The values for the current loop gains can be calculated by performing a stationary or rotating autotune (see *Autotune* Pr 00.040, earlier in this table) the drive measures the *Stator Resistance* (05.017) and *Transient Inductance* (05.024) of the motor and calculates the current loop gains.

This will give a step response with minimum overshoot after a step change of current reference. The proportional gain can be increased by a factor of 1.5 giving a similar increase in bandwidth; however, this gives a step response with approximately 12.5 % overshoot. The equation for the integral gain gives a conservative value. In some applications where it is necessary for the reference frame used by the drive to dynamically follow the flux very closely (i.e. high speed Sensorless RFC-A induction motor applications) the integral gain may need to have a significantly higher value.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
			,	the Motor								

Speed loop gains (Pr 00.007 {03.010}, Pr 00.008 {03.011}, Pr 00.009 {03.012})

The speed loop gains control the response of the speed controller to a change in speed demand. The speed controller includes proportional (Kp) and integral (Ki) feed forward terms, and a differential (Kd) feedback term. The drive holds two sets of these gains and either set may be selected for use by the speed controller with Pr 03.016. If Pr 03.016 = 0, gains Kp1, Ki1 and Kd1 (Pr 00.007 to Pr 00.009) are used, and if Pr 03.016 = 1, gains Kp2, Ki2 and Kd2 (Pr 03.013 to Pr 03.015) are used. Pr 03.016 may be changed when the drive is enabled or disabled. If the load is predominantly a constant inertia and constant torque, the drive can calculate the required Kp and Ki gains to give a required compliance angle or bandwidth dependant on the setting of Pr 03.017.

Speed Controller Proportional Gain (Kp), Pr 00.007 {03.010} and Pr 03.013

If the proportional gain has a value and the integral gain is set to zero the controller will only have a proportional term, and there must be a speed error to produce a torque reference. Therefore as the motor load increases there will be a difference between the reference and actual speeds. This effect, called regulation, depends on the level of the proportional gain, the higher the gain the smaller the speed error for a given load. If the proportional gain is too high either the acoustic noise produced by speed feedback quantization becomes unacceptable, or the stability limit is reached.

Speed Controller Integral Gain (Ki), Pr 00.008 {03.011} and Pr 03.014

The integral gain is provided to prevent speed regulation. The error is accumulated over a period of time and used to produce the necessary torque demand without any speed error. Increasing the integral gain reduces the time taken for the speed to reach the correct level and increases the stiffness of the system, i.e. it reduces the positional displacement produced by applying a load torque to the motor. Unfortunately increasing the integral gain also reduces the system damping giving overshoot after a transient. For a given integral gain the damping can be improved by increasing the proportional gain. A compromise must be reached where the system response, stiffness and damping are all adequate for the application.

Differential Gain (Kd), Pr 00.009 {03.012} and Pr 03.015

The differential gain is provided in the feedback of the speed controller to give additional damping. The differential term is implemented in a way that does not introduce excessive noise normally associated with this type of function. Increasing the differential term reduces the overshoot produced by under-damping, however, for most applications the proportional and integral gains alone are sufficient.

Speed loop gains (cont) (Pr 00.007 {03.010}, Pr 00.008 {03.011}, Pr 00.009 {03.012})

There are three methods of tuning the speed loop gains dependant on the setting of Pr **03.017**:

1. Pr **03.017** = 0, User set-up.

This involves the connecting of an oscilloscope to analog output 1 to monitor the speed feedback.

Give the drive a step change in speed reference and monitor the response of the drive on the oscilloscope.

The proportional gain (Kp) should be set up initially. The value should be increased up to the point where the speed overshoots and then reduced slightly.

The integral gain (Ki) should then be increased up to the point where the speed becomes unstable and then reduced slightly.

It may now be possible to increase the proportional gain to a higher value and the process should be repeated until the system response matches the ideal response as shown.

The diagram shows the effect of incorrect P and I gain settings as well as the ideal response.

2. Pr **03.017** = 1, Bandwidth set-up

If bandwidth based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:

Pr 03.020 - Required bandwidth,

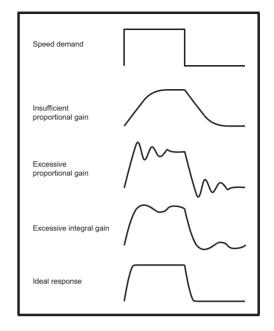
Pr 03.021 - Required damping factor,

Pr 03.018 - Motor and load inertia.

The drive can be made to measure the motor and load inertia by performing a mechanical load measurement autotune (see *Autotune* Pr 00.040, earlier in this table).

3. Pr 03.017 = 2, Compliance angle set-up

If compliance angle based set-up is required, the drive can calculate Kp and Ki if the following parameters are set up correctly:


Pr 03.019 - Required compliance angle,

Pr 03.021 - Required damping factor,

Pr **03.018** - Motor and load inertia The drive can be made to measure the motor and load inertia by performing a mechanical load autotune (see *Autotune* Pr 00.040, earlier in this table).

4. Pr 03.017 = 3, Kp gains times 16

If Speed Controller Set-up Method (03.017) = 3 the selected proportional gain used by the drive is multiplied by 16.

5. Pr **03.017** = 4 - 6

If Speed Controller Set-up Method (03.017) is set to a value from 4 to 6 the Speed Controller Proportional Gain Kp1 (03.010) and Speed Controller Integral Gain Ki1 (03.011) are automatically set up to give the bandwidths given in the table below and a damping factor of unity. These settings give low, standard or high performance.

Speed Controller Set-up Method (03.017)	Performance	Bandwidth
4	Low	5 Hz
5	Standard	25 Hz
6	High	100 Hz

6 Pr **03.017** = 7

If Speed Controller Set-up Method (03.017) = 7 then Speed Controller Proportional Gain Kp1 (03.010), Speed Controller Integral Gain Ki1 (03.011) and Speed Controller Differential Feedback Gain Kd1 (03.012) are set up to give a closed-loop speed controller response that approximates to a first order system with a transfer function of 1 / (sτ + 1), where τ= 1/ωbw and ωbw = 2π x Bandwidth (03.020). In this case the damping factor is meaningless, and Damping Factor (03.021) and Compliance Angle (03.019) have no effect.

8.2 Motor thermal protection

A dual time constant thermal model is provided to estimate the motor temperature as a percentage of its maximum allowed temperature.

The motor thermal protection is modelled using losses in the motor. The losses in the motor are calculated as a percentage value, so that under these conditions the *Motor Protection Accumulator* (**04.019**) would eventually reach 100 %.

Percentage losses = 100 % x [Load related losses + Iron losses]

Where:

Load related losses = $(1 - K_{fe}) \times (I / (K_1 \times I_{Rated}))^2$

Iron losses = $K_{fe} \times (w / w_{Rated})^{1.6}$

Where:

I = Current Magnitude (04.001)

I_{Rated} = Rated Current (05.007)

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

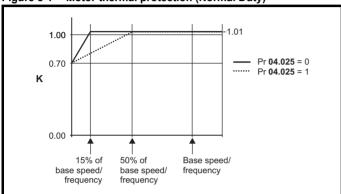
K_{fe} = Rated Iron Losses As Percentage Of Losses (04.039) / 100 %

The Motor Protection Accumulator (04.019) is given by:

Pr **04.019** = Percentage Losses x [(1 - K_2) (1 - e^{-t/t_1}) + K_2 (1 - e^{-t/t_2})]

Where

T = Motor Protection Accumulator (04.019)


K₂ = Motor Thermal Time Constant 2 Scaling (**04.038**) / 100 %

t1 = Motor Thermal Time Constant 1 (04.015)

t² = Motor Thermal Time Constant 2 (**04.037**)

K₁ = Varies, see below

Figure 8-1 Motor thermal protection (Normal Duty)

Both settings of Pr **04.025** are intended for motors where the cooling effect of the motor fan reduces with reduced motor speed, but with different speeds below which the cooling effect is reduced. If Pr **04.025** is 0 the characteristic is intended for motors where the cooling effect reduces with motor speed below 15 % of base speed/frequency. If Pr **04.025** is 1 the characteristic is intended for motors where the cooling effect reduces with motor speed below 50 % of base speed/frequency. The maximum value for K1 is 1.01, so that above the knee of the characteristics the motor can operate continuously up to 101 % current.

When the estimated temperature in Pr **04.019** reaches 100 % the drive takes some action depending on the setting of Pr **04.016**. If Pr **04.016** is 0, the drive trips when Pr **04.019** reaches 100 %. If Pr **04.016** is 1, the current limit is reduced to (K - 0.05) x 100 % when Pr **04.019** reaches 100 %.

The current limit is set back to the user defined level when Pr **04.019** falls below 95 %. The thermal model temperature accumulator is reset to zero at power-up and accumulates the temperature of the motor while them drive remains powered-up. If the rated current defined by Pr **05.007** is altered, the accumulator is reset to zero.

The default setting of the thermal time constant (Pr 04.015) is 89 s which is equivalent to an overload of 110 % for 165 s from cold.

Fire Mode - Important Warning.

When Fire Mode is active the motor overload and thermal protection are disabled, as well as a number of drive protection functions. Fire Mode is provided for use only in emergency situations where the safety risk from disabling protection is less than the risk from the drive tripping - typically in smoke extraction operation to permit evacuation of a building. The use of Fire Mode itself causes a risk of fire from overloading of the motor or drive, so it must only be used after careful consideration of the balance of risks.

Care must be taken to prevent inadvertent activation or de-activation of Fire Mode. Fire Mode is indicated by a flashing display text warning "Fire mode active".

Care must be taken to ensure that parameters Pr **01.053** or Pr **01.054** are not inadvertently re-allocated to different inputs or variables. It should be noted that, by default, Pr **01.054** is controlled from digital input 4 and changing Pr **08.024** can re-allocate this digital input to another parameter. These parameters are at access level 2 in order to minimize the risk of inadvertent or unauthorized changes. It is recommended that User Security be applied to further reduce the risk (see section 5.10 *Parameter access level and security* on page 161). These parameters may also be changed via serial communications so adequate precautions should be taken if this functionality is utilized.

8.3 Switching frequency

The default switching frequency is 3 kHz, however this can be increased up to a maximum of 16 kHz by Pr **05.018** (dependent on drive size). The available switching frequencies are shown below.

Safety information	Product Mechanical information	Electrical started installation Running the Mo	Basic parameters	Functional descriptions	Ontimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--------------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Table 8-1 Available switching frequencies

Drive size	Model	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
3								
4								
5								
6	All	✓	✓	✓	✓	✓	✓	√
7	All		,		•			•
8								
9								
10								
11	400 V	✓	✓	✓	✓	✓		
11	575 and 690 V	✓	✓	✓				
12	400 V	✓	✓	✓	✓	✓		

If the switching frequency is increased from 3 kHz the following apply:

- Increased heat loss in the drive, which means that derating to the output current must be applied.
 See the derating tables for switching frequency and ambient temperature in section 11.1.1 Power and current ratings (Derating for switching frequency and temperature) on page 425.
- 2. Reduced heating of the motor due to improved output waveform quality.
- 3. Reduced acoustic noise generated by the motor.
- 4. Increased sample rate on the speed and current controllers.

A trade off must be made between motor heating, drive heating and the demands of the application with respect to the sample time required.

Table 8-2 Sample rates for various control tasks at each switching frequency

	3, 6, 12 kHz	2, 4, 8, 16 kHz	Open loop	RFC-A / RFC-S		
Level 1	3 kHz = 167μs 6 kHz = 83 μs 12 kHz = 83 μs	2 kHz = 250 μs 4 kHz = 125 μs 8 kHz = 62.5 μs 16 kHz = 62.5 μs	Peak limit	Current controllers		
Level 2	250 μs	2 kHz -500 μs 4 kHz - 250 μs 8 kHz - 125 μs 16 kHz - 125 μs	Current limit and ramps	Speed controller and ramps		
Level 3	1 n	ns	Voltage controller	<u> </u>		
Level 4	4 r	ns	Time critical user interface			
Background			Non-time critical user interface			

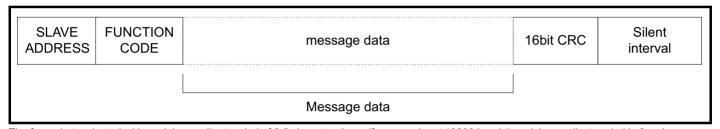
Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

8.4 CT Modbus RTU specification

This section describes the adaptation of the MODBUS RTU protocol offered on Control Techniques' products. The portable software class which implements this protocol is also defined.

MODBUS RTU is a master slave system with half-duplex message exchange. The Control Techniques (CT) implementation supports the core function codes to read and write registers. A scheme to map between MODBUS registers and CT parameters is defined. The CT implementation also defines a 32 bit extension to the standard 16 bit register data format.

8.4.1 MODBUS RTU

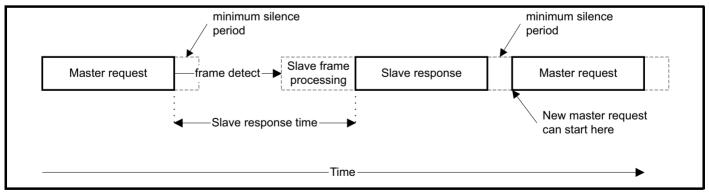

Physical layer

Attribute	Description
Normal physical layer for multi-drop operation	EIA 485 2 wire
Bit stream	Standard UART asynchronous symbols with Non Return to Zero (NRZ)
Symbol	Each symbol consists of:- 1 start bit 8 data bits (transmitted least significant bit first) 2 stop bits*
Baud rates	300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 76800, 115200

^{*} The drive will accept a packet with 1 or 2 stop bits but will always transmit 2 stop bits

RTU framing

The frame has the following basic format



The frame is terminated with a minimum silent period of 3.5 character times (for example, at 19200 baud the minimum silent period is 2 ms). Nodes use the terminating silence period to detect the end of frame and begin frame processing. All frames must therefore be transmitted as a continuous stream without any gaps greater or equal to the silence period. If an erroneous gap is inserted then receiving nodes may start frame processing early in which case the CRC will fail and the frame will be discarded.

MODBUS RTU is a master slave system. All master requests, except broadcast requests, will lead to a response from an individual slave. The slave will respond (i.e. start transmitting the response) within the quoted maximum slave response time (this time is quoted in the data sheet for all Control Techniques products). The minimum slave response time is also quoted but will never be less that the minimum silent period defined by 3.5 character times

If the master request was a broadcast request then the master may transmit a new request once the maximum slave response time has expired.

The master must implement a message time out to handle transmission errors. This time out period must be set to the maximum slave response time + transmission time for the response.

8.4.2 Slave address

The first byte of the frame is the slave node address. Valid slave node addresses are 1 through 247 decimal. In the master request this byte indicates the target slave node; in the slave response this byte indicates the address of the slave sending the response.

Global addressing

Address zero addresses all slave nodes on the network. Slave nodes suppress the response messages for broadcast requests.

Safe inform		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Ontimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
----------------	--	----------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

8.4.3 MODBUS registers

The MODBUS register address range is 16 bit (65536 registers) which at the protocol level is represented by indexes 0 through 65535.

PLC registers

Modicon PLCs typically define 4 register 'files' each containing 65536 registers. Traditionally, the registers are referenced 1 through 65536 rather than 0 through 65535. The register address is therefore decremented on the master device before passing to the protocol.

File type	Description
1	Read only bits ("coil")
2	Read / write bits ("coil")
3	Read only 16bit register
4	Read / write 16bit register

The register file type code is NOT transmitted by MODBUS and all register files can be considered to map onto a single register address space. However, specific function codes are defined in MODBUS to support access to the "coil" registers. All standard CT drive parameters are mapped to register file '4' and the coil function codes are not required.

CT parameter mapping

The Modbus register address is 16 bits in size, of which the upper two bits are used for data type selection leaving 14 bits to represent the parameter address, taking into account the slave increments the address value by 1, this results in a theoretical maximum parameter address of 163.84 (limited to 162.99 in software) when the default standard addressing mode (see *Serial Mode Pr* **00.035** {11.024}) is used.

To access a parameter number above 99 in any drive menu then the modified addressing mode must be used (see *Serial Mode Pr* **00.035** {**11.024**}), this will allow access to parameter numbers up to 255 but also limit the maximum menu number to 63.

The Modbus slave device increments the register address by 1 before processing the command, this effectively prevents access to parameter Pr 00.000 in the drive or option module.

The table below shows how the start register address is calculated for both addressing modes.

Parameter	Addressing mode	Protocol register							
0 mm nnn	Standard	mm x 100 + ppp - 1							
0.mm.ppp	Modified		mm x 256	+ ppp - 1					
		Examples							
	16-bit 32-bit								
		Decimal	Hex (0x)	Decimal	Hex (0x)				
0.01.021	Standard	120	00 78	16504	40 78				
0.01.021	Modified	276	01 14	16660	41 14				
0.01.000	Standard	99	00 63	16483	40 63				
0.01.000	Modified	255	00 FF	16639	40 FF				
0.03.161	Standard	N/A	N/A	N/A	N/A				
0.03.101	Modified	928	03 A0	17312	43 A0				

Data types

The MODBUS protocol specification defines registers as 16 bit signed integers. All CT devices support this data size. Refer to the section 8.4.7 Extended data types on page 344 for detail on accessing 32 bit register data.

8.4.4 Data consistency

All CT devices support a minimum data consistency of one parameter (16 bit or 32 bit data). Some devices support consistency for a complete multiple register transaction.

8.4.5 Data encoding

MODBUS RTU uses a 'big-endian' representation for addresses and data items (except the CRC, which is 'little-endian'). This means that when a numerical quantity larger than a single byte is transmitted, the MOST significant byte is sent first. So for example

16 - bits 0x1234 would be 0x12 0x34

32 - bits 0x12345678 would be 0x12 0x34 0x56 0x78

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

8.4.6 Function codes

The function code determines the context and format of the message data. Bit 7 of the function code is used in the slave response to indicate an exception.

The following function codes are supported:

Code	Description
3	Read multiple 16 bit registers
6	Write single register
16	Write multiple 16 bit registers
23	Read and write multiple 16 bit registers

FC03 Read multiple

Read a contiguous array of registers. The slave imposes an upper limit on the number of registers, which can be read. If this is exceeded the slave will issue an exception code 2.

Table 8-3 Master request

Byte	Description
0	Slave destination node address 1 through 247, 0 is global
1	Function code 0x03
2	Start register address MSB
3	Start register address LSB
4	Number of 16 bit registers MSB
5	Number of 16 bit registers LSB
6	CRC LSB
7	CRC MSB

Table 8-4 Slave response

Byte	Description
0	Slave source node address
1	Function code 0x03
2	Length of register data in read block (in bytes)
3	Register data 0 MSB
4	Register data 0 LSB
3+byte count	CRC LSB
4+byte count	CRC MSB

FC06 Write single register

Writes a value to a single 16 bit register. The normal response is an echo of the request, returned after the register contents have been written. The register address can correspond to a 32 bit parameter but only 16 bits of data can be sent.

Table 8-5 Master request

Byte	Description
0	Slave node address 1 through 247, 0 is global
1	Function code 0x06
2	Register address MSB
3	Register address LSB
4	Register data MSB
5	Register data LSB
6	CRC LSB
7	CRC MSB

342

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional		NV Media Card	Advanced	Technical		UL listina
information	information	installation	installation		parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	F							

Table 8-6 Slave response

Byte	Description
0	Slave source node address
1	Function code 0x06
2	Register address MSB
3	Register address LSB
4	Register data MSB
5	Register data LSB
6	CRC LSB
7	CRC MSB

FC16 Write multiple
Writes a contiguous array of registers. The slave imposes an upper limit on the number of registers which can be written. If this is exceeded the slave will discard the request and the master will time out.

Table 8-7 Master request

Byte	Description
0	Slave node address 1 through 247, 0 is global
1	Function code 0x10
2	Start register address MSB
3	Start register address LSB
4	Number of 16 bit registers MSB
5	Number of 16 bit registers LSB
6	Length of register data to write (in bytes)
7	Register data 0 MSB
8	Register data 0 LSB
7+byte count	CRC LSB
8+byte count	CRC MSB

Table 8-8 Slave response

Byte	Description
0	Slave source node address
1	Function code 0x10
2	Start register address MSB
3	Start register address LSB
4	Number of 16 bit registers written MSB
5	Number of 16 bit registers written LSB
6	CRC LSB
7	CRC MSB

Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

FC23 Read/Write multiple

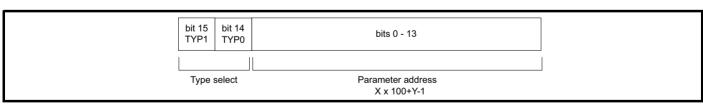
Writes and reads two contiguous arrays of registers. The slave imposes an upper limit on the number of registers which can be written. If this is exceeded the slave will discard the request and the master will time out.

Table 8-9 Master request

Byte	Description
0	Slave node address 1 through 247, 0 is global
1	Function code 0x17
2	Start register address to read MSB
3	Start register address to read LSB
4	Number of 16 bit registers to read MSB
5	Number of 16 bit registers to read LSB
6	Start register address to write MSB
7	Start register address to write LSB
8	Number of 16 bit registers to write MSB
9	Number of 16 bit registers to write LSB
10	Length of register data to write (in bytes)
11	Register data 0 MSB
12	Register data 0 LSB
11+byte count	CRC LSB
12+byte count	CRC MSB

Table 8-10 Slave response

Byte	Description			
0	Slave source node address			
1	Function code 0x17			
2	Length of register data in read block (in bytes)			
3	Register data 0 MSB			
4	Register data 0 LSB			
3+byte count	CRC LSB			
4+byte count	CRC MSB			


8.4.7 Extended data types

Standard MODBUS registers are 16bit and the standard mapping maps a single #X.Y parameter to a single MODBUS register. To support 32 bit data types (integer and float) the MODBUS multiple read and write services are used to transfer a contiguous array of 16bit registers.

Slave devices typically contain a mixed set of 16 bit and 32 bit registers. To permit the master to select the desired 16 bit or 32 bit access the top two bits of the register address are used to indicate the selected data type.

Note

The selection is applied for the whole block access.

The 2bit type field selects the data type according to the table below:

Type field bits 15-14	Selected data type	Comments
00	INT16	backward compatible
01	INT32	
10	Float32	IEEE754 standard Not supported on all slaves
11	Reserved	

If a 32 bit data type is selected then the slave uses two consecutive 16 bit MODBUS registers (in 'big endian'). The master must also set the correct 'number of 16 bit registers'.

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Example, read Pr 20.021 through Pr 20.024 as 32 bit parameters using FC03 from node 8:

Table 8-11 Master request

Byte	Value	Description
0	0x08	Slave destination node address
1	0x03	FC03 multiple read
2	0x47	Start register address Pr 20.021
3	0xE4	(16384 + 2021 - 1) = 18404 = 0x47E4
4	0x00	Number of 16bit registers to read
5	0x08	Pr 20.021 through Pr 20.024 is 4x32 bit registers = 8x16 bit registers
6	CRC LSB	
7	CRC MSB	

Table 8-12 Slave response

Byte	Value	Description
0	0x08	Slave destination node address
1	0x03	FC03 multiple read
2	0x10	Length of data (bytes) = 4x32 bit registers = 16 bytes
3-6		Pr 20.021 data
7-10		Pr 20.022 data
11-14		Pr 20.023 data
15-18		Pr 20.024 data
19	CRC LSB	
20	CRC MSB	

Reads when actual parameter type is different from selected

The slave will send the least significant word of a 32 bit parameter if that parameter is read as part of a 16 bit access.

The slave will sign extend the least significant word if a 16 bit parameter is accessed as a 32 bit parameter. The number of 16 bit registers must be even during a 32 bit access.

Example, If Pr **01.028** is a 32 bit parameter with a value of 0x12345678, Pr **01.029** is a signed 16 bit parameter with a value of 0xABCD, and Pr **01.030** is a signed 16 bit parameter with a value of 0x0123.

Read	Start register address	Number of 16 bit registers	Response	Comments
Pr 01.028	127	1	0x5678	Standard 16 bit access to a 32 bit register will return low 16 bit word of truncated data
Pr 01.028	16511*	2	0x12345678	Full 32 bit access
Pr 01.028	16511*	1	Exception 2	Number of words must be even for 32 bit access
Pr 01.029	128	1	0xABCD	Standard 16 bit access to a 32 bit register will return low 16 bit word of data
Pr 01.029	16512*	2	0xFFFFABCD	32 bit access to a 16 bit register will return 32 bit sign extended data
Pr 01.030	16513*	2	0x00000123	32 bit access to a 16 bit register will return 32 bit sign extended data
Pr 01.028 to Pr 01.029	127	2	0x5678, 0xABCD	Standard 16 bit access to a 32 bit register will return low 16 bit word of truncated data
Pr 01.028 to Pr 01.029	16511*	4	0x12345678, 0xFFFFABCD	Full 32 bit access

^{*} Bit 14 is set to allow 32 bit access.

Writes when actual parameter type is different from selected

The slave will allow writing a 32 bit value to a 16 bit parameter as long as the 32 bit value is within the normal range of the 16 bit parameter.

The slave will allow a 16 bit write to a 32 bit parameter. The slave will sign extend the written value, therefore the effective range of this type of write will be -32768 to +32767.

Examples, if Pr 01.028 has a range of ±100000, and Pr 01.029 has a range of ±10000.

Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	--	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Write	Start register address	Number of 16bit registers	Data	Comments
Pr 01.028	127	1	0x1234	Standard 16 bit write to a 32bit register. Value written = 0x00001234
Pr 01.028	127	1	0xABCD	Standard 16 bit write to a 32bit register. Value written = 0xFFFFABCD
Pr 01.028	16511	2	0x00001234	Value written = 0x00001234
Pr 01.029	128	1	0x0123	Value written = 0x0123
Pr 01.029	16512	2	0x00000123	Value written = 0x00000123

^{*} Bit 14 is set to allow 32 bit access

8.4.8 Exceptions

The slave will respond with an exception response if an error is detected in the master request. If a message is corrupted and the frame is not received or the CRC fails then the slave will not issue an exception. In this case the master device will time out. If a write multiple (FC16 or FC23) request exceeds the slave maximum buffer size then the slave will discard the message. No exception will be transmitted in this case and the master will time out.

Exception message format

The slave exception message has the following format.

Byte	Description
0	Slave source node address
1	Original function code with bit 7 set
2	Exception code
3	CRC LSB
4	CRC MSB

Exception codes

The following exception codes are supported.

	Code	Description				
Γ	1	unction code not supported				
	2	Register address out of range, or request to read too many registers				

Parameter over range during block write FC16

The slave processes the write block in the order the data is received. If a write fails due to an out of range value then the write block is terminated. However, the slave does not raise an exception response, rather the error condition is signalled to the master by the number of successful writes field in the response.

Parameter over range during block read/write FC23

There will be no indication that there has been a value out of range during a FC23 access.

8.4.9 CRC

The CRC is a 16 bit cyclic redundancy check using the standard CRC-16 polynomial x16 + x15 + x2 + 1. The 16 bit CRC is appended to the message and transmitted LSB first.

The CRC is calculated on ALL the bytes in the frame.

8.4.10 Device compatibility parameters

All devices have the following compatibility parameters defined:

Parameter	Description		
Device ID	Unique device identification code		
Minimum slave response time	The minimum delay between the end of a message from the master and the time at which the master is ready to receive a response from the slave.		
Maximum slave response time	When global addressing, the master must wait for this time before issuing a new message. In a network of devices, the slowest time must be used		
Baud rate	Baud rate used by Modbus RTU		
32 bit float data type supported	If this data type is not supported then an over range error will be raised if this data type is used		
Maximum buffer size	Determines the maximum block size.		

346

UL listing Safety Product Mechanical Flectrical started / Basic Functional **NV Media Card** Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

9 NV Media Card Operation

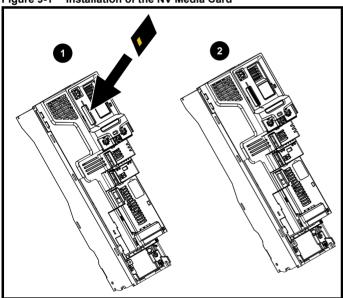
9.1 Introduction

The Non-Volatile Media Card feature enables simple configuration of parameters, parameter back-up, storing / reading PLC programs and drive copying using a SMARTCARD or SD card storing / reading PLC programs. The drive offers backward compatibility for a Unidrive SP SMARTCARD.

The NV Media Card can be used for:

- · Parameter copying between drives
- · Saving drive parameter sets
- Saving an onboard user program

The NV Media Card is located at the top of the module under the drive display (if installed) on the left-hand side.


Ensure the NV Media Card is inserted with the contacts facing the lefthand side of the drive

The drive only communicates with the NV Media Card when commanded to read or write, meaning the card may be "hot swapped".

Beware of possible live terminals when installing the NV Media Card.

Figure 9-1 Installation of the NV Media Card

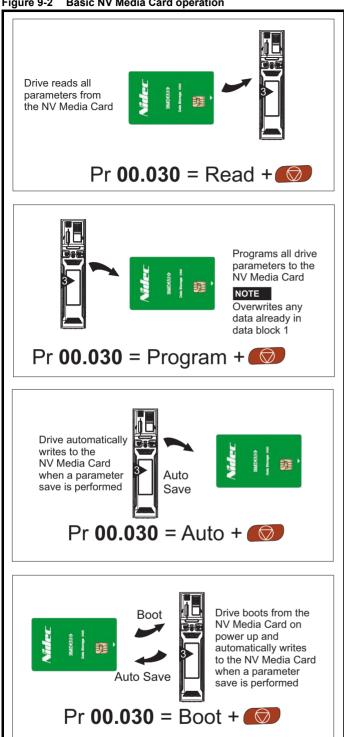
- 1. Installing the NV Media Card
- 2. NV Media Card installed

NV Media Card	Part number
SD Card Adaptor (memory card not included)	3130-1212
8 kB SMARTCARD	2214-4246
64 kB SMARTCARD	2214-1006

9.2 NV Media Card support

The NV Media Card can be used to store drive parameter sets and / or PLC programs set from the Pump Drive F600 in data blocks 001 to 499 on the card.

The Pump Drive F600 is compatible with a Unidrive SP SMARTCARD and is able to read and translate the Unidrive SP parameter set into a compatible parameter set for Pump Drive F600. This is only possible if


the Unidrive SP parameter set was transferred to the SMARTCARD using the difference from defaults transfer method (i.e. 4yyy transfer).

The Pump Drive F600 is not able to read any other type of Unidrive SP data block on the card. Although it is possible to transfer difference from default data blocks from a Unidrive SP into the Pump Drive F600, the following should be noted:

- If a parameter from the source drive does not exist in the target drive then no data is transferred for that parameter.
- 2. If the data for the parameter in the target drive is out of range then the data is limited to the range of the target parameter.
- 3. If the target drive has a different rating to the source drive then the normal rules for this type of transfer apply.

UL listing Safety Product Electrical Functional **NV Media Card** Technical Mechanical started / Basic Advanced Optimization Diagnostics installation Running the Motor information information information installation parameters descriptions Operation parameters data

Figure 9-2 **Basic NV Media Card operation**

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								1

The whole card may be protected from writing or erasing by setting the read-only flag as detailed in section 9.3.9 9888 / 9777 - Setting and clearing the NV Media Card read only flag on page 350.

The card should not be removed during data transfer, as the drive will produce a trip. If this occurs then either the transfer should be reattempted or in the case of a card to drive transfer, default parameters should be loaded.

9.3 Transferring data

Data transfer, erasing and protecting the information is performed by entering a code in Pr **mm.000** and then resetting the drive as shown in Table 9-1.

Table 9-1 SMARTCARD and SD card codes

Code	Operation	SMARTCARD	SD card
2001	Transfer the drive parameters to parameter file 001 and sets the block as bootable. This will include the parameters from attached option modules.	✓	✓
4ууу	Transfer the drive parameters to parameter file yyy. This will include the parameters from attached option modules.	√	✓
7ууу	Erase file yyy.	✓	✓
8ууу	Compare the data in the drive with file yyy. If the files are the same then <i>Pr mm.000</i> (mm.000) is simply reset to 0 when the compare is complete. If the files are different a 'Card Compare' trip is initiated. All other NV media card trips also apply.	✓	√
9555	Clear the warning suppression flag	✓	✓
9666	Set the warning suppression flag	✓	✓
9777	Clear the read-only flag	✓	✓
9888	Set the read-only flag	✓	✓
9999	Erase and format the NV media card	✓	

Where yyy indicates the block number 001 to 999.

Note

If the read only flag is set then only codes 6yyy or 9777 are effective.

9.3.1 Writing to the NV Media Card

4yyy - Writes defaults differences to the NV Media Card The data block only contains the parameter differences from the last time default settings were loaded.

All parameters except those with the NC (Not copied) coding bit set are transferred to the NV Media Card. In addition to these parameters all menu 20 parameters (except Pr **20.000**), can be transferred to the NV Media Card.

Writing a parameter set to the NV Media Card (Pr 11.042 = Program (2))

Setting Pr 11.042 to Program (2) and resetting the drive will save the parameters to the NV Media Card, i.e. this is equivalent to writing 4001 to Pr mm.000. All NV Media Card trips apply except 'Card Change'. If the data block already exists it is automatically overwritten. When the action is complete this parameter is automatically reset to None (0).

9.3.2 Reading from the NV Media Card

6yyy - Reading from NV Media Card

When the data is transferred back to the drive, using 6yyy in Pr mm.000, it is transferred to the drive RAM and the EEPROM. A parameter save is not required to retain the data after-power down. Set up data for any option modules installed stored on the card are transferred to the drive. If the option modules installed are different between source and destination drives, the menus for the option module slots where the option module categories are different are not updated from the card and will contain their default values after the copying action. The drive will produce a 'Card Option' trip if the option module installed to the source and the destination drives are different or are in different slots. If the data is being transferred to the drive with different voltage or current rating a 'Card Rating' trip will occur.

The following drive rating dependant parameters (RA coding bit set) will not be transferred to the destination drive by a NV Media Card when the voltage rating of the destination drive is different from the source drive and the file is a parameter file.

However, drive rating dependent parameters will be transferred if only the current rating is different. If drive rating dependant parameters are not transferred to the destination drive they will contain their default values.

Pr 02.008 Standard Ramp Voltage

Pr 04.005 to Pr 04.007 Motoring Current Limits

Pr 04.024 User Current Maximum Scaling

Pr 05.007 Rated Current

Pr 05.009 Rated Voltage

Pr 05.010 Rated Power Factor

Pr 05.017 Stator Resistance

Pr 05.018 Maximum Switching Frequency

Pr 05.024 Transient Inductance

Pr 05.025 Stator Inductance

Pr 06.006 Injection Braking Level

Pr 06.048 Supply Loss Detection Level

Pr 06.065 Standard Under Voltage Threshold

Pr 06.066 Low Under Voltage Threshold

Gettino UL listing Safety Product Mechanical Flectrical started / Basic **Functional** NV Media Card Advanced Technical Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

Reading a parameter set from the NV Media Card (Pr 11.042 = Read (1))

Setting Pr 11.042 to Read (1) and resetting the drive will transfer the parameters from the card into the drive parameter set and the drive EEPROM, i.e. this is equivalent to writing 6001 to Pr mm.000.

All NV Media Card trips apply. Once the parameters are successfully copied this parameter is automatically reset to None (0). Parameters are saved to the drive EEPROM after this action is complete.

9.3.3 Auto saving parameter changes (Pr 11.042 = Auto (3))

This setting causes the drive to automatically save any changes made to menu 0 parameters on the drive to the NV Media Card. The latest menu 0 parameter set in the drive is therefore always backed up on the NV Media Card. Changing Pr **11.042** to Auto (3) and resetting the drive will immediately save the complete parameter set from the drive to the card, i.e. all parameters except parameters with the NC coding bit set. Once the whole parameter set is stored only the individual modified menu 0 parameter setting is updated.

Advanced parameter changes are only saved to the NV Media Card when Pr mm.000 is set to 'Save Parameters' or a 1001 and the drive reset.

All NV Media Card trips apply, except 'Card Change'. If the data block already contains information it is automatically overwritten.

If the card is removed when Pr **11.042** is set to 3 Pr **11.042** is then automatically set to None (0).

When a new NV Media Card is installed Pr **11.042** must be set back to Auto (3) by the user and the drive reset so the complete parameter set is rewritten to the new NV Media Card if auto mode is still required.

When Pr **11.042** is set to Auto (3) and the parameters in the drive are saved, the NV Media Card is also updated, and therefore the NV Media Card becomes a copy of the drives stored configuration.

At power up, if Pr 11.042 is set to Auto (3), the drive will save the complete parameter set to the NV Media Card. The drive will display 'Card Write' during this operation. This is done to ensure that if a user puts a new NV Media Card in during power down the new NV Media Card will have the correct data.

Note

When Pr 11.042 is set to Auto (3) the setting of Pr 11.042 itself is saved to the drive EEPROM but not the NV Media Card.

9.3.4 Booting up from the NV Media Card on every power up (Pr 11.042 = Boot (4))

When Pr **11.042** is set to Boot (4) the drive operates the same as Auto mode except when the drive is powered-up. The parameters on the NV Media Card will be automatically transferred to the drive at power up if the following are true:

- · A card is inserted in the drive
- Parameter data block 1 exists on the card
- The data in block 1 is type 1 to 4 (as defined in Pr 11.038)
- Pr 11.042 on the card set to Boot (4)

The drive will display 'Booting Parameters during this operation. If the drive mode is different from that on the card, the drive gives a 'Card Drive Mode' trip and the data is not transferred.

If 'Boot' mode is stored on the copying NV Media Card this makes the copying NV Media Card the master device. This provides a very fast and efficient way of re-programming a number of drives.

Note

'Boot' mode is saved to the card, but when the card is read, the value of Pr 11.042 is not transferred to the drive.

9.3.5 Booting up from the NV Media Card on every power up (Pr mm.000 = 2001)

It is possible to create a bootable parameter data block by setting Pr mm.000 to 2001 and initiating a drive reset. This data block is created in one operation and is not updated when further parameter changes are made.

Setting Pr mm.000 to 2001 will overwrite the data block 1 on the card if it already exists.

9.3.6 8yyy - Comparing the drive full parameter set with the NV Media Card values

Setting 8yyy in Pr mm.000, will compare the NV Media Card file with the data in the drive. If the compare is successful Pr mm.000 is simply set to 0. If the compare fails a 'Card Compare' trip is initiated.

9.3.7 7yyy / 9999 - Erasing data from the NV Media Card values

Data can be erased from the NV Media Card either one block at a time or all blocks in one go.

- · Setting 7yyy in Pr mm.000 will erase NV Media Card data block yyy
- Setting 9999 in Pr mm.000 will erase all the data blocks on a SMARTCARD, but not on an SD Card.

9.3.8 9666 / 9555 - Setting and clearing the NV Media Card warning suppression flag

If the option modules installed to the source and destination drive are different or are in different slots the drive will produce a 'Card Option' trip. If the data is being transferred to a drive of a different voltage or current rating a 'Card Rating' trip will occur. It is possible to suppress these trips by setting the warning suppression flag. If this flag is set the drive will not trip if the option module(s) or drive ratings are different between the source and destination drives. The options module or rating dependent parameters will not be transferred.

- Setting 9666 in Pr mm.000 will set the warning suppression flag
- Setting 9555 in Pr mm.000 will clear the warning suppression flag

9.3.9 9888 / 9777 - Setting and clearing the NV Media Card read only flag

The NV Media Card may be protected from writing or erasing by setting the read only flag. If an attempt is made to write or erase a data block when the read only flag is set, a 'Card Read Only' trip is initiated. When the read only flag is set only codes 6yyy or 9777 are effective.

- Setting 9888 in Pr mm.000 will set the read only flag
- Setting 9777 in Pr mm.000 will clear the read only flag

9.4 Data block header information

Each data block stored on a NV Media Card has header information detailing the following:

- NV Media Card File Number (11.037)
- NV Media Card File Type (11.038)
- NV Media Card File Version (11.039)
- NV Media Card File Checksum (11.040)

The header information for each data block which has been used can be viewed in Pr 11.038 to Pr 11.040 by increasing or decreasing the data block number set in Pr 11.037. If there is no data on the card Pr 11.037 can only have a value of 0.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								1

9.5 NV Media Card parameters

Table 9-2 Key to parameter table coding

RW	Read / Write	ND	No default value
RO	Read only	NC	Not copied
Num	Number parameter	PT	Protected parameter
Bit	Bit parameter	RA	Rating dependant
Txt	Text string	US	User save
Bin	Binary parameter	PS	Power-down save
FI	Filtered	DE	Destination

11.036	{00	.029}	NV Media Card File Previously Loaded								
RO Num								NC	PT		
OL											
RFC-A	Û		0 to 999						0		
RFC-S											

This parameter shows the number of the data block last transferred from a NV Media Card to the drive. If defaults are subsequently reloaded this parameter is set to 0.

11	11.037			NV Media Card File Number								
RW Num												
OL												
RFC-A	${\mathfrak J}$		0 to	999		ð			0			
RFC-S												

This parameter should have the data block number which the user would like the information displayed in Pr 11.038, Pr 11.039 and Pr 11.040.

11	11.038			NV Media Card File Type								
RO	RO Txt					ND		NC	PT			
OL			None (0), Open-loop (1),									
RFC-A	Û		None (0), Open-loop (1), RFC-A (2), RFC-S (3), Regen (4), User Prog (5),									
RFC-S	0 (1 4 (0)											

Displays the type/mode of the data block selected with Pr 11.037.

Pr 11.038	String	Type / mode
0	None	No file selected
1	Open-loop	Open-loop mode parameter file
2	RFC-A	RFC-A mode parameter file
3	RFC-S	RFC-S mode parameter file
4	Regen	Regen mode parameter file
5	User Prog	Onboard user program file
6	Option App	Option module application file

11	11.039			NV Media Card File Version									
RO	RO Num					N	D	NC	PT				
OL													
RFC-A	Û		0 to 9999		ð								
RFC-S	RFC-S												

Displays the version number of the file selected in Pr 11.037.

11	11.040			edia Ca	ard File	Ch	eck	sum		
RO	RO Num					N	D	NC	PT	
OL RFC-A RFC-S	\$		-214748 21474		to	ð				

Displays the checksum of the data block selected in Pr 11.037.

11	11.042			neter C	loning						
RW	RW Txt							NC		US*	
OL RFC-A RFC-S	\$		one (0), gram (2 Boo			ð			None	(0)	

^{*} Only a value of 3 or 4 in this parameter is saved.

Note

If Pr 11.042 is equal to 1 or 2, this value is not transferred to the drive or saved to the EEPROM. If Pr 11.042 is set to 3 or 4 the value is saved to the FEPROM

None (0) = Inactive

Read (1) = Read parameter set from the NV Media Card

Program (2) = Program a parameter set to the NV Media Card

Auto (3) = Auto save

Boot (4) = Boot mode

11	11.072			NV Media Card Create Special File									
RW	RW Num							NC					
OL													
RFC-A	\hat{v}		0 to 1			ð			0				
RFC-S	RFC-S												

If NV Media Card Create Special File (11.072) = 1 when a parameter file is transferred to an NV media card the file is created as a macro file. NV Media Card Create Special File (11.072) is reset to 0 after the file is created or the transfer fails.

11.073			NV Media Card Type								
RO		Txt				N	D	NC	PT		
OL			None (0), SMART Card (1), SD Card (2)								
RFC-A	${\bf \hat{v}}$	S									
RFC-S			SD C								

This will display the type of media card inserted; it will contain one of the following values:

"None" (0) - No NV Media Card has been inserted.

"SMART Card" (1) - A SMARTCARD has been inserted.

"SD Card" (2) - A FAT formatted SD card has been inserted.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

11.075			NV Media Card Read-only Flag									
RO		Bit				NE)	NC	PT			
OL												
RFC-A	${\mathfrak J}$	C	Off (0) or On (1)									
RFC-S												

NV Media Card Read-only Flag (11.075) shows the state of the read-only flag for the currently installed card.

11	.076	3	NV Media Card Warning Suppression Flag								
RO		Bit				N	D	NC	PT		
OL											
RFC-A	${\mathfrak J}$	C	Off (0) or On (1)								
RFC-S											

NV Media Card Warning Suppression Flag (11.076) shows the state of the warning flag for the currently installed card.

11.077			NV Media Card File Required Version								
RW		Num				N	D	NC	PT		
OL											
RFC-A	Û		0 to 9999			ð					
RFC-S											

The value of *NV Media Card File Required Version* (11.077) is used as the version number for a file when it is created on an NV Media Card. *NV Media Card File Required Version* (11.077) is reset to 0 when the file is created or the transfer fails.

9.6 NV Media Card trips

After an attempt to read, write or erase data from a NV Media Card a trip is initiated if there has been a problem with the command.

See Chapter 12 ${\it Diagnostics}$ on page 459 for more information on NV Media Card trips.

352

Functional UL listing Safety Product Mechanical Electrical Basic NV Media Card Technical started / Advanced Optimization Diagnostics Running the Motor information information installation installation parameters descriptions Operation parameters data information

10 Advanced parameters

This is a quick reference to all parameters in the drive showing units, ranges limits etc, with block diagrams to illustrate their function. Full descriptions of the parameters can be found in the *Parameter Reference Guide*.

These advanced parameters are listed for reference purposes only. The lists in this chapter do not include sufficient information for adjusting these parameters. Incorrect adjustment can affect the safety of the system, and damage the drive and or external equipment. Before attempting to adjust any of these parameters, refer to the *Parameter Reference Guide*.

Table 10-1 Menu descriptions

Menu	Description
0	Commonly used basic set up parameters for quick / easy
	programming
1	Frequency / Speed reference
2	Ramps
3	Speed feedback and speed control
4	Torque and current control
5	Motor control
6	Sequencer and clock
7	Analog I/O, Temperature monitoring
8	Digital I/O
9	Programmable logic, motorized pot, binary sum, timers and scope
10	Status and trips
11	Drive set-up and identification, serial communications
12	Threshold detectors and variable selectors
13	Standard motion control
14	User PID controller
15	Option module slot 1 set-up menu
16	Option module slot 2 set-up menu
17	Option module slot 3 set-up menu
18	General option module application menu 1
19	General option module application menu 2
20	General option module application menu 3
22	Menu 0 set-up
23	Not allocated
28	Reserved menu
29	Pumping functions
Slot 1	Slot 1 option menus*
Slot 2	Slot 2 option menus*
Slot 3	Slot 3 option menus*

^{*} Only displayed when the option modules are installed.

Table 10-2 Key to parameter table coding

Cadina	Attribute
Coding	
RW	Read/Write: can be written by the user
RO	Read only: can only be read by the user
Bit	1 bit parameter. 'On' or 'Off' on the display
Num	Number: can be uni-polar or bi-polar
Txt	Text: the parameter uses text strings instead of numbers.
Bin	Binary parameter
IP	IP Address parameter
Мас	Mac Address parameter
Date	Date parameter
Time	Time parameter
Chr	Character parameter
FI	Filtered: some parameters which can have rapidly changing values are filtered when displayed on the drive keypad for easy viewing.
DE	Destination: This parameter selects the destination of an input or logic function.
RA	Rating dependent: this parameter is likely to have different values and ranges with drives of different voltage and current ratings. Parameters with this attribute will be transferred to the destination drive by non-volatile storage media when the rating of the destination drive is different from the source drive and the file is a parameter file. However, the values will be transferred if only the current rating is different and the file is a difference from default type file.
ND	No default: The parameter is not modified when defaults are loaded
NC	Not copied: not transferred to or from non-volatile media during copying.
PT	Protected: cannot be used as a destination.
us	User save: parameter saved in drive EEPROM when the user initiates a parameter save.
PS	Power-down save: parameter automatically saved in drive EEPROM when the under volts (UV) trip occurs.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-							

10.1 Parameter ranges and Variable minimum/maximums:

Some parameters in the drive have a variable range with a variable minimum and a variable maximum values which is dependent on one of the following:

- The settings of other parameters
- The drive rating
- The drive mode
- · Combination of any of the above

The tables below give the definition of variable minimum/maximum and the maximum range of these.

VM_AC_V	/OLTAGE	Range applied to parameters showing AC voltage
Units	V	
Range of [MIN]	0	
Range of [MAX]	0 to 930	
Definition	VM_AC_VOLTAGE[MAX]	is drive voltage rating dependent. See Table 10-3
Delimition	VM_AC_VOLTAGE[MIN] =	- 0

VM_AC_VO	TAGE_SET	Range applied to the AC voltage set-up parameters
Units	V	
Range of [MIN]	0	
Range of [MAX]	0 to 690	
Definition	VM_AC_VOLTAGE_SET[M	AX] is drive voltage rating dependent. See Table 10-3
Deliminon	VM_AC_VOLTAGE_SET[N	IIN] = 0

	VM_ACCEL_RATE Maximum applied to the ramp rate parameters	
Units	s / 100 Hz, s / 1000 rpm, s / 1000 mm/s	
Range of [MIN]	Open-loop: 0.0 RFC-A, RFC-S: 0.000	
Range of [MAX	Open-loop: 0.0 to 3200.0 RFC-A, RFC-S: 0.000 to 3200.000	
Definition	A maximum needs to be applied to the ramp rate parameters because the units are a time for a from zero to a defined level or to maximum speed. The defined level is 100 Hz for Open-loop m or 1000 mm/s for RFC-A and RFC-S modes. If the change of speed is to the maximum speed it maximum speed changes the actual ramp rate for a given ramp rate parameter value. The varia calculation ensures that longest ramp rate (parameter at its maximum value) is not slower than t level, i.e. 3200.00 s / Hz for Open-loop mode, and 3200.000 s / 1000 rpm or 3200.000 s / 1000 RFC-S modes. The maximum frequency/speed is taken from Maximum Reference Clamp (01.006) if Select Mot (11.045) = 0, or m² Maximum Reference Clamp (21.001) if Select Motor 2 Parameters (11.045) Open-loop mode VM_ACCEL_RATE[MIN] = 0.0 If Ramp Rate Units (02.039) = 0: VM_ACCEL_RATE[MAX] = 3200.0 Otherwise: VM_ACCEL_RATE[MIN] = 0.000 If Ramp Rate Units (02.039) = 0: VM_ACCEL_RATE[MIN] = 0.000 If Ramp Rate Units (02.039) = 0: VM_ACCEL_RATE[MAX] = 3200.000 Otherwise: VM_ACCEL_RATE[MAX] = 3200.000 Otherwise: VM_ACCEL_RATE[MAX] = 3200.000 Otherwise: VM_ACCEL_RATE[MAX] = 3200.000 x Maximum speed / 1000.0	node and 1000 rpm then changing the table maximum the rate with the defined mm/s for RFC-A and

VM	_DC_VOLTAGE	Range applied to parameters showing DC voltage
Units	V	
Range of [MIN]	0	
Range of [MAX]	0 to 1190	
Definition		GE[MAX] is the full scale DC bus voltage feedback (over voltage trip level) for the drive. This level is not dependent. See Table 10-3 GE[MIN] = 0

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

VM_DC_VOL	TAGE_SET	Range applied to DC voltage reference parameters
Units	V	
Range of [MIN]	0	
Range of [MAX]	0 to 1150	
Definition VM_DC_VOLTAGE_ VM_DC_VOLTAGE_		MAX] is drive voltage rating dependent. See Table 10-3 MIN] = 0

VM_DRIVE	_CURRENT	Range applied to parameters showing current in A
Units	Α	
Range of [MIN]	-99999.999 to 0.000	
Range of [MAX]	0.000 to 99999.999	
Definition	by Full Scale Current Kc (IAX] is equivalent to the full scale (over current trip level) or Kc value for the drive and is given 11.061). IIN] = - VM DRIVE CURRENT[MAX]

VM_DRIVE_CURE	RENT_UNIPOLAR	Unipolar version of VM_DRIVE_CURRENT				
Units	Α					
Range of [MIN]	0.000					
Range of [MAX]	0.000 to 99999.999					
Definition	VM_DRIVE_CURRENT_U VM_DRIVE_CURRENT_U	NIPOLAR[MAX] = VM_DRIVE_CURRENT[MAX] NIPOLAR[MIN] = 0.000				

VM_HIGH_DC_VOLTAGE		Range applied to parameters showing high DC voltage				
Units	V					
Range of [MIN]	0					
Range of [MAX]	0 to 1500					
Definition		E[MAX] is the full scale DC bus voltage feedback for the high DC bus voltage measurement oltage if it goes above the normal full scale value. This level is drive voltage rating dependent. E[MIN] = 0				

VM_LOW_UNDER_VOLTS		Range applied the low under-voltage threshold				
Units	V					
Range of [MIN]	24					
Range of [MAX]	24 to 1150					
Definition	If Back-up Mode Enable (S[MAX] = VM_STD_UNDER_VOLTS[MIN] 06.068) = 1: S[MAX] = VM_STD_UNDER_VOLTS[MIN] / 1.1.				

VM_MIN_SWI	TCHING_FREQUENCY	Range applied to the minimum switching frequency parameter				
Units	User units					
Range of [MIN]	e of [MIN] 0					
Range of [MAX]	0 to 6					
Definition		FREQUENCY[MAX] = Maximum Switching Frequency (05.018) FREQUENCY[MIN] = 0 for motor control modes, or 1 for Regen mode (subject to the				

Pump Drive F600 User Guide 355

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	 Diagnostics	UL listing information
				the Motor							

	R1_CURRENT_LIMIT R2_CURRENT_LIMIT Range applied to current limit parameters
Units	%
Range of [MIN]	0.0
Range of [MAX]	0.0 to 1000.0
Definition	VM_MOTOR1_CURRENT_LIMIT[MIN] = 0.0 Open-loop VM_MOTOR1_CURRENT_LIMIT[MAX] = (I _{Tlimit} / I _{Trated}) x 100 % Where: I _{Tlimit} = I _{MaxRef} x cos(sin ⁻¹ (I _{Mrated} / I _{MaxRef})) I _{Mrated} = Pr 05.007 sin φ I _{Trated} = Pr 05.007 x cos φ cos φ = Pr 05.010 I _{MaxRef} is 0.7 x Pr 11.061 when the motor rated current set in Pr 05.007 is the lower of 0.7 x Pr 11.061 or 1.1 x Pr 11.060 (i.e. Normal duty). RFC-A VM_MOTOR1_CURRENT_LIMIT[MAX] = (I _{Tlimit} / I _{Trated}) x 100 % Where: I _{Tlimit} = I _{MaxRef} x cos(sin ⁻¹ (I _{Mrated} / I _{MaxRef})) I _{Mrated} = Pr 05.007 x sin φ ₁ ITrated = Pr 05.007 x cos φ ₁ φ ₁ = cos-1 (Pr 05.010) + φ ₂ . φ ₁ is calculated during an autotune. See the variable minimum / maximum calculation in the <i>Parameter Reference Guide</i> for more information regarding φ ₂ . I _{MaxRef} is 0.9 x Pr 11.061 when the motor rated current set in Pr 05.007 is the lower of 0.9 x Pr 11.061 or 1.1 x Pr 11.060 (i.e. Normal duty). RFC-S and Regen VM_MOTOR1_CURRENT_LIMIT[MAX] = (I _{MaxRef} / Pr 05.007) x 100 % Where: I _{MaxRef} is 0.9 x Pr 11.061 when the motor rated current set in Pr 05.007 is the lower of 0.9 x Pr 11.061 or 1.1 x Pr 11.060 (i.e. Normal duty).

	TIVE_REF_CLAMP1 TIVE_REF_CLAMP2	imits applied to the n	egative frequency or speed clamp						
Units	Open-loop: Hz RFC-A, RFC-S: rpm or mm/	Open-loop: Hz RFC-A, RFC-S: rpm or mm/s							
Range of [MIN]	Open-loop: -550.0 to 0.0 RFC-A, RFC-S: -50000.0 to	Open-loop: -550.0 to 0.0 RFC-A, RFC-S: -50000.0 to 0.0							
Range of [MAX]	Open-loop: 0.0 to 550.0 RFC-A, RFC-S: 0.0 to 50000	Open-loop: 0.0 to 550.0 RFC-A, RFC-S: 0.0 to 50000.0							
	Negative Reference Clamp Enable (01.008)	Bipolar Reference Enable (01.010)	VM_NEGATIVE_REF_ CLAMP1[MIN]	VM_NEGATIVE_REF_ CLAMP1[MAX]					
Definition	0	0	0.0	Pr 01.006					
	0	1	0.0	0.0					
l	1	Χ	-VM_POSITIVE_REF_CLAMP[MAX]	0.0					

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

VM_POSITIVE VM_POSITIVE	_REF_CLAMP1 _REF_CLAMP2	imits applied to the positive frequency or speed reference clamp					
Units	Open-loop: Hz RFC-A, RFC-S: rpm or mm/s						
Range of [MIN]	Open-loop: 0.0 RFC-A, RFC-S: 0.0						
Range of [MAX]	Open-loop: 550.0 RFC-A, RFC-S: 0.0 to 50000.0						
	(01.006), which in turn limit the does not exceed the speed with below. The limit is based on the possible to disable this limit it above the level where the drifeedback device itself may have	MP1[MAX] defines the range of the positive reference clamp, Maximum Reference Clamp the references. In RFC-A and RFC-S modes a limit is applied so that the position feedback where the drive can no longer interpret the feedback signal correctly as given in the table on the position feedback device selected with Motor Control Feedback Select (03.026). It is it if the RFC Feedback Mode (03.024) ≥ 1 so that the motor can be operated at a speed drive can interpret the feedback in sensorless mode. It should be noted that the position in have a maximum speed limit that is lower than those given in the table. Care should be ed that would cause damage to the position feedback device. VM_POSITIVE_REF_CLAMP1[MAX]					
Definition	AB Servo FD, FR, FD Servo, FR Servo	(500 kHz x 60 / rotary lines per revolution) rpm (500 kHz / linear line pitch in mm) mm/s (500 kHz x 60 / rotary lines per revolution)/2 rpm (500 kHz / linear line pitch in mm)/2 mm/s					
	SC, SC Hiper, SC EnDat, SC SSI, SC Servo	(500 kHz x 60 / sine waves per revolution) rpm (500 kHz x linear line pitch in mm) mm/s					
	Any other device	50000.0 rpm or mm/s					
	In RFC mode a limit is applie limit for VM_POSITIVE_REF VM_POSITIVE_REF_CLAMI VM_POSITIVE_REF_CLAMI	P2 is defined in the same way as VM_POSITIVE_REF_CLAMP1 except P2[MAX] defines the range of the positive reference clamp, m² Maximum Reference					

VM_F	POWER	Range applied to parameters that either set or display power
Units	kW	
Range of [MIN]	-99999.999 to 0.000	
Range of [MAX]	0.000 to 99999.999	
		ng dependent and is chosen to allow for the maximum power that can be output by the drive voltage, at maximum controlled current and unity power factor.
Definition	VM_POWER[MAX] = $\sqrt{3}$ x	VM_AC_VOLTAGE[MAX] x VM_DRIVE_CURRENT[MAX] / 1000
	VM_POWER[MIN] = -VM_	POWER[MAX]

VM_RATED	_CURRENT	Range applied to rated current parameters
Units	Α	
Range of [MIN]	0.000	
Range of [MAX]	0.000 to 99999.999	
Definition	VM_RATED_CURRENT [M Normal Duty rating of the c VM_RATED_CURRENT [M	

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
			otaliation	the Motor	parameters	accompaction		opo.a.io.i	paramotors	aata		

VM_SPEED		Range applied to parameters showing speed			
Units	Open-loop, RFC-A, RFC-	Open-loop, RFC-A, RFC-S: rpm or mm/s			
Range of [MIN]	Open-loop, RFC-A, RFC	Open-loop, RFC-A, RFC-S: -50000.0 to 0.0			
Range of [MAX]	Open-loop, RFC-A, RFC	Open-loop, RFC-A, RFC-S: 0.0 to 50000.0			
		aximum defines the range of speed monitoring parameters. To allow headroom for overshoot the range of the speed references.			
Definition	VM_SPEED[MAX] = 2 x VM_SPEED_FREQ_REF[MAX]				
	/M_SPEED_FREQ_REF[MIN]				

VM_SPEED_	FREQ_KEYPAD_REF	Range applied Key	/pad Control Mode Reference (01.017)			
Units	Open-loop: Hz RFC-A,	RFC-S: rpm or mm/s				
Range of [MIN]	Open-loop: -550.0 to 5	Open-loop: -550.0 to 550.0 RFC-A, RFC-S: -50000.0 to 50000.0				
Range of [MAX]	Open-loop: 0.0 to 550.0	Open-loop: 0.0 to 550.0 RFC-A, RFC-S: 0.0 to 50000.0				
	parameters is the same	This variable maximum is applied to Keypad Control Mode Reference (01.017). The maximum applied to these parameters is the same as other frequency reference parameters. VM_SPEED_FREQ_USER_REFS [MAX] = VM_SPEED_FREQ_REF[MAX] However the minimum is dependent on Negative Reference Clamp Enable (01.008) and Bipolar Reference Enable (01.010).				
		is dependent on <i>Negat</i> i	ive Reference Clamp Enable (01.008) and Bipolar Reference Enable			
Definition		Bipolar Reference Enable (01.010)	ive Reference Clamp Enable (01.008) and Bipolar Reference Enable VM_SPEED_FREQ_USER_REFS[MIN]			
Definition	(01.010). Negative Reference Clamp	Bipolar Reference	, , ,			
Definition	(01.010). Negative Reference Clamp	Bipolar Reference Enable (01.010)	VM_SPEED_FREQ_USER_REFS[MIN] If Select Motor 2 Parameters (11.045) = 0 Minimum Reference			
Definition	(01.010). Negative Reference Clamp	Bipolar Reference Enable (01.010)	VM_SPEED_FREQ_USER_REFS[MIN] If Select Motor 2 Parameters (11.045) = 0 Minimum Reference Clamp (01.007), otherwise m² Minimum Reference Clamp (21.002)			

VM_SPEED	FREQ_REF	Range applied to the frequency or spe	eed reference parameters		
Units	Open-loop: Hz RFC-A, RFC-S: rpm or mm/s				
Range of [MIN]	Open-loop: -550.0 to 0.0 RFC-A, RFC-S: -50000.0 to 0.0				
Range of [MAX]	Open-loop: 0.0 to 550.0 RFC-A, RFC-S: 0.0 to 50000.0				
	references can vary in Negative Reference Clamp	n/maximum is applied throughout the freque the range from the minimum to maximum of VM_SPEED_FREQ_REF[MAX] if Select Motor 2 Parameters (11.045) = 0	vM_SPEED_FREQ_REF[MAX] if Select Motor 2 Parameters (11.045) = 1		
Definition	Enable (01.008)	Maximum Reference Clamp (01.006)	m² Maximum Reference Clamp (21.001)		
	1	Maximum Reference Clamp (01.006) or Minimum Reference Clamp (01.007) whichever the larger	m² Maximum Reference Clamp (21.001) or m² Minimum Reference Clamp (21.002) whichever the larger		
	VM_SPEED_FREQ_REF[MIN] = -VM_SPEED_FREQ_REF[MAX].				

358

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

VM_SPEED_FREQ	REF_UNIPOLAR Unipolar version of VM_SPEED_FREQ_REF
Units	Open-loop: Hz RFC-A, RFC-S: rpm or mm/s
Range of [MIN]	Open-loop: 0.0 RFC-A, RFC-S: 0.0
Range of [MAX]	Open-loop: 0.0 to 550.0 RFC-A, RFC-S: 0.0 to 50000.0
Definition	VM_SPEED_FREQ_REF_UNIPOLAR[MAX] = VM_SPEED_FREQ_REF[MAX] VM_SPEED_FREQ_REF_UNIPOLAR[MIN] = 0.0

VM_SPEED	_FREQ_USER_REFS	Range applied to some	e analog reference parameters			
Units	Open-loop: Hz RFC-A, RFC-S: rpm or mm,	Open-loop: Hz RFC-A, RFC-S: rpm or mm/s				
Range of [MIN]	· · · · · · · · · · · · · · · · · · ·	Open-loop: -550.00 to 550.00 RFC-A, RFC-S: -50000.0 to 50000.0				
Range of [MAX]	Open-loop: 0.00 to 550.00 RFC-A, RFC-S: 0.0 to 5000	Open-loop: 0.00 to 550.00 RFC-A, RFC-S: 0.0 to 50000.0				
	VM_SPEED_FREQ_USER	_REFS[MAX] = VM_S	PEED_FREQ_REF[MAX]			
	Negative Reference Clamp Enable (01.008)	Bipolar Reference Enable (01.010)	VM_SPEED_FREQ_USER_REFS [MIN]			
Definition	0	0	Pr 01.007			
	0	1	-VM_SPEED_FREQ_REF[MAX]			
	1	0	0.0			
	1	1	-VM_SPEED_FREQ_REF[MAX]			

VM_STD_UN	DER_VOLTS	Range applied the standard under-voltage threshold
Units	V	
Range of [MIN]	0 to 1150	
Range of [MAX]	0 to 1150	
Definition		S[MAX] = VM_DC_VOLTAGE_SET / 1.1 S[MIN] is voltage rating dependent. See Table 10-3.

VM_SUPPLY_	LOSS_LEVEL	Range applied to the supply loss threshold
Units	V	
Range of [MIN]	0 to 1150	
Range of [MAX]	0 to 1150	
Definition		/EL[MAX] = VM_DC_VOLTAGE_SET[MAX] /EL[MIN] is drive voltage rating dependent. See Table 10-3

VM_SWITCHING	_FREQUENCY	Range applied to the maximum switching frequency parameters
Units	User units	
Range of [MIN]	0	
Range of [MAX]	0 to 6	
Definition		JENCY[MAX] = Power stage dependent JENCY[MIN] = 0 for motor control modes, or 1 for Regen mode (subject to the maximum)

Pump Drive F600 User Guide 359

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	 Diagnostics	UL listing information	Ì
				the Motor	ļ ·			·				ı

VM_TORQU		Range applied to torque and torque producing current parameters (where this is used in Regen mode it refers to the active current)				
Units	%					
Range of [MIN]	-1000.0 to 0.0					
Range of [MAX]	0.0 to 1000.0					
	Select Motor 2 Parameters (11.045)	VM_TORQUE_CURRENT [MAX]				
Definition	0	VM_MOTOR1_CURRENT_LIMIT[MAX]				
	1	VM_MOTOR2_CURRENT_LIMIT[MAX]				
	VM_TORQUE_CURRENT[MIN] = -VM_TORQUE_CURRENT[MAX]					

VM_TORQUE_C	RRENT_UNIPOLAR Unipolar version of VM_TORQUE_CURRENT	
Units	%	
Range of [MIN]	0.0	
Range of [MAX] 0.0 to 1000.0		
Definition	VM_TORQUE_CURRENT_UNIPOLAR[MAX] = VM_TORQUE_CURRENT[MAX] VM_TORQUE_CURRENT_UNIPOLAR[MIN] = 0.0 User Current Maximum Scaling (04.024) defines the variable maximum/minimums VM_USER_CURRENT and VM_USER_CURRENT_HIGH_RES which are applied to Percentage Load (04.020), Torque Reference (04.008) and Torque Offset (04.009). This is useful when routing these parameters to an analog output as it allows the full scale output value to be defined by the user. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT or MOTOR2_CURRENT_LIMIT depending on which motor map is currently active. The maximum value (VM_TORQUE_CURRENT_UNIPOLAR [MAX] varies between drive sizes with default parameters loaded. For some drive sizes the default value may be reduced below the value given by the parameter range limiting.	

VM_USER_	CURRENT	Range applied to torque reference and percentage load parameters with one decimal place
Units	%	
Range of [MIN]	-1000.0 to 0.0	
Range of [MAX]	0.0 to 1000.0	
		X] = User Current Maximum Scaling (04.024) I] = -VM USER CURRENT[MAX]
Definition	VM_USER_CURRENT_HIC Torque Offset (04.009). This output value to be defined by	aling (04.024) defines the variable maximum/minimums VM_USER_CURRENT and GH_RES which are applied to <i>Percentage Load</i> (04.020), <i>Torque Reference</i> (04.008) and is is useful when routing these parameters to an analog output as it allows the full scale by the user. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT or T depending on which motor map is currently active.
		ORQUE_CURRENT_UNIPOLAR [MAX] varies between drive sizes with default ne drive sizes the default value may be reduced below the value given by the parameter

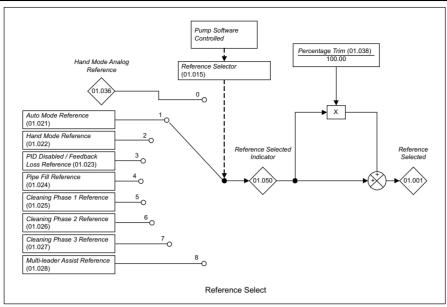
VM_USER_CURF	RENT_HIGH_RES	Range applied to torque reference and percentage load parameters with two decimal places
Units	%	
Range of [MIN]	-1000.00 to 0.00	
Range of [MAX]	0.00 to 1000.00	
	VM_USER_CURRENT_H	IGH_RES[MAX] = User Current Maximum Scaling (04.024) with an additional decimal place
	VM_USER_CURRENT_H	IGH_RES[MIN] = -VM_USER_CURRENT_HIGH_RES[MAX]
Definition	VM_USER_CURRENT_H Torque Offset (04.009). The output value to be defined	caling (04.024) defines the variable maximum/minimums VM_USER_CURRENT and IIGH_RES which are applied to <i>Percentage Load</i> (04.020), <i>Torque Reference</i> (04.008) and his is useful when routing these parameters to an analog output as it allows the full scale by the user. This maximum is subject to a limit of MOTOR1_CURRENT_LIMIT or AIT depending on which motor map is currently active.
	` -	TORQUE_CURRENT_UNIPOLAR [MAX] varies between drive sizes with default ome drive sizes the default value may be reduced below the value given by the parameter

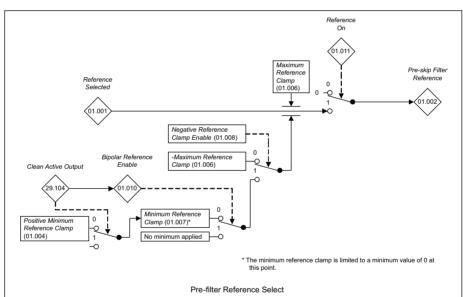
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor				-				

Table 10-3 Voltage ratings dependant values

Variable min/max		Voltage	level (V)	
variable millimax	200 V	400 V	575 V	690 V
VM_DC_VOLTAGE_SET[MAX]	400	800	955	1150
VM_DC_VOLTAGE[MAX]	415	830	990	1190
VM_AC_VOLTAGE_SET[MAX]	265	530	635	765
VM_AC_VOLTAGE[MAX]	325	650	780	930
VM_STD_UNDER_VOLTS[MIN]	175	330	435	435
VM_SUPPLY_LOSS_LEVEL[MIN]	205	410	540	540
VM_HIGH_DC_VOLTAGE	1500	1500	1500	1500

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								


10.2 Menu 1: Frequency / speed reference


Menu 1 Single Line Descriptions - Frequency References

	Parameter		Range		De	fault			Тур	е		
		Open-Loop	RFC-A	RFC-S	Open-Loop	RFC-A RFC-S						
01.001	Reference Selected		D_FREQ_REF[M ED_FREQ_REF[N				RO	Num	ND	NC	PT	
01.002	Pre-skip Filter Reference	_	D_FREQ_REF[M ED_FREQ_REF[M				RO	Num	ND	NC	РТ	
01.003	Pre-ramp Reference	_	ED_FREQ_REF[M ED_FREQ_REF[M	•			RO	Num	ND	NC	РТ	
01.004	Positive Minimum Reference Clamp	_	D_FREQ_REF[M ED_FREQ_REF[N		(0.0	RW	Num				US
01.006	Maximum Reference Clamp		/E_REF_CLAMP1 VE_REF_CLAMP		50 Hz: 50.0 60 Hz: 60.0	50 Hz: 1500.0 60 Hz: 1800.0	RW	Num				US
01.007	Minimum Reference Clamp	_	VE_REF_CLAMP IVE_REF_CLAMF		(0.0	RW	Num				US
01.008	Negative Reference Clamp Ena ble	C	Off (0) or On (1)		Of	ff (0)	RW	Bit				US
01.010	Bipolar Reference Enable	0	Off (0) or On (1)		Oi	n (1)	RW	Bit				US
01.011	Reference On	0	Off (0) or On (1)				RO	Bit	ND	NC	PT	
01.015	Reference Selector		0 to 8			1	RW	Num				US
01.021	Auto Mode Reference		D_FREQ_REF[M ED_FREQ_REF[N		(0.0	RW	Num				US
01.022	Hand Mode Reference	VM_SPEE VM_SPE	50 Hz: 750.0 60 Hz: 900.0	RW	Num				US			
01.023	PID Disabled / Feedback Loss Reference	VM_SPE	D_FREQ_REF[M ED_FREQ_REF[N	50 Hz: 25.0 60 Hz: 30.0	50 Hz: 750.0 60 Hz: 900.0	RW	Num				US	
01.024	Pipe Fill Reference		D_FREQ_REF[M ED_FREQ_REF[N		50 Hz: 25.0 60 Hz: 30.0	50 Hz: 750.0 60 Hz: 900.0	RW	Num				US
01.025	Cleaning Phase 1 Reference	_	D_FREQ_REF[M ED_FREQ_REF[N		50 Hz: -15.0 60 Hz: -18.0	50 Hz: -450.0 60 Hz: -540.0	RW	Num				US
01.026	Cleaning Phase 2 Reference	VM_SPE	D_FREQ_REF[M ED_FREQ_REF[N	лАХ]	50 Hz: 15.0 60 Hz: 18.0	50 Hz: 450.0 60 Hz: 540.0	RW	Num				US
01.027	Cleaning Phase 3 Reference		D_FREQ_REF[M ED_FREQ_REF[N		50 Hz: 40.0 60 Hz: 54.0	50 Hz: 1200.0 60 Hz: 1440.0	RW	Num				US
01.028	Multi-leader Assist Reference	_	ED_FREQ_REF[M ED_FREQ_REF[N	•		0.0	RW	Num				US
	Skip Reference 1	0.0 to 599.0		33000	0.0	0	RW	Num				US
	Skip Reference Band 1	0.0 to 25.0		to 250	0.0	0	RW					US
	Skip Reference 2	0.0 to 599.0		33000	0.0	0	RW					US
	Skip Reference Band 2	0.0 to 25.0		to 250	0.0	0	RW					US
	Skip Reference 3	0.0 to 599.0		33000	0.0	0	RW	Num				US
	Skip Reference Band 3	0.0 to 25.0	0 1	to 250	0.0	0	RW					US
01.035	Reference In Rejection Zone		off (0) or On (1)				RO	Bit	ND	NC	PT	
01.036	Hand Mode Analog Reference		REQ_USER_REF FREQ_USER_RE	0.00	0.0	RO	Num		NC			
01.038	Percentage Trim		±100.00 %		0.0	00 %	RW	Num		NC		
01.042	Analog Or Digital Speed Select	0	Off (0) or On (1)		Oi	n (1)	RW	Bit		NC		
01.050	Reference Selected Indicator		1 to 8				RO	Num	ND	NC	PT	
01.053	Fire Mode Reference		D_FREQ_REF[M ED_FREQ_REF[M		(0.0	RW	Num				US
01.054	Fire Mode Activate	O	Ot	ff (0)	RO	Bit		NC		_		

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

Figure 10-1 Menu 1 open loop logic diagrams

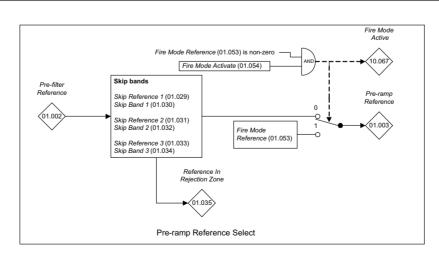
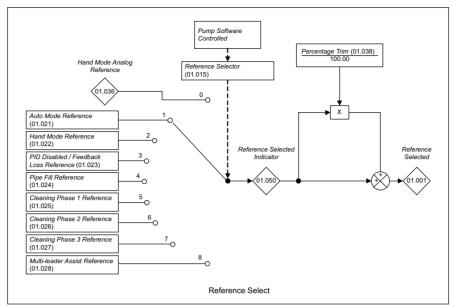
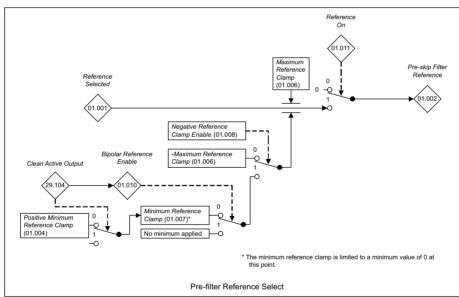
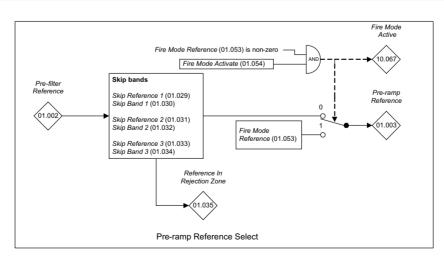
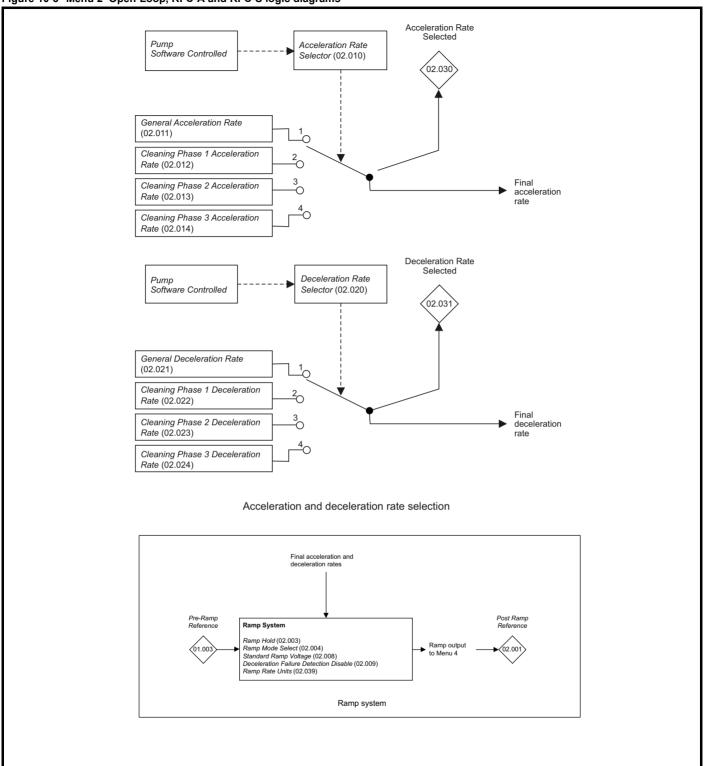





Figure 10-2 Menu 1 RFC-A / RFC-S logic diagrams

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•			•				


10.3 Menu 2: Frequency Ramps

Menu 2 Single Line Descriptions

			Range		Defa	ault							
	Parameter	Open-Loop	RFC-A	RFC-S	Open-Loop	RFC-	RFC-			Тур	е		
		Орен-Еоор	KFC-A	KrC-3		Α	S						
02.001	Post Ramp Reference	VM_SPEED_FREQ_REF	[MIN] to VM_SPE MAX]	ED_FREQ_REF[RO	Num	ND	NC	РΤ	
02.003	Ramp Hold	Off	(0) or On (1)		Off	(0)		RW	Bit				US
02.004	Ramp Mode	Fast (0), Standard (1), Std boost (2)	Fast (0), S	tandard (1)	Std boost (2)	Standa	ard (1)	RW	Txt				US
02.008	Standard Ramp Voltage		DLTAGE_SET[MIN DLTAGE_SET[MA:	•	200 V drive 5 400 V drive 5 400 V drive 6 575 V driv 690V driv	50 Hz: 7 50 Hz: 7 7e: 895	750 V 775 V V	RW	Num		RA		US
02.009	Deceleration Fail Detection Disable	Off	(0) or On (1)		Off	(0)		RW	Bit				US
02.010	Acceleration Rate Selector		1 to 4		1			RW	Num				US
02.011	General Acceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	1.0 s	1.00	00 s	RW	Num				US
02.012	Cleaning Phase 1 Acceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	5.0 s	5.00	00 s	RW	Num				US
02.013	Cleaning Phase 2 Acceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	5.0 s	5.00	00 s	RW	Num				US
02.014	Cleaning Phase 3 Acceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	5.0 s	5.00	00 s	RW	Num				US
02.020	Deceleration Rate Selector		1 to 4		1			RW	Num				US
02.021	General Deceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	1.0 s	1.00	00 s	RW	Num				US
02.022	Cleaning Phase 1 Deceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	5.0 s	5.00	00 s	RW	Num				US
02.023	Cleaning Phase 2 Deceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	5.0 s	5.00	00 s	RW	Num				US
02.024	Cleaning Phase 3 Deceleration Rate	VM_ACCEL_RATE[MI	N] to VM_ACCEL	_RATE[MAX] s	5.0 s	5.00	00 s	RW	Num				US
02.030	Acceleration Rate Selected		0 to 8					RO	Num	ND	NC	PT	
02.031	Deceleration Rate Selected		0 to 8					RO	Num	ND	NC	PΤ	
02.039	Ramp Rate Units	Off	(0) or On (1)		On	(1)		RW	Bit				US

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power-						
					down save						

Figure 10-3 Menu 2 Open-Loop, RFC-A and RFC-S logic diagrams

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor						1	1	ĺ

10.4 Menu 3: Speed Control and Position Feedback

Menu 3 Single Line Descriptions

	Parameter		Range			Default				T. ce			
	Parameter	OL	RFC-A	RFC-S	OL	RFC-A	RFC-S			Тур	Эе		
03.001	Final Speed Reference		VM_SF	PEED				RO	Num	ND	NC	PT	FI
03.002	Speed Feedback		VM_SF	PEED				RO	Num	ND	NC	PT	FI
03.003	Speed Error		VM_SF	PEED				RO	Num	ND	NC	PT	FI
03.004	Speed Controller Output		VM_TORQUE_	CURRENT %				RO	Num	ND	NC	PT	FI
03.005	Zero Speed Threshold	0.0 to 20.0 Hz	0 to 20	0 rpm	1.0 Hz	5 1	pm	RW	Num				US
03.006	At Speed Lower Limit	0.0 to 550.0 Hz	0 to 330	00 rpm	1.0 Hz	5 1	pm	RW	Num				US
03.007	At Speed Upper Limit	0.0 to 550.0 Hz	0.0 Hz			5 1	pm	RW	Num				US
03.008	Over Speed Threshold	0.0 to 550.0 Hz	Hz			10	pm	RW	Num				US
03.009	Absolute At Speed Select	Off (0) or On (1)				Off (0)		RW	Bit				US
03.010	Speed Controller Proportional Gain Kp1		0.0000 to 200	0.0000 s/rad		0.030	0 s/rad	RW	Num				US
03.011	Speed Controller Integral Gain Ki1		0.00 to 655	.35 s ² /rad		0.10	s ² /rad	RW	Num				US
03.012	RFC> Speed Controller Differential Feedback Gain Kd1		0.00000 to 0.	65535 1/rad		0.0000	00 1/rad	RW	Num				US
03.024	RFC Feedback Mode		Feedback (0), S Feedback N Sensorless	NoMax (2),		Sensor	less (1)	RW	Txt				US
03.025	Position Feedback Phase Angle			0.0 to 359.9 °				RW	Num	ND			US
03.026	Motor Control Feedback Select		P1 Slot1 (2), P2 Slot1 (3), P1 Slot2 (4), P2 Slot2 (5), P1 Slot3 (6), P2 Slot3 (7)			P1 SI	ot3 (6)	RW	Txt				US
03.078	Sensorless Mode Active		Off (0) or				RO	Bit	ND	NC	PT		
03.079	Sensorless Mode Filter		4 (0), 8 (1), 16 (2 m:			4 (0) ms	64 (4) ms	RW	Txt				US
03.080	Sensorless Position		-2147483648 to 2147483647										

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

Figure 10-4 Menu 3 Open-Loop logic diagrams

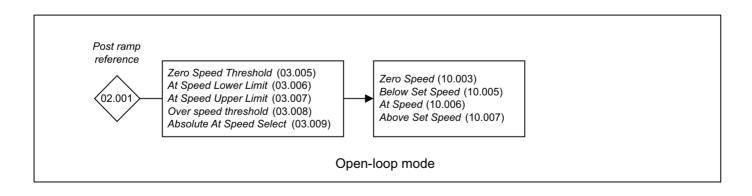
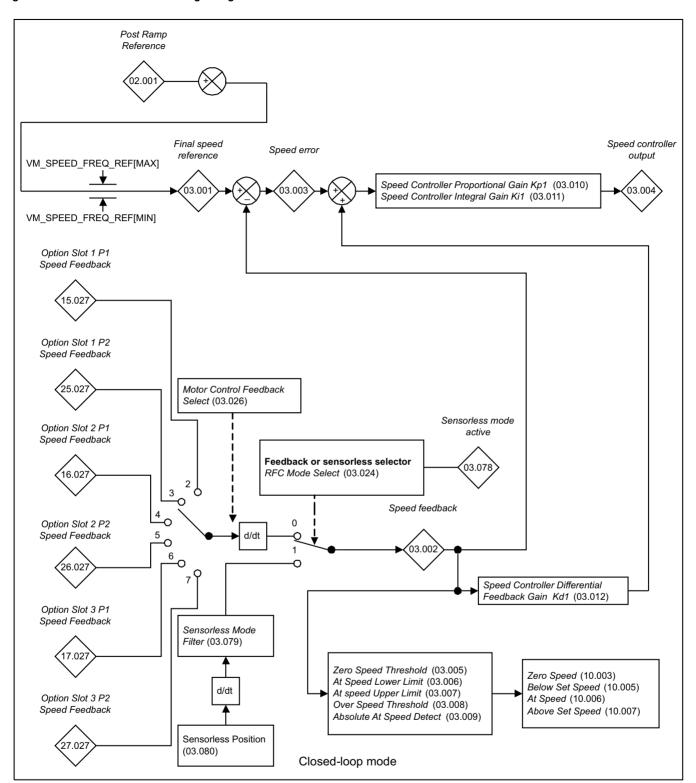
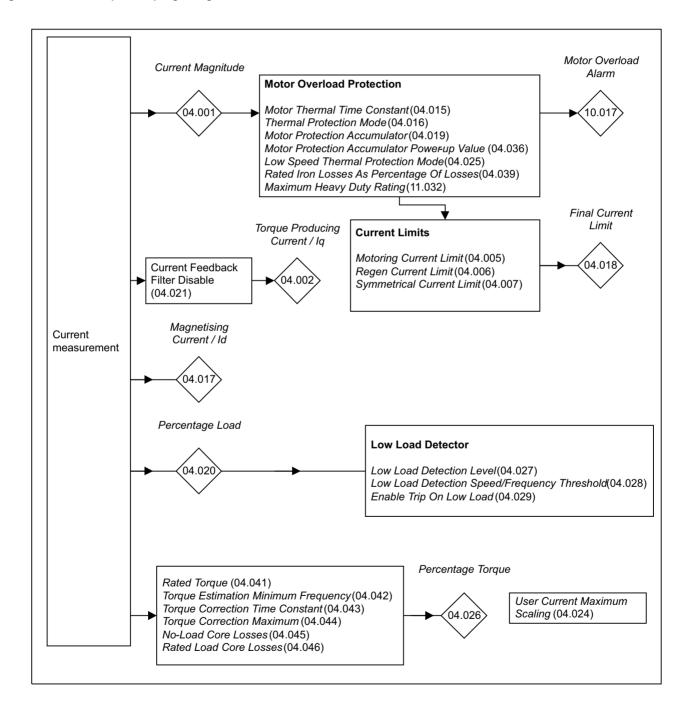



Figure 10-5 Menu 3 RFC-A / RFC-S logic diagrams

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional		NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	9	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
I				the Motor				I				ı

10.5 Menu 4: Torque and current control


Menu 4 Single Line Descriptions

	Parameter		Range		D	efault			Тур	е		
		Open-Loop	RFC-A	RFC-S	Open- Loop	RFC-A RFC-S						
04.001	Current Magnitude	to VM_DRIVE_	CURRENT_UNIPOLAR[ICURRENT_UNIPOLAR[I				RO	Num	ND	NC	РТ	FI
	Open-Loop: Torque Producing Current	VM_DRIVE_CURRENT[MIN]0 to VM_DRIVE_CURRENT[MAX] A					RO	Num	ND	NC	PT	FI
04.002	RFC-A: Torque Producing Current	VM_DITIVE_CONTRICT [MAX] A	VM_DRIVE_CURRENT [MIN] to VM_DRIVE_CU RRENT[MAX] A				RO	Num	ND	NC	PT	FI
	RFC-S: Iq			VM_DRIVE_CURRENT[MIN] to VM_DRIVE_CU RRENT[MAX] A			RO	Num	ND	NC	РТ	FI
114 11114	Final Current Reference			CURRENT[MIN] CURRENT[MAX] %			RO	Num	ND	NC	PT	FI
04.005	Motoring Current Limit	to VM_MOTO	DR1_CURRENT_LIMIT[M R1_CURRENT_LIMIT[M/	IN] AX] %	(0.0 %	RW	Num				US
04.006	Regenerating Current Limit	to VM_MOTO	R1_CURRENT_LIMIT[M R1_CURRENT_LIMIT[M/	AX] %	(0.0 %	RW	Num				US
04.007	Symmetrical Current Limit		R1_CURRENT_LIMIT[M R1_CURRENT_LIMIT[M/		(0.0 %	RW	Num				US
04.012	Current Reference Filter 1 Time Constant	_	0.0 to 2	25.0 ms		1.0 ms	RW	Num				US
04.013	Current Controller Kp Gain		0 to 30000		20	150	RW	Num				US
04.014	Current Controller Ki Gain		0 to 30000		40	2000	RW	Num				US
04.015	Motor Thermal Time Constant 1		1.0 to 3000.0 s		8	39.0 s	RW	Num				US
04.016	Thermal Protection Mode	Motor Trip (0), Motor Limit (Motor Trip (0), Motor Limit (1), Drive Limit (2), Both Limit (3), Disabled (4)									US
	Open-Loop: Magneti sing Current	VM_DRIVE_CURRENT[MIN] to VM_DRIVE_CURRENT[MAX] A					RO	Num	ND	NC	РТ	FI
04.017	RFC-A: Magnetising Current		VM_DRIVE_CURRENT [MIN] to VM_DRIVE_CURRENT [MAX] A				RO	Num	ND	NC	PT	FI
	RFC-S: Id			VM_DRIVE_CURRENT[MIN] to VM_DRIVE_CU RRENT[MAX] A			RO	Num	ND	NC	PT	FI
04.018	Final Current Limit Motor Protection	VM_TORQUE_CURRENT	[MIN] to VM_TORQUE_C	CURRENT[MAX] %				Num				
04.019	Accumulator		0.0 to 200.0 %				RO	Num	ND	NC	PT	PS
	Percentage Load	VM_USER_CURRENT	[MIN] to VM_USER_CUR	RENT[MAX] %			RO	Num	ND	NC	PT	FI
04 021	Current Feedback Filter Disable		Off (0) or On (1)		C	Off (0)	RW	Bit				US
04.024	User Current Maximum Scaling		_CURRENT_UNIPOLAR _CURRENT_UNIPOLAR		165.0 %	175.0 %	RW	Num				US
04.025	Low Speed Thermal Protection Mode		0 to 1			1		Num				US
	Percentage Torque Low Load Detection	VM_USER_CURRENT	[MIN] to VM_USER_CUR	RENT[MAX] %				Num		NC	PT	FI
04.027	Level Low Load Detection		0.0 to 100.0 %		(0.0 %	RW	Num			lacksquare	US
04.028	Speed /Frequency Threshold	VM_SPEED_ to VM_SPEED_			0.0	RW	Num				US	
04.029	Enable Trip On Low Load		Off (0) or On (1)		(Off (0)	RW	Bit				US
04.036	Motor Protection Acc umulator Power-up V alue	Power dow	n (0), Zero (1), Real time	(2)	Powe	r down (0)	RW	Txt				US
04.037	Motor Thermal Time Constant 2		1.0 to 3000.0 s		8	39.0 s	RW	Num				US
04.038	Motor Thermal Time Constant 2 Scaling		0 to 100 %			0 %	RW	Num				US
04.039	Rated Iron Losses As Percentage Of Losses		0 to 100 %			0 %	RW	Num				US
04.041	Rated Torque	0.	00 to 50000.00 Nm		0.	00 Nm	RW	Num			<u> </u>	US

Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Ca Operation	rd Advanc paramet		Diagnost	CC .	L listir ormati	9
04.049 Ma	gnetising Curr	ent				0.0 to	100.0 %			100.0 %	RW Num			US
04 050	w-pass Filter t-off Frequency	v				0 to 1	000 Hz			0 Hz	RW Num			US

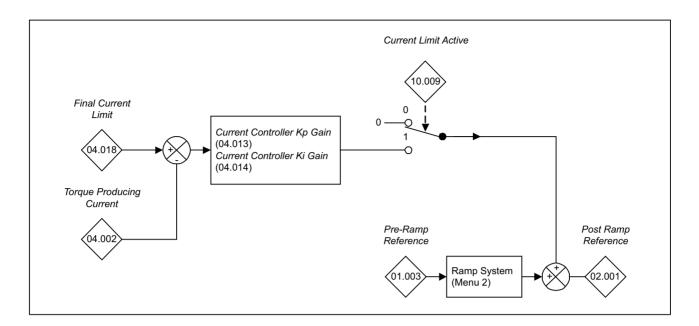

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

Figure 10-6 Menu 4 Open-Loop logic diagrams

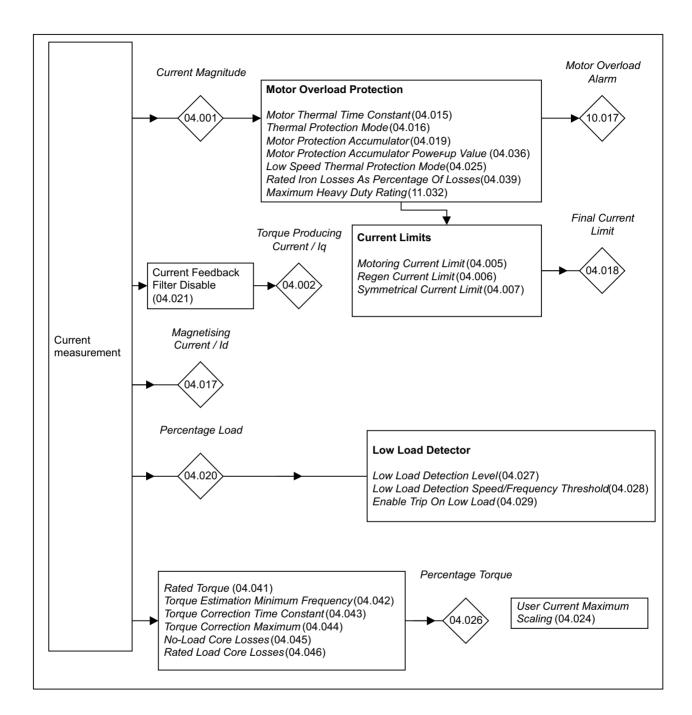

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Figure 10-7

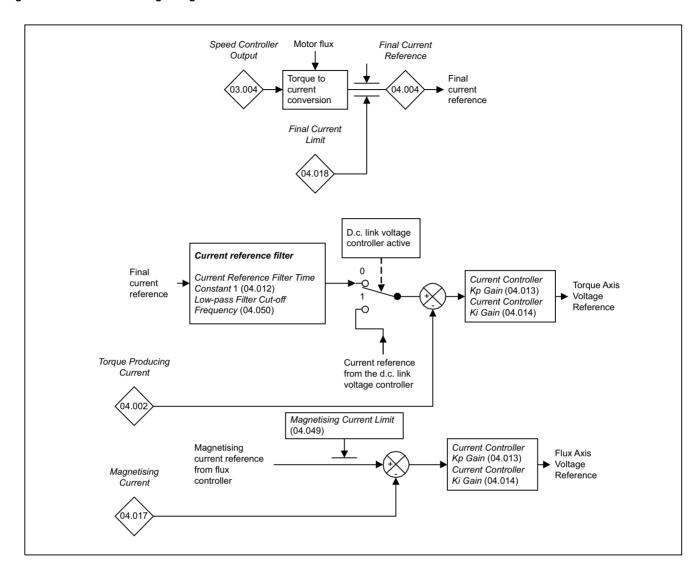

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	_	Advanced		Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
i				the Motor								

Figure 10-8 Menu 4 RFC-A and RFC-S logic diagram

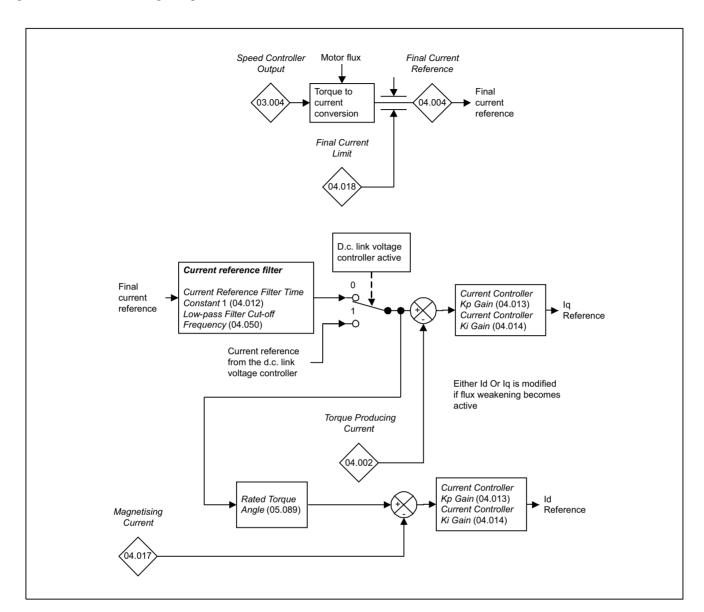

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								ı

Figure 10-9 Menu 4 RFC-A logic diagram

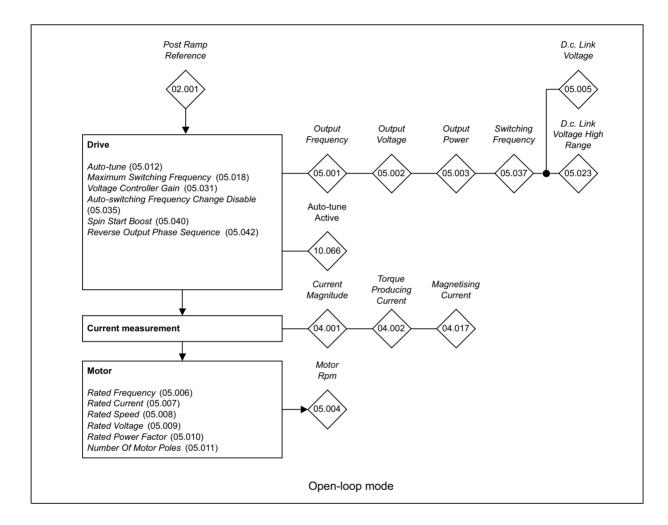
				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization				Diagnostics	UL listing
information	information	installation	installation	Running the Motor	parameters	descriptions	- '	Operation	parameters	data	3	information

Figure 10-10 Menu 4 RFC-S logic diagram

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional		NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	9	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
I				the Motor				I				ı

10.6 Menu 5: Motor control

Menu 5 Single Line Descriptions


		Rang	е		D	efault				_		\neg
	Parameter	Open-Loop	RFC-A	RFC-S	Open-Loop	RFC-A	RFC-S			Type		
05.001	Output Frequency	VM_SPEED_FREQ_REF[MIN] to VM_SPEED_FREQ_REF[M AX] Hz		0.0 Hz				RO	Num	ND NC	PT	FI
05.002	Output Voltage	VM_AC_VOLTAGE[MIN] to VM	M_AC_VOLTA	AGE[MAX] V				RO	Num	ND NC	PT	FI
	Output Power	VM_POWER[MIN] to VM								ND NC		
	Motor Rpm	±180000 rpm								ND NC		
05.005	D.c. Bus Voltage	VM_DC_VOLTAGE[MIN] to VM			50 H=: 50	0.1.1-	1	RO	Num	ND NC	РТ	FI
05.006	Rated Frequency	0.0 to 599.0 Hz	0.0 to 550.0 Hz		50 Hz: 50. 60 Hz: 60.			RW	Num			US
05.007	Rated Current	VM_RATED_CUI to VM_RATED_CUI		A	0.	A 000		RW	Num			US
05.008	Rated Speed	0 to 35940 rpm	0.00 to 33	000.00 rpm	50 Hz: 1500 rpm 60 Hz: 1750 rpm		50Hz: 1500.00 rpm 60Hz: 1800.00 rpm	RW	Num			US
	Rated Voltage	VM_AC_VOLTAG to VM_AC_VOLTAG	V	400 V driv 400 V driv 575 V 0 690 V 0	drive: 230 \ re 50Hz: 40 re 60Hz: 46 drive: 575 \ drive: 690 \	00 V 60 V V		Num			US	
05.010	Rated Power Factor	0.000 to 1.000			0.850			RW	Num		igsqcurve	US
05.011	Number Of Motor Poles	Automatic (0) to 48	30 (240) Poles	5	Automatic (0)	Poles	8 (4) Pole s	RW	Txt			US
05.012	Auto-tune	None (0), Basic (1), Impro	None (0), Stationary (1), Full Stationary (5)	No	one (0)		RW	Txt	NC			
	Open-Loop: Low Load Power Saving	Off (0) or On (1)			Off (0)			RW	Bit			US
	RFC-A: Flux Optimisation Select		Off (0) or On (1)			Off (0)		RW	Bit			US
	RFC-S: Minimal Movement Phasing Test Mode		(1)	Free x4 (-3), Free x3 (-2), Free x2 (-1), Free (0), Constrained (1)			Free (0)	RW	Txt			US
	Open-Loop: Open-loop Control Mode	Ur S (0), Ur (1), Fixed (2), Ur Auto (3), Ur I (4), Square (5)			Fixed (2)			RW	Txt			US
05.014	RFC-S: Phasing Test On Enable			Disabled (0), Short (1), Short Once (2), Long (3), Long Once (4)			Disabled (RW	Txt			US
	Open-Loop: Low Frequency Voltage Boost	0.0 to 25.0 %			1.0 %			RW	Num			US
	RFC-A: Low Frequency Voltage Boost		0.0 to 25.0 %			1.0 %		RW	Num			US
	RFC-S: Minimal Movement Phasing Test Current			1% (0), 2% (1), 3% (2), 6% (3), 12% (4), 25% (5), 50% (6), 100% (7)			1% (0)	RW	Txt			US
	Minimal Movement Phasing Test Angle			0.00 to 25.00			0.00°	RW	Num		Γ	US
	Stator Resistance	0.000000 to 100	0.000000 Ω	1	0.00	00000 Ω		RW	Num		H	US
	Maximum Switching Frequency			/ kHz		(1) kHz			Txt		П	US

Safety informatio	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameter	Function description		ion NV Media Car Operation	d Advanc paramet			Diagno	ostics		L listing ormatio
	pen-Loop: High S	•	Off	(0) or On (1)			Off (0)			RW	Bit			US
05.019 RI PI	FC-S: Minimal M hasing Test Mec hase	lovement					-180 to 179 °			-180 °	RW	/ Num			US
	uasi-square Ena	ble	Off	(0) or On (1)		ı	Off (0)		1	RW	/ Bit			US
05.022 Ei	nable High Spee	d Mode					Limit (-2), Limit (Servo) (-1), Disable (0), Enable (Servo) (1), Enable (2)			Limit (-2)	RW	Txt			US
	pen-Loop: Trans iductance	ient	0.000	to 500.000	mH			0.000 mH			RW	Num			US
	FC-A: Transient	Inductance			į	0.000 to 500.000 mH	0.0004		0.000 mH		RW	/ Num			US
R	FC-S: Ld						0.000 to 500.000 mH			0.000 mH	RW	Num			US
	tator Inductance	o Clin		0.00 to 50	000.00 mH			0.00 ml	1		RW	Num		4	US
05 027 Ci	pen-Loop: Enabl compensation	•	Off	(0) or On (1)			Off (0)		_	RW				US
R	FC-A: Flux Contr					±10.0	0.1 to 10.0		1.0	1.0		Num Num	\vdash	_	US
	orque Linearisati						Off (0) or			On (1)	RW				US
05.031 V	oltage Controller	Gain			1 to 30		On (1)		1		RW	/ Num			US
05.033 V	olts Per 1000rpm	1				0.0 to 150.0	0 to 10000 V			98 V	RW	Num	\square		US
	ercentage Flux					0.0 to 150.0 %					RO	Num	ND	NC P	ΓFI
05.035 CI	uto-switching Fre hange		Enab	led (0), Dis	abled (1), l	No Ripple De	etect (2)	Ena	abled (0)		RW	Txt			US
	uto-switching Fre tep Size	equency			1 to 2				2		RW	Num			US
	witching Frequer					1), 12 (5), 16			(0) 111		RO		ND	NC P	
M	linimum Switchin Iaximum Inverter			/M_MIN_S		_FREQUEN	ICY KHZ		(0) kHz 60 °C		RW			_	US
	ipple pin Start Boost			0.0 to	20 to 60 °	<u> </u>		1.0	50 C			Num	H	_	US
	oltage Headroom	1		0.0 10	7 10.0	0 to	20 %	1.0	0 %	5 %		/ Num			US
	everse Output Pl	hase		(Off (0) or O	n (1)		(Off (0)		RW	Bit			US
05 063 Se	ensorless Mode	Current					0.00 to 1.00 s			0.20 s	RW	/ Num			US
	FC Low Speed M	/lode					Injection (0), Current (1), Current (2), Current No Test (3), Current Step (4), Current Only (5)			Current (2)	RW	/ Txt			US
05.065 Sa	aliency Torque C	Control Select					Disabled (0), Low (1), High (2), Auto (3)			Disabled (0)	RW	/ Txt			US
05.066 A	ctive Saliency To	orque Mode					Disabled (0), Low (1), High (2)				RO	Txt	ND	NC P	Т
0	ctual Over-currer						0 to 500 %				RO	Num	ND	NC P	
05.069 Pe	ercentage of Rat	ed Current					0 to 1000 %			150 %	RW	/ Num		\perp	US
05 070	iverted Saturation haracteristic	n					Off (0) or On (1)			Off (0)	RW	Bit			US
	ow Speed Senso urrent	rless Mode					0.0 to 1000.0 %			100.0 %	RW	/Num			US
	o-load Lq						0.000 to 500.000 mH			0.000 mH	RW	Num		\neg	US
	Axis Current For						0 to 200 %			0 %	RW	/ Num		士	US
05 077	hase Offset At Deurrent	efined Iq					±90.0 °			0.0 °	RW	/ Num			US
05.078 Lo	q At The Defined	Iq Current					0.000 to 500.000 mH			0.000 mH	RW	Num			US
05.082 d	Axis Current For	Inductances					-200 to 0 %			-100 %	RW	Num			US

Safe informa		Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functiona description		on NV Media Card Operation	Advanced parameters		al	Diagn	ostic			sting ation
05.084	Lq At 7	The Defined	Id Current					0.000 to 500.000 mH		0.	.000 mH	RW	Num			U	JS
05.087	User D Angle	Defined Rate	ed Torque					0 to 90 °			0°	RW	Num			U	JS
05.088	Estima	ated Lq						0.000 to 500.000 mH				RO	Num	ND	NC F	PT F	-1
05.089	Rated	Torque Ang	le					0 to 90 °				RO	Num	ND	NC F	PΤ	

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

Figure 10-11 Menu 5 Open-Loop logic diagrams

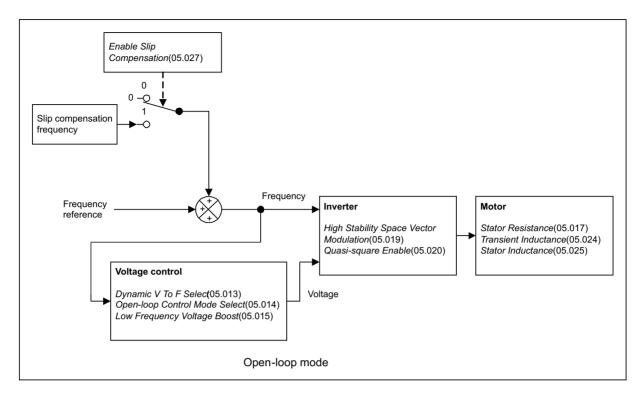
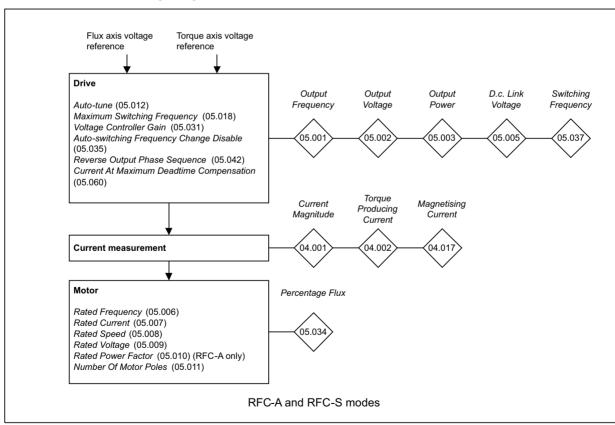
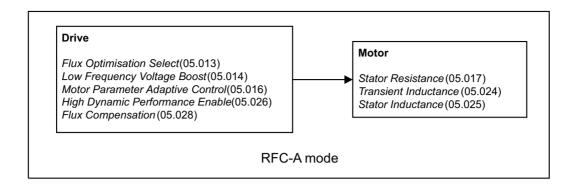
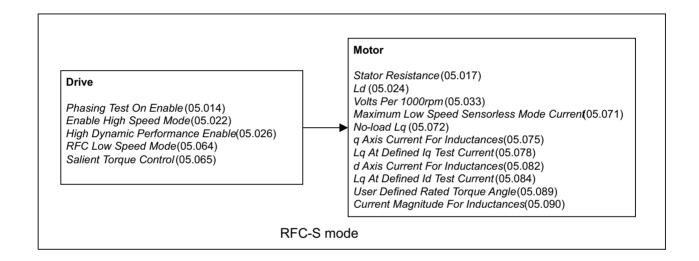
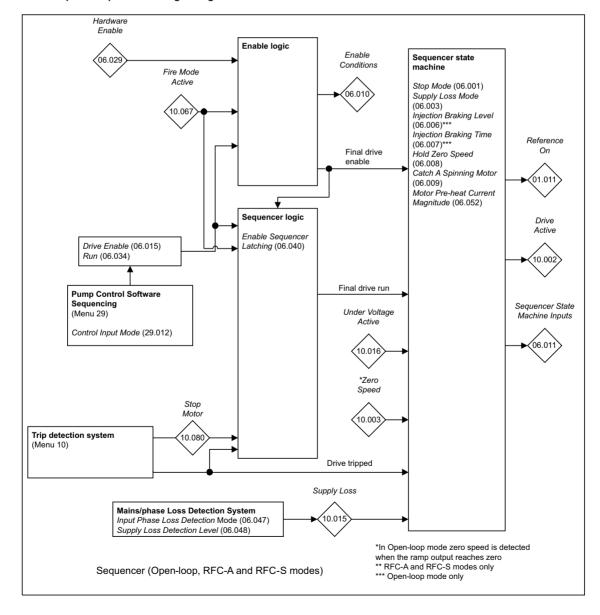
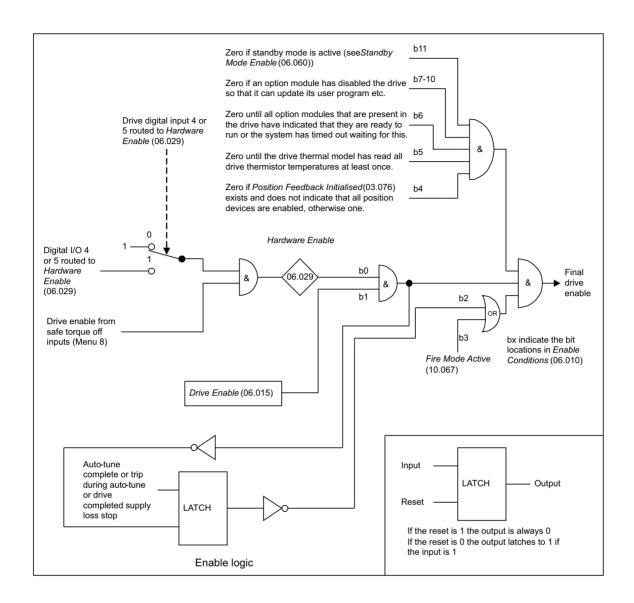





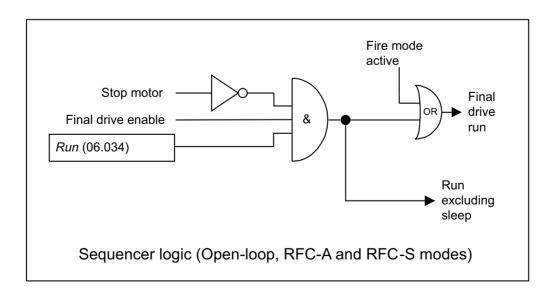
Figure 10-12 Menu 5 RFC-A and RFC logic diagrams

Safety information Product information Product information Product information Installation Inst

10.7 Menu 6: Sequencer and clock


Menu 6 Single Line Descriptions


			Range		l De	fault						_
	Parameter	Open-Loop	RFC-A	RFC-S		RFC-A RFC-S			Тур	е		
06.001	Stop Mode	Coast (0), Ramp (1), Ramp dc I (2), dc I (3), Timed dc I (4)	Coast (0)			mp (1)		Txt				US
06.003	Supply Loss Mode	Disable (0), Ramp Stop (1), Ride Thru (2)	Disable (0), R Ride Thru (2),	1 1 1 77	Disa	able (0)	RW	Txt				US
	Injection Braking Level	0.0 to 150.0 %			100.0 %		RW	Num				US
	Injection Braking Time	0.0 to 100.0 s	(0)		1.0 s	5 (0)	RW	Num				US
	Hold Zero Speed		(0) or On (1)	D 0 1 (0)		ff (0)	RW	Bit				US
	Catch A Spinning Motor	Disable (0), Enable (1), Fwd Only (2), 100 to 111111111		Disa	ible (0)	RW	Txt	NID	NO	DT	US
	Enable Conditions Sequencer State Machine Inputs		000 to 1111111	111			RO RO	Bin Bin		NC NC		
	Drive Enable		(0) or On (1)		0	n (1)	RW	Bit	ND	INC	FI	US
	Date		-00 to 31-12-99		U	11 (1)	RW	Date	ND	NC	PT	00
06.017	Time		:00 to 23:59:59				RW	Time		NC		
	Day Of Week	Sunday (0), Monday (1					RO	Txt				
	Date/Time Selector		(4), Remote Key			(eypad (4)	RW	Txt				US
	Date Format		d (0), US (1)			d (0)	RW	Txt				US
06.021	Time Between Filter Changes	0 to	30000 hours		0 h	nours	RW	Num				US
06.022	Filter Change Required / Change Done Time Before Filter Change Due		(0) or On (1) 30000 hours				RW	Bit	ND ND		DT	DC
06.023	Reset Energy Meter		(0) or On (1)			ff (0)	RO RW	Num Bit	טאו	INC	rı	ro
	Energy Meter: MWh		999.9 MWh		0	11 (0)	RO	Num	ND	NC	DТ	PS
	Energy Meter: kWh		99.99 kWh				RO	Num				
	Energy Cost Per kWh		.0 to 600.0			0.0	RW	Num	IVD	140		US
	Running Cost	-		0.0	RO	Num	ND	NC	PT			
	Hardware Enable	Off	±32000 (0) or On (1)				RO	Bit		NC		
	Run		(0) or On (1)		0:	ff (0)	RW	Bit		NC		
06.041	Drive Event Flags		00 to 11			00	RW	Bin		NC		
	Legacy Control Word	000000000000000000000000000000000000000	000 to 111111111	111111	0000000	000000000	RW	Bin		NC		
06.043	Legacy Control Word Enable	Off	(0) or On (1)		0	ff (0)	RW	Bit				US
	Active Supply		(0) or On (1)				RO	Bit	ND	NC	PT	
	Cooling Fan control		-10 to 11			10	RW	Num				US
	Cooling Fan Speed		0 to 10				RO	Num	ND	NC	PT	
06.047	Input Phase Loss Detection Mode	Full (0), Ripple	e Only (1), Disabl	ed (2)		ıll (0)	RW	Txt				US
06.048	Supply Loss Detection Level		/_LOSS_LEVEL[/_LOSS_LEVEL[400 V di 575 V di	rive: 205 V rive: 410 V rive: 540 V rive: 540 V	RW	Num		RA		US
06.051	Hold Supply Loss Active	Off	(0) or On (1)		O	ff (0)	RW	Bit		NC		
06.052	Motor Pre-heat Current Magnitude	С) to 100 %		() %	RW	Num				US
06.058	Output Phase Loss Detection Time	0.5s (0), 1.0s	s (1), 2.0s (2), 4.0	s (3)	0.5	s (0)	RW	Txt				US
06.059	Output Phase Loss Detection Enable	Disabled (0), Phases		Low Noise (3)		bled (0)		Txt				US
	Standby Mode Enable		(0) or On (1)			ff (0)	RW	Bit	<u> </u>			US
06.061	Standby Mode Mask Standard Under Voltage Threshold	VM_STD_U	000 to 1111111 INDER_VOLTS[N NDER_VOLTS[N		200 V di 400 V di 575 V di	00000 rive: 175 V rive: 330 V rive: 435 V rive: 435 V	RW	Bin Num		RA		US
06.066	Low Under Voltage Threshold	to VM_LOW_UNDER_VOLTS[MAX] V				rive: 175 V rive: 330 V rive: 435 V rive: 435 V	RW	Num		RA		US
06.067	Low Under Voltage Threshold Select		(0) or On (1)			ff (0)	RW	Bit				US
06.068	Backup Supply Mode Enable	Off	(0) or On (1)		0	ff (0)	RW	Bit				US
06.069	Under-voltage System Contactor Close	Off	(0) or On (1)				RO	Bit	ND	NC	PT	
06.070	Under-voltage System Contactor Closed	Off	(0) or On (1)		0	ff (0)	RW	Bit				
06.071	Slow Rectifier Charge Rate Enable		(0) or On (1)			ff (0)	RW	Bit				US
06.072	User Supply Select	Off	(0) or On (1)		O:	ff (0)	RW	Bit				US


Safety informati		Mechanical installation		ctrical allation	Getting started / Running the Motor	rted / Basic Functional descriptions Optimization NV Media Card Operation Operation Diagno		nostics	UL listino						
06.073	Braking IGBT Lo	ower Thresho	ld				GE_SET[MIN GE_SET[MAX		200 V driv 400 V driv 575 V driv 690 V drive	e: 780 V e: 930 V	RW	' Num		RA	US
06.074	Braking IGBT U	pper Thresho	ld		_	_	GE_SET[MIN GE_SET[MAX	•	200 V driv 400 V driv 575 V driv 690 V drive	e: 780 V e: 930 V	RW	' Num		RA	US
06.075	Low Voltage Bra Threshold	aking IGBT		VM_D	C_VOLTAG	E_SET[MIN] T[MAX		/OLTAGE_SE	0 \	/	RW	Num		RA	US
06.076	Low Voltage Bra Threshold Selec	•		Off (0) or On (1)					Off ((0)	RW	Bit			
06.084	Date And Time	Offset		±12.00 hours					0.00 h	ours	RW	Num			US
06.085	Control Word O	verride		0000000000000000000 to 11111111111111111					00000000	0000000	RW	Bin		NC	
06.086	Control override	enable			Disabled (0), Control W	ord (1), Enab	led (2)	Disable	ed (0)	RW	Txt		NC	

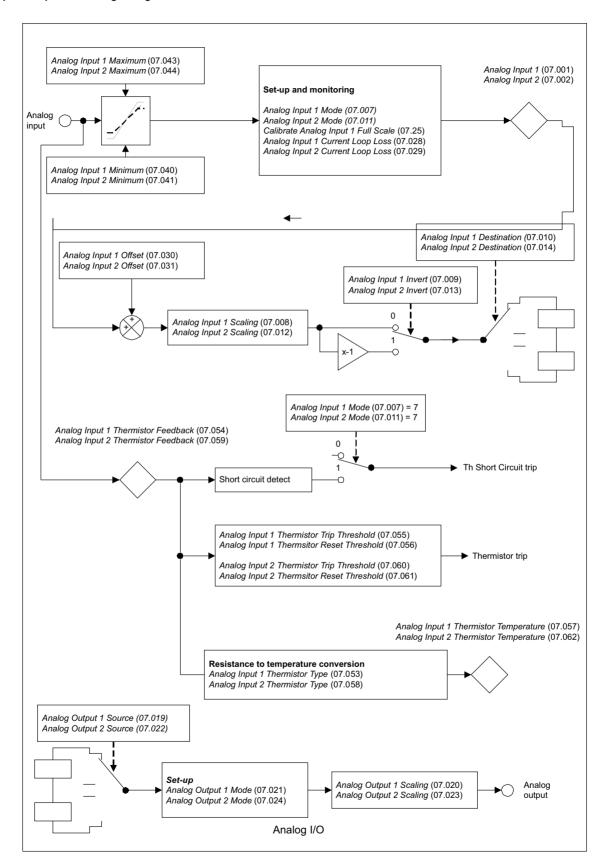
RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

Figure 10-13 Menu 6 Open-Loop and RFC logic diagrams

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

10.8 Menu 7: Analog I/O

Menu 7 Single line descriptions

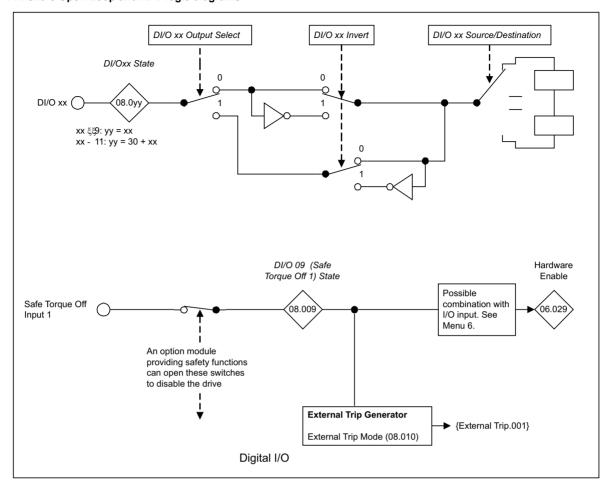

Max Ing (3), 4-20 mA (1), 2-04 mA (1), 2-04		Parameter	Range	Default			Тур	е		\neg
07 000 Amalog Imput 2 \$100.00% RO Num ND NO RC PT FT 07 000 Medinoted Temperature 2 \$250 °C RO Num ND NO RC PT FT 07 000 Medinoted Temperature 2 \$250 °C RO Num ND NO RC PT FT 07 000 Medinoted Temperature 3 \$4.20			Open-Loop RFC-A RFC-S	Open-Loop RFC-A RFC-S						
27.006 Monitored Temperature 1	07.001	Analog Input 1	±100.00 %							FI
27.000 Monitored Temperature 2		<u> </u>	±100.00 %							FI
1250 °C Monitored Temperature 3			I.							
4-20 mA Low (-4), 20-4 mA Low (-3), 4-20 mA Paide(-2), 20-4 mA Faide(-2), 20-4 mA Faide(-2), 20-4 mA Faide(-2), 20-4 mB Faid			==							
MA Hold (22), 204 mA Hold (1-1), 0-20 mA (10), 20-0mA (1), 4-20 mA Tip (2), 20-4 mA Tip (3), 4-20 mA (4), 20-4 mA (6), Vot (6), Them Short Cet (7), Themstaria (6), Vot (6), Them Short Cet (7), Themstaria (6), Vot (6), Them Short Cet (7), Themstaria (6), Vot (7), 4-20 mA Lov (4), 4-20 mA (8), 20-4 mA (6), Vot (8), Them Short Cet (7), Themstaria (8), Vot (8), Vot (8), Vot (8), Vot (8), Vot (9), Vot (8),	07.006	Monitored Temperature 3			RO	Num	ND	NC	PT	
MA (D) 2-00 mA (1) 4-20 mA (1) 2-20 mA (
Max Tip (3), 4-20 mA (4), 20-4 mA (5), wolf (6), Them Short Cet (7), Themistor (8), wolf (8), Them Short Cet (7), Themistor (8), wolf (8), w										
Vol. (6), Therm Short Cct (7), Thermistor (8), Therm No Trip (9)	07.007	Analog Input 1 Mode		4-20 mA (4)	RW	Txt			.	US
Therm No Trip (9)										
27.008 Analog Input 1 Destination Co.000 to 10.000 1.000 RW Num DE DE DE DE DE DE DE D										
Off (0) or On (1)	07.008	Analog Input 1 Scaling	,	1.000	RW	Num			\dashv	US
17.010 Analog Input 1 Destination 0.000 to 59.999 29.034 RW Num DE PT US		0 1								
4-20 mA Low (-4); 20-4 mA Low (-3), 20-4 mA Low (-3), 4-20 mA lold (-1), 0-20 mA (1), 20-0 mA (1), 4-20 mA lold (-1), 0-20 mA (1), 20-4 mA fin; (2), 20-4			() ()	. ,	RW	Num	DE		РΤ	US
4-20 mA Hold (-1), 2-00 mA (1), 2-00 mA (2), 4-20 mA (2), 2-20 mA (3 1								_
2.0-4 mA Trip (3), 4-20 mA (4), 2.0-4 mA (5), Volt (6), Thermistor (8), The										
2014 mA Inp (3), 4-20 mA (4), 204 mA (5), 204 mA (6), 204 mA (6	07 011	Analog Input 2 Mode	0-20 mA (0), 20-0 mA (1), 4-20 mA Trip (2),	Valt (6)	D\M	Tvt				110
Therm No Trip (9)	07.011	Arialog Iriput 2 Mode	20-4 mA Trip (3), 4-20 mA (4), 20-4 mA (5),	voit (6)	ΓVV	ΙXL			.	US
27.012 Analog Input 2 Scaling										
27.013 Analog Input 2 Invert			,							
27.014 Analog Input 2 Destination 0.000 to 59.999 1.036 RW Num DE PT US 07.029 Analog Output 1 Source 0.000 to 59.999 5.001 3.002 RW Num PT US 07.020 Analog Output 1 Source 0.000 to 10.000 1.000 RW Num PT US 07.021 Analog Output 1 Source 0.000 to 10.000 1.000 RW Num PT US 07.022 Analog Output 2 Source 0.000 to 59.999 4.002 RW Num PT US 07.022 Analog Output 2 Source 0.000 to 59.999 4.002 RW Num PT US 07.023 Analog Output 2 Source 0.000 to 10.000 1.000 RW Num PT US 07.023 Analog Output 2 Source 0.000 to 10.000 1.000 RW Num US 07.024 Analog Output 2 Source 0.000 to 10.000 1.000 RW Num US 07.025 Calibrate Analog Input 1 Full Scale Off (0) or On (1) Off (0) RW Bit NC PT 07.026 Analogue Input 1 Fast Update Active Off (0) or On (1) Off (0) RW Bit NC PT 07.027 Analogue Input 2 Fast Update Active Off (0) or On (1) RO Bit ND NC PT 07.028 Analog Input 1 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.029 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.029 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.030 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.031 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.032 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.034 Inverter Temperature Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.035 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.035 Analog Input 2 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT 07.035 Analog Input 2 Research 07.035 Proceedings of Calibrate 07.035 Proceedings of Calibrate 07.035 Proceedings of Calibrate 07.035 Proceedings of Calibrate 07.035 Proceedings of Calibra										_
27.019 Analog Output 1 Source 0.000 to 59.999 5.001 3.002 RW Num DT US Co. 200 Analog Output 1 Scaling 0.000 to 10.000 1.000 RW Num US US Co. 200 Analog Output 1 Scaling 0.000 to 10.000 1.000 RW Num US Co. 200 Analog Output 2 Source 0.000 to 59.999 4.002 RW Num DT US Co. 200 Analog Output 2 Scaling 0.000 to 59.999 4.002 RW Num DT US Co. 200 Analog Output 2 Scaling 0.000 to 59.999 4.002 RW Num DT US Co. 200 Analog Output 2 Scaling 0.000 to 10.000 1.000 RW Num DT US Co. 200 Analog Output 2 Scaling 0.000 to 10.000 1.000 RW Num DT US Co. 200 Analog Output 2 Scaling 0.000 to 10.000 Analogue Output 2 Mode Volts (0), 0-20 Analog Analogue Input 1 Fast Update Active Off (0) = Co. 10 Off (0) Co. 200 Analogue Input 1 Fast Update Active Off (0) = Co. 10 Off (0) Co. 200 Analogue Input 1 Fast Update Active Off (0) = Co. 11 Off (0) Co. 200 Analogue Input 2 Fast Update Active Off (0) = Co. 11 Off (0) Co. 200 Analogue Input 2 Fast Update Active Off (0) = Co. 11 Off (0) Co. 11 Off (0) RO Bit ND NC PT Off (0) = Co. 200 Analogue Input 2 Fast Update Active Off (0) = Co. 11			. , , , ,	. ,						_
O.002 Analog Output 1 Scaling O.000 to 10.000 1.000 RW Num US							DE			
O7.021 Analogue Output 1 Mode Volts (0), 0-20 mA (1), 20-0 mA (2), 4-20 Volts (0) RW Txt US NA (3), 20-4 mA (4) RW Txt US O7.022 Analog Output 2 Source 0.000 to 59.999 4.002 RW Num PT US O7.023 Analog Output 2 Scaling Volts (0), 0-20 mA (1), 20-0 mA (2), 4-20 Num Volts (0) RW Num US Volts (0) RW Num US Volts (0) RW Volts (0)			I.							
17.021 Analogue Output 2 Source 0.000 to 59.999 4.002 RW Num PT US 0.000 to 10.000 1.000 RW Num PT US 0.000 to 10.000 RW Num PT US 0.000 to 10.000 RW Num PT US 0.000 to 10.000 RW Num US 0.000 to 10.000 RW Num PT US 0.000 to 10.000 RW Num US 0.000 to 10.000 RW Num PT US 0.000 to 10.000 RW Num US 0.000 RW Num US	07.020	Analog Output 1 Scaling	I.	1.000	RW	Num				US
27.022 Analog Output 2 Source 0.000 to 59.999 4.002 RW Num PT US	07.021	Analogue Output 1 Mode		Volts (0)	RW	Txt				US
O7.023 Analog Output 2 Scaling	07.000	Analas Outrut 2 Cauras	(),	4.000	DW	Nima			РΤ	LIC
O7.024 Analogue Output 2 Mode Volts (0), 0-20 mA (1), 20-0 mA (2), 4-20 Volts (0) RW Txt US US										
Volts (U)	07.023	Arraiog Output 2 Scaling		1.000	IT VV	Nulli				
07.025 Calibrate Analog Input 1 Full Scale Off (0) or On (1) Off (0) RW Bit NC Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On (1) RO Bit ND NC PT Off. (2) or On	07.024	Analogue Output 2 Mode		Volts (0)	RW	Txt				US
07.026 Analogue Input 1 Fast Update Active Off (0) or On (1) RO Bit ND NC PT	07 025	Calibrate Analog Input 1 Full Scale		Off (0)	RW	Rit		NC.	\rightarrow	
O7.027 Analogue Input 2 Fast Update Active Off (0) or On (1) RO Bit ND NC PT			. , , , ,	<u> </u>			ND		РΤ	-
O7.028 Analog Input 1 Current Loop Loss Off (0) or On (1) RO Bit ND NC PT		ů i i	. , , , ,						_	
07.029 Analog Input 2 Current Loop Loss Off (0) or On (1)		0 1	() ()							
107.030 Analog Input 1 Offset			. , , , ,							
O7.031 Analog Input 2 Offset			. , , , ,	0.00 %						US
07.034 Inverter Temperature										
07.034 Inverter Temperature	07.033	Power Output	±100.0 %		RO	Num	ND	NC	PT	_
07.036 Percentage Of Drive Thermal Trip Level 0 to 100 % RO Num ND NC PT 07.037 Temperature Nearest To Trip Level 0 to 20999 RO Num ND NC PT 07.038 Temperature Monitor Select 1 0 to 1999 1001 RW Num US 07.039 Temperature Monitor Select 2 0 to 1999 1002 RW Num US 07.040 Analog Input 1 Minimum ±100.00 % 0.00 % RW Num US 07.041 Analog Input 2 Minimum ±100.00 % 0.00 % RW Num US 07.043 Analog Input 1 Maximum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 2 Maximum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 1 Minimum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 2 Maximum ±100.00 % 100.00 % RW Num US 07.054 Analog Input 1 Full Scale 0 to 65535 RO Num Nu Nu US <td></td> <td></td> <td>±250 °C</td> <td></td> <td>RO</td> <td>Num</td> <td>ND</td> <td>NC</td> <td>PT</td> <td></td>			±250 °C		RO	Num	ND	NC	PT	
O7.037 Temperature Nearest To Trip Level O to 20999 RO Num ND NC PT	07.035	Percentage Of d.c. Link Thermal Trip Level	0 to 100 %		RO	Num	ND	NC	PT	
O7.038 Temperature Monitor Select 1	07.036	Percentage Of Drive Thermal Trip Level	0 to 100 %		RO	Num	ND	NC	PT	
O7.039 Temperature Monitor Select 2 O to 1999 1002 RW Num US	07.037	Temperature Nearest To Trip Level	0 to 20999		RO	Num	ND	NC	PT	
07.040 Analog Input 1 Minimum ±100.00 % 0.00 % RW Num US 07.041 Analog Input 2 Minimum ±100.00 % 0.00 % RW Num US 07.043 Analog Input 1 Maximum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 2 Maximum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 1 Full Scale 0 to 65535 RO Num ND NC PT PS 07.052 Temperature Monitor Select 3 0 to 1999 1 RW Num US 07.053 Analog Input 1 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.055 Analog Input 1 Thermistor Feedback 0 to 5000 Ω 3300 Ω RW Num US 07.056 Analog Input 1 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US 07.057 Analog Input 1 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Num US 07.058 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Num US 07.059 Analog Input 2 Thermistor Type DIN44082	07.038	Temperature Monitor Select 1	0 to 1999	1001	RW	Num				US
07.041 Analog Input 2 Minimum ±100.00 % 0.00 % RW Num US 07.043 Analog Input 1 Maximum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 2 Maximum ±100.00 % 100.00 % RW Num US 07.051 Analog Input 1 Full Scale 0 to 65535 RO Num ND NC PT PS 07.052 Temperature Monitor Select 3 0 to 1999 1 RW Num US 07.053 Analog Input 1 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.054 Analog Input 1 Thermistor Feedback 0 to 5000 Ω 3300 Ω RW Num US 07.055 Analog Input 1 Thermistor Trip Threshold 0 to 5000 Ω 3300 Ω RW Num US 07.056 Analog Input 1 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US 07.057 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.058 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Num US 07.059 Analog Input 2 Therm				1002						_
07.043 Analog Input 1 Maximum ±100.00 % 100.00 % RW Num US 07.044 Analog Input 2 Maximum ±100.00 % 100.00 % RW Num US 07.051 Analog Input 1 Full Scale 0 to 65535 RO Num ND NC PT PS RO Num ND NC PT PS 07.052 Temperature Monitor Select 3 0 to 1999 1 RW Num US 07.053 Analog Input 1 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.054 Analog Input 1 Thermistor Feedback 0 to 5000 Ω 3300 Ω RW Num US 07.055 Analog Input 1 Thermistor Trip Threshold 0 to 5000 Ω 1800 Ω RW Num US 07.056 Analog Input 1 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US 07.057 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.058 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Num ND NC PT <td></td> <td>0 1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>US</td>		0 1								US
07.044 Analog Input 2 Maximum ±100.00 % 100.00 % RW Num US 07.051 Analog Input 1 Full Scale 0 to 65535 RO Num ND NC PT PS 07.052 Temperature Monitor Select 3 0 to 1999 1 RW Num US 07.053 Analog Input 1 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.054 Analog Input 1 Thermistor Feedback 0 to 5000 Ω 3300 Ω RW Num US 07.055 Analog Input 1 Thermistor Trip Threshold 0 to 5000 Ω 3300 Ω RW Num US 07.056 Analog Input 1 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US 07.057 Analog Input 1 Thermistor Temperature -50 to 300 °C RO Num ND NC PT US 07.058 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.059 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Num ND NC PT 07.059 Analog Input 2 Thermistor Feedback 0 to 5000 Ω 3300 Ω RW Num ND NC PT 07.060 Analog Input 2 Thermistor									_	US
07.051Analog Input 1 Full Scale0 to 65535RONumNDNCPTPS07.052Temperature Monitor Select 30 to 19991RWNumUS07.053Analog Input 1 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.054Analog Input 1 Thermistor Feedback0 to 5000 Ω3300 ΩRWNumNDNCPT07.055Analog Input 1 Thermistor Trip Threshold0 to 5000 Ω3300 ΩRWNumUS07.056Analog Input 1 Thermistor Reset Threshold0 to 5000 Ω1800 ΩRWNumNDNCPT07.057Analog Input 1 Thermistor Temperature-50 to 5000 Ω1800 ΩRWNumNDNCPT07.058Analog Input 2 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.059Analog Input 2 Thermistor Feedback0 to 5000 Ω3300 ΩRWNumNDNCPT07.060Analog Input 2 Thermistor Trip Threshold0 to 5000 Ω3300 ΩRWNumUS07.061Analog Input 2 Thermistor Reset Threshold0 to 5000 Ω3300 ΩRWNumUS										US
07.052Temperature Monitor Select 30 to 19991RWNumUS07.053Analog Input 1 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.054Analog Input 1 Thermistor Feedback0 to 5000 Ω 3300 Ω RWNumNDNCPT07.055Analog Input 1 Thermistor Trip Threshold0 to 5000 Ω 3300 Ω RWNumUS07.056Analog Input 1 Thermistor Reset Threshold0 to 5000 Ω 1800 Ω RWNumUS07.057Analog Input 1 Thermistor Temperature-50 to 300 °CRONumNDNCPT07.058Analog Input 2 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.059Analog Input 2 Thermistor Feedback0 to 5000 Ω 3300 Ω RWNumNDNCPT07.060Analog Input 2 Thermistor Trip Threshold0 to 5000 Ω 3300 Ω RWNumUS07.061Analog Input 2 Thermistor Reset Threshold0 to 5000 Ω 3300 Ω RWNumUS				100.00 %						US
07.053Analog Input 1 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.054Analog Input 1 Thermistor Feedback0 to 5000 ΩRONumNDNCPT07.055Analog Input 1 Thermistor Trip Threshold0 to 5000 Ω3300 ΩRWNumUS07.056Analog Input 1 Thermistor Reset Threshold0 to 5000 Ω1800 ΩRWNumUS07.057Analog Input 1 Thermistor Temperature-50 to 300 °CRONumNDNCPT07.058Analog Input 2 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.059Analog Input 2 Thermistor Feedback0 to 5000 ΩRONumNDNCPT07.060Analog Input 2 Thermistor Trip Threshold0 to 5000 Ω3300 ΩRWNumUS07.061Analog Input 2 Thermistor Reset Threshold0 to 5000 Ω3300 ΩRWNumUS							ND	NC		
07.053 Analog Input 1 Thermistor TypePT2000 (4), NI1000 (5)DIN44082 (0)RWTXTUS07.054 Analog Input 1 Thermistor Feedback0 to 5000 ΩRONumNDNCPT07.055 Analog Input 1 Thermistor Trip Threshold0 to 5000 Ω3300 ΩRWNumUS07.056 Analog Input 1 Thermistor Reset Threshold0 to 5000 Ω1800 ΩRWNumUS07.057 Analog Input 1 Thermistor Temperature-50 to 300 °CRONumNDNCPT07.058 Analog Input 2 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RWTxtUS07.059 Analog Input 2 Thermistor Feedback0 to 5000 ΩRONumNDNCPT07.060 Analog Input 2 Thermistor Trip Threshold0 to 5000 Ω3300 ΩRWNumUS07.061 Analog Input 2 Thermistor Reset Threshold0 to 5000 Ω3300 ΩRWNumUS	07.052	Temperature Monitor Select 3		1	RW	Num				US
07.055Analog Input 1 Thermistor Trip Threshold0 to 5000 Ω 3300 Ω RW NumUS07.056Analog Input 1 Thermistor Reset Threshold0 to 5000 Ω 1800 Ω RW NumUS07.057Analog Input 1 Thermistor Temperature-50 to 300 °CRO Num ND NC PT07.058Analog Input 2 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RW TxtUS07.059Analog Input 2 Thermistor Feedback0 to 5000 Ω RO Num ND NC PT07.060Analog Input 2 Thermistor Trip Threshold0 to 5000 Ω 3300 Ω RW NumUS07.061Analog Input 2 Thermistor Reset Threshold0 to 5000 Ω 1800 Ω RW NumUS	07.053	Analog Input 1 Thermistor Type		DIN44082 (0)						US
07.056Analog Input 1 Thermistor Reset Threshold0 to 5000 Ω 1800 Ω RW NumUS07.057Analog Input 1 Thermistor Temperature-50 to 300 °CRO Num ND NC PT07.058Analog Input 2 Thermistor TypeDIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5)DIN44082 (0)RW TxtUS07.059Analog Input 2 Thermistor Feedback0 to 5000 Ω RO Num ND NC PT07.060Analog Input 2 Thermistor Trip Threshold0 to 5000 Ω 3300 Ω RW NumUS07.061Analog Input 2 Thermistor Reset Threshold0 to 5000 Ω 1800 Ω RW NumUS		• -	I.				ND	NC		
07.057 Analog Input 1 Thermistor Temperature -50 to 300 °C RO Num ND NC PT 07.058 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt V V US 07.059 Analog Input 2 Thermistor Feedback 0 to 5000 Ω RO Num ND NC PT 07.060 Analog Input 2 Thermistor Trip Threshold 0 to 5000 Ω 3300 Ω RW Num US 07.061 Analog Input 2 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US		9 1								US
07.058 Analog Input 2 Thermistor Type DIN44082 (0), KTY84 (1), PT1000 (3), PT2000 (4), NI1000 (5) DIN44082 (0) RW Txt US 07.059 Analog Input 2 Thermistor Feedback 0 to 5000 Ω RO Num ND NC PT 07.060 Analog Input 2 Thermistor Trip Threshold 0 to 5000 Ω 3300 Ω RW Num US 07.061 Analog Input 2 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US				1800 Ω						US
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	07.057	Analog Input 1 Thermistor Temperature			RO	Num	ND	NC	PT	
07.060 Analog Input 2 Thermistor Trip Threshold 0 to 5000 Ω 3300 Ω RW Num US 07.061 Analog Input 2 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US	07.058	Analog Input 2 Thermistor Type		DIN44082 (0)						US
07.061 Analog Input 2 Thermistor Reset Threshold 0 to 5000 Ω 1800 Ω RW Num US	07.059	Analog Input 2 Thermistor Feedback	I.		RO	Num	ND	NC	PΤ	
	07.060	Analog Input 2 Thermistor Trip Threshold	0 to 5000 Ω	3300 Ω	RW	Num				US
07.062 Analog Input 2 Thermistor Temperature -50 to 300 °C RO Num ND NC PT				1800 Ω						US
	07.062	Analog Input 2 Thermistor Temperature	-50 to 300 °C		RO	Num	ND	NC	PT	

Pump Drive F600 User Guide 383

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
			otaliation	the Motor	parameters	accompaction		opo.a.io.i	paramotors	aata		

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

Menu 7 Open-Loop and RFC logic diagrams


10.9 Menu 8: Digital I/O

Menu 8 Single line descriptions

Parameter	Range	Default			Тур	е		
	Open-Loop RFC-A RFC-S	Open-Loop RFC-A RFC-S						
08.001 Digital I/O 01 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.002 Digital I/O 02 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.003 Digital I/O 03 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.004 Digital Input 04 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.005 Digital Input 05 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.006 Digital Input 06 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.007 Relay Output State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.008 24V Supply Output State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.009 STO Input 01 State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.010 External Trip Mode	Disable (0), STO 1 (1), STO 2 (2), STO 1 OR STO 2 (3)	Disable (0)	RW	Txt				US
08.011 Digital I/O 01 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.012 Digital I/O 02 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.013 Digital I/O 03 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.014 Digital Input 04 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.015 Digital Input 05 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.016 Digital Input 06 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.017 Relay Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.018 24V Supply Output Invert	Not Invert (0), Invert (1)	Invert (1)	RW	Txt				US
08.020 Digital I/O Read Word	0 to 511	,	RO	Num	ND	NC	PT	
08.021 Digital I/O 01 Source/Destination	0.000 to 59.999	1.011	RW	Num	DE		PT	US
08.022 Digital I/O 02 Source/Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.023 Digital I/O 03 Source/Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.024 Digital Input 04 Destination	0.000 to 59.999	29.013	RW	Num	DE		PT	US
08.025 Digital Input 05 Destination	0.000 to 59.999	29.015	RW	Num	DE		PT	US
08.026 Digital Input 06 Destination	0.000 to 59.999	29.086	RW	Num	DE		PT	US
08.027 Relay Output Source	0.000 to 59.999	10.001	RW	Num			PT	US
08.028 24V Supply Output Source	0.000 to 59.999	0.000	RW	Num			PT	US
08.029 Input Logic Polarity	Negative Logic (0), Positive Logic (1)	Positive Logic (1)	RW	Txt				US
08.031 Digital I/O 01 Output Select	Off (0) or On (1)	On (1)	RW	Bit				US
08.032 Digital I/O 02 Output Select	Off (0) or On (1)	Off (0)	RW	Bit				US
08.033 Digital I/O 03 Output Select	Off (0) or On (1)	Off (0)	RW	Bit				US
08.041 Keypad Run Button State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.042 Keypad Auxiliary Button State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.043 24V Supply Input State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.044 Keypad Stop Button State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.045 Relay 2 Output State	Off (0) or On (1)		RO	Bit	ND	NC	PT	
08.051 Keypad Run Button Invert/Toggle	Not Invert (0), Invert (1), Toggle (2)	Not Invert (0)	RW	Txt				US
08.052 Keypad Auxiliary Button Invert/Toggle	Not Invert (0), Invert (1), Toggle (2)	Not Invert (0)	RW	Txt				US
08.053 24V Supply Input Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.055 Relay 2 Invert	Not Invert (0), Invert (1)	Not Invert (0)	RW	Txt				US
08.061 Keypad Run Button Destination	0.000 to 59.999	0.000	RW	Num	DE	П	PT	US
08.062 Keypad Auxiliary Button Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.063 24V Supply Input Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
08.065 Relay 2 Source	0.000 to 59.999	0.000	RW	Num		М	PT	US
08.071 Digital I/O Output Enable Register 1	00000000000000000000 to 1111111111111111	000000000000000	RW	Bin		М	РΤ	US
08.072 Digital I/O Input Register 1	00000000000000000000000000000000000000		RO	Bin	ND	NC	PT	
08.073 Digital I/O Output Register 1	00000000000000000000000000000000000000	000000000000000	RW	Bin		H	PT	

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power-						
1		-	000.00.0	. •	down save						

Figure 10-14 Menu 8 Open-Loop and RFC logic diagrams

Getting started / Product information Functional descriptions UL listing information Electrical installation NV Media Card Safety Basic Technical Mechanical Advanced Optimization Diagnostics Running the Motor information installation parameters Operation parameters data

10.10 Menu 9: Programmable logic, motorized pot, binary sum and timers

Menu 9 Single line descriptions

	Damenton.	Range	Default			T	_		
	Parameter	Open-Loop RFC-A RFC-S	Open-Loop RFC-A RFC-S			Тур	е		
09.001	Logic Function 1 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
09.002	Logic Function 2 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	<u> </u>
09.003	Motorised Pot Output	±100.00 %		RO	Num	ND	NC	PT	PS
09.004	Logic Function 1 Source 1	0.000 to 59.999	0.000	RW	Num			PT	US
09.005	Logic Function 1 Source 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.006	Logic Function 1 Source 2	0.000 to 59.999	0.000	RW	Num			PT	US
09.007	Logic Function 1 Source 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.008	Logic Function 1 Output Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.009	Logic Function 1 Delay	±25.0 s	0.0 s	RW	Num				US
09.010	Logic Function 1 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
09.014	Logic Function 2 Source 1	0.000 to 59.999	0.000	RW	Num			PT	US
09.015	Logic Function 2 Source 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.016	Logic Function 2 Source 2	0.000 to 59.999	0.000	RW	Num			PT	US
09.017	Logic Function 2 Source 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.018	Logic Function 2 Output Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.019	Logic Function 2 Delay	±25.0 s	0.0 s	RW	Num				US
09.020	Logic Function 2 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
09.021	Motorised Pot Mode	0 to 4	0	RW	Num				US
09.022	Motorised Pot Bipolar Select	Off (0) or On (1)	Off (0)	RW	Bit				US
09.023	Motorised Pot Rate	0 to 250 s	20 s	RW	Num				US
09.024	Motorised Pot Scaling	0.000 to 4.000	1.000	RW	Num				US
09.025	Motorised Pot Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
09.026	Motorised Pot Up	Off (0) or On (1)	Off (0)	RW	Bit		NC		<u> </u>
09.027	Motorised Pot Down	Off (0) or On (1)	Off (0)	RW	Bit		NC		<u> </u>
09.028	Motorised Pot Reset	Off (0) or On (1)	Off (0)	RW	Bit		NC		<u> </u>
09.029	Binary Sum Ones	Off (0) or On (1)	Off (0)	RW	Bit		NC		<u> </u>
09.030	Binary Sum Twos	Off (0) or On (1)	Off (0)	RW	Bit		NC		<u> </u>
09.031	Binary Sum Fours	Off (0) or On (1)	Off (0)	RW	Bit		NC		
09.032	Binary Sum Output	0 to 255		RO	Num	ND	NC	PT	<u> </u>
09.033	Binary Sum Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
09.034	Binary Sum Offset	0 to 248	0	RW	Num				US
09.035	Timer 1 Start Date	00-00-00 to 31-12-99	00-00-00	RW	Date				US
09.036	Timer 1 Start Time	00:00:00 to 23:59:59	00:00:00	RW	Time				US
09.037	Timer 1 Stop Date	00-00-00 to 31-12-99	00-00-00	RW	Date				US
09.038	Timer 1 Stop Time	00:00:00 to 23:59:59	00:00:00	RW	Time				US
09.039	Timer 1 Repeat Function	None (0), Hour (1), Day (2), Week (3), Month (4), Year (5), One off (6), Minute (7)	None (0)	RW	Txt				US
09.040	Timer 1 Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
09.041	Timer 1 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.042	Timer 1 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
09.043	Timer 1 Destination	0.000 to 59.999	29.056	RW	Num	DE		PT	US
09.045	Timer 2 Start Date	00-00-00 to 31-12-99	00-00-00	RW	Date				US
09.046	Timer 2 Start Time	00:00:00 to 23:59:59	00:00:00	RW	Time				US
09.047	Timer 2 Stop Date	00-00-00 to 31-12-99	00-00-00	RW	Date				US
09.048	Timer 2 Stop Time	00:00:00 to 23:59:59	00:00:00	RW	Time				US
09.049	Timer 2 Repeat Function	None (0), Hour (1), Day (2), Week (3), Month (4), Year (5), One off (6), Minute (7)	None (0)	RW	Txt				US
09.050	Timer 2 Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
09.051	Timer 2 Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
09.052	Timer 2 Output	Off (0) or On (1)		RO	Bit	ND	NC	PT	
09.053	Timer 2 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	110	User save	PS	Power-						
FI	riitered	03	User save	FO	down save						

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•			•				

Figure 10-15 Menu 9 logic diagram: Logic Functions

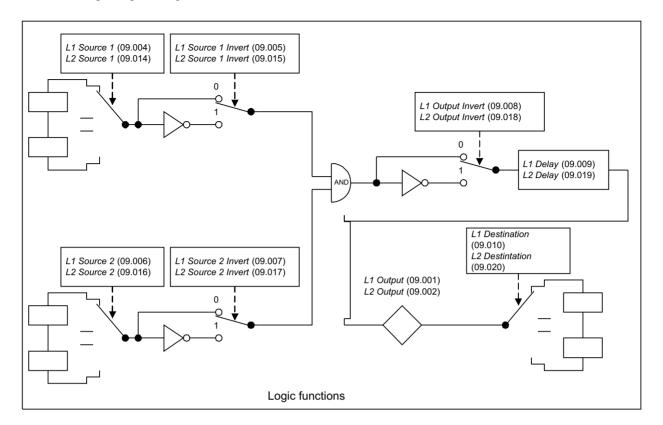


Figure 10-16 Menu 9 logic diagram: Motorised Pot

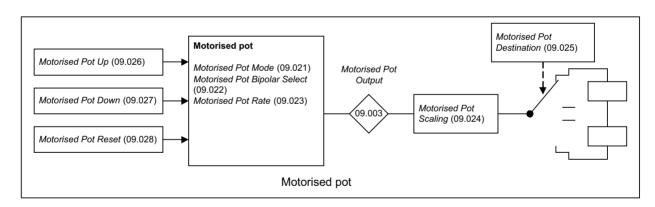


Figure 10-17 Menu 9 logic diagram: Binary Sum

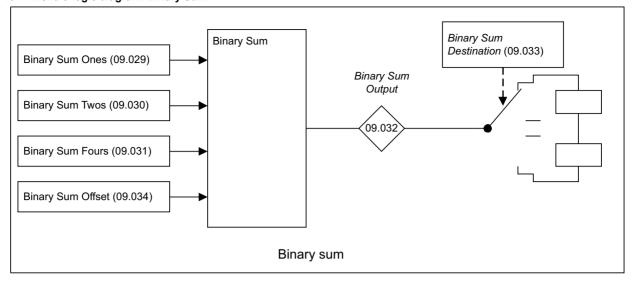
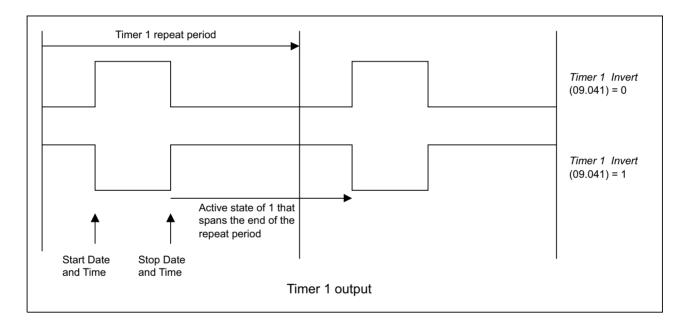
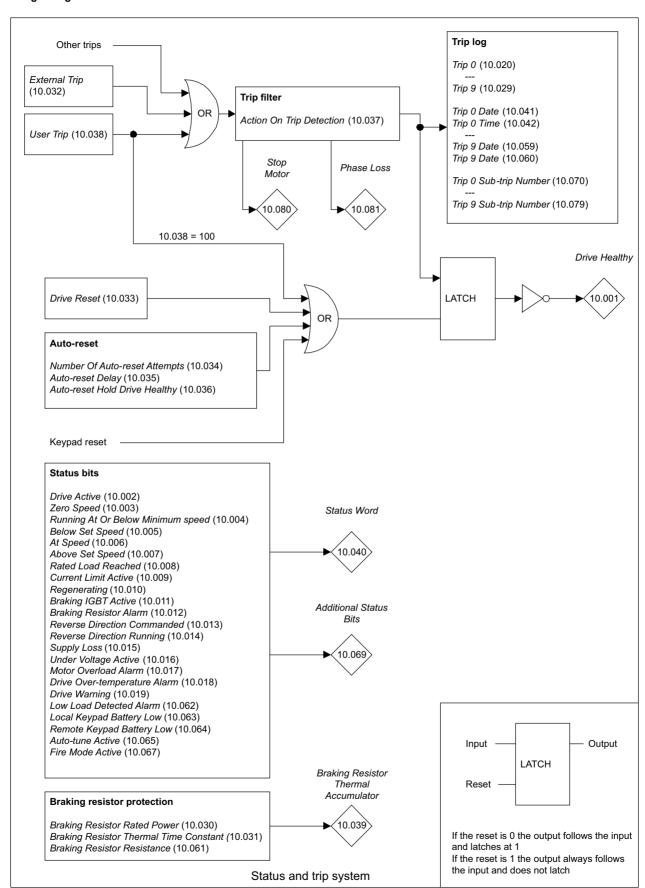



Figure 10-18 k

Safety information Product information Product information Installation Installatio

10.11 Menu 10: Status and trips

Menu 9 Single line descriptions


	Parameter		Range		Default				Тур	е		
		Open-Loop	RFC-A	RFC-S	Open-Loop RFC-A	RFC-S						
	Drive Healthy	Off (0) or On (1)				RO	Bit		NC		
	Drive Active		0) or On (1)				RO	Bit	ND	NC		$\vdash \vdash$
	Zero Speed		0) or On (1)				RO	Bit		NC		\vdash
	Running At Or Below Minimum Speed Below Set Speed		0) or On (1) 0) or On (1)				RO	Bit	ND ND	NC NC		
10.005 10.006	At Speed	,	0) or On (1)				RO RO	Bit Bit	ND	NC		
	Above Set Speed		0) or On (1)				RO	Bit	ND	NC		
10.008	Rated Load Reached	,	0) or On (1)				RO	Bit	ND	NC		
10.009	Current Limit Active		0) or On (1)				RO	Bit	ND	NC		
10.010	Regenerating		0) or On (1)				RO	Bit	ND	NC	PT	
	Braking IGBT Active		0) or On (1)				RO	Bit	ND	NC		
	Braking Resistor Alarm		0) or On (1)				RO	Bit		NC		
	Reverse Direction Commanded		0) or On (1)				RO	Bit	ND	NC		\vdash
	Reverse Direction Running		0) or On (1)				RO	Bit	ND	NC		\vdash
	Supply Loss		0) or On (1)				RO	Bit	ND	NC		\vdash
	Under Voltage Active Motor Overload Alarm	,	0) or On (1) 0) or On (1)				RO RO	Bit Bit	ND ND	NC NC		-
	Drive Over-temperature Alarm	,	0) or On (1)				RO	Bit	ND			-
	Drive Warning	,	0) or On (1)				RO	Bit	ND	NC		
	Trip 0		0 to 255				RO	Txt	ND	NC		PS
	Trip 1		0 to 255				RO	Txt	ND	NC		PS
	Trip 2		0 to 255				RO	Txt	ND	NC		
10.023	Trip 3	(0 to 255				RO	Txt	ND			PS
10.024	Trip 4	(0 to 255				RO	Txt	ND	NC		PS
	Trip 5		0 to 255				RO	Txt		NC		
10.026	Trip 6		0 to 255				RO	Txt	ND	NC		PS
10.027	Trip 7		0 to 255				RO	Txt	ND	NC		
	Trip 8		0 to 255				RO	Txt	ND	NC		PS
10.029	Trip 9		0 to 255		0.000 1444		RO	Txt	ND	NC	ы	PS
	Braking Resistor Rated Power Braking Resistor Thermal Time Constant		99999.999 kW to 1500.000 s		0.000 kW 0.000 s		RW RW	Num Num			_	US
	External Trip		0) or On (1)		Off (0)		RW	Bit		NC	\dashv	03
10.032	Drive Reset		0) or On (1)		Off (0)		RW	Bit		NC	\dashv	
10.034	Number Of Auto-reset Attempts	None (0), 1 (1),	2 (2), 3 (3), 4 (4)	, 5 (5),	5 (5)		RW	Txt		110	\Box	US
	·		nfinite (6)									
10.035	Auto-reset Delay		to 600.0 s		10.0 s		RW	Num				US
10.036 10.037	Auto-reset Hold Drive Healthy	,	0) or On (1) 00 to 11111		Off (0) 00000		RW	Bit				US
10.037	Action On Trip Detection User Trip		0 to 255		00000		RW	Bin Num	ND	NC	\dashv	03
	Braking Resistor Thermal Accumulator		to 100.0 %				RO	Num	ND	NC	РТ	-
	Status Word	000000000000000000000000000000000000000		111111			RO	Bin		NC		
	Trip 0 Date		00 to 31-12-99				RO	Date		NC		PS
	Trip 0 Time		00 to 23:59:59					Time				
	Trip 1 Date		00 to 31-12-99				RO	Date	ND	NC	PT	PS
	Trip 1 Time		00 to 23:59:59				RO	Time	ND	NC	PT	PS
	Trip 2 Date		00 to 31-12-99					Date				
	Trip 2 Time		00 to 23:59:59					Time				
	Trip 3 Date		00 to 31-12-99					Date				
	Trip 4 Data		00 to 23:59:59 00 to 31-12-99					Time				
	Trip 4 Date Trip 4 Time		00 to 31-12-99 00 to 23:59:59					Date Time				
	Trip 5 Date		00 to 31-12-99					Date				
	Trip 5 Time		00 to 23:59:59					Time				
	Trip 6 Date		00 to 31-12-99					Date				
	Trip 6 Time		00 to 23:59:59					Time				
	Trip 7 Date	00-00-0	00 to 31-12-99				RO	Date	ND	NC	PT	PS
	Trip 7 Time		00 to 23:59:59				RO	Time	ND	NC	PT	PS
	Trip 8 Date		00 to 31-12-99					Date				
	Trip 8 Time		00 to 23:59:59					Time				
	Trip 9 Date		00 to 31-12-99				RO	Date	ND	NC	PT	PS
	Trip 9 Time		00 to 23:59:59		0.00.0			Time	ND	NC		US
	Braking Resistor Resistance Low Load Detected Alarm		o 10000.00 Ω 0) or On (1)		0.00 Ω		RW		NΙD	NC		υŏ
	Local Keypad Battery Low	,	0) or On (1)				RO			NC		
	Remote Keypad Battery Low	,	0) or On (1)				RO			NC		
10.065	Auto-tune Active	,	0) or On (1)				RO	Bit		NC		
	Fire Mode Active		0) or On (1)				RO			NC		
-		,	. ,									

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization		Media Card Operation	Advanced parameters	Technica data	Diagn	ostics		L list orma	
10.068	Hold Drive Hea	althy on Unde	r Voltage		Of	f (0) or On (1)			Off (0)	RV	√ Bit				US
	Additional Stat					0000 to 11111				- (-)	R	Bin	ND	NC	РТ	
10.070	Trip 0 Sub-trip	Number				0 to 65535					R	Num		NC		PS
10.071	Trip 1 Sub-trip	Number				0 to 65535					R) Num	ND	NC	PT	PS
10.072	Trip 2 Sub-trip	Number				0 to 65535					R	Num	ND	NC	PT	PS
10.073	Trip 3 Sub-trip	Number				0 to 65535					R	Num	ND	NC	PT	PS
10.074	Trip 4 Sub-trip	Number				0 to 65535					R					
10.075	Trip 5 Sub-trip	Number				0 to 65535					R	Num	ND	NC	PT	PS
10.076	Trip 6 Sub-trip	Number				0 to 65535					R	Num	ND	NC	PT	PS
10.077	Trip 7 Sub-trip	Number				0 to 65535					R) Num	ND	NC	PT	PS
10.078	Trip 8 Sub-trip	Number				0 to 65535					R	Num	ND	NC	PT	PS
10.079	Trip 9 Sub-trip	Number				0 to 65535					R	Num	ND	NC	PT	PS
10.080	Stop Motor				Of	f (0) or On (1))				R	Bit	ND	NC	PT	
10.081	Phase Loss				Of	f (0) or On (1))				R	Bit		NC		
10.082	Miscellaneous	Status Flags		000	0000000000	0000 to 11111	111111111111				R	Bin	ND	NC	PT	
				Inhibit			can (3), Run ((4),								
						s (5), Deceler										
10.101	Drive Status						9), Active (1	0),			R	Txt	ND	NC	PT	
				0		(12), Auto (13										
					Under Volt	age (15), Pha	sing (16)				_		ļ			
	Trip Reset Sou					0 to 1023					R					PS
10.103	Trip Time Iden	titier				48 to 214748		(=)			R	Num	ND	NC	РΤ	
							tor Overload ((2),								
						1 (3), Drive O		,								
10.104	Active Alarm			Auto		mit Switch (6) (8), Option S	Fire Mode (7),			R	Txt	ND	NC	PT	
						(6), Option S							1			
						tion Slot 4 (12										
10.106	Potential Drive	Damage Cor	nditions			0000 to 1111	-/				R) Bin	ND	NC	РТ	PS
10.100	. Clonian Dilvo	Zamago ooi		Not			pLs (2), Ls (3	3			100		1.,5			
10.107	Auto-tune Stat	e					_q No-load (6)				R	Txt	ND	NC	РТ	
						, Ke (8), Inerti	. , ,						1			

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	O-4ii4i	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•							

Menu 10 logic diagram

10.12 Menu 11: Miscellaneous

Menu 11 Single Line Descriptions

	Parameter	Range	Default			Тур	^		
	Farameter	Open-Loop RFC-A RFC-S	Open-Loop RFC-A RFC-S			тур	e		
11.018	Status Mode Parameter 1	0.000 to 59.999	29.003		Num			PT	US
11.019	Status Mode Parameter 2	0.000 to 59.999	2.001	RW	Num			PT	US
11.020	Reset Serial Communications	Off (0) or On (1)		RW	Bit	ND	NC		
11.021	Parameter 00.030 Scaling	0.000 to 10.000	1.000	RW	Num				US
11.022	Parameter Displayed At Power-up	0.000 to 0.080	0.004	RW	Num			PT	US
11.023	Serial Address	1 to 247	1	RW	Num				US
11.024	Serial Mode	8 2 NP (0), 8 1 NP (1), 8 1 EP (2), 8 1 OP (3), 8 2 NP M (4), 8 1 NP M (5), 8 1 EP M (6), 8 1 OP M (7), 7 2 NP (8), 7 1 NP (9), 7 1 EP (10), 7 1 OP (11), 7 2 NP M (12), 7 1 NP M (13), 7 1 EP M (14), 7 1 OP M (15)	8 2 NP (0)	RW	Txt				US
11.025	Serial Baud Rate	300 (0), 600 (1), 1200 (2), 2400 (3), 4800 (4), 9600 (5), 19200 (6), 38400 (7), 57600 (8), 76800 (9), 115200 (10)	19200 (6)	RW	Txt				US
11.026	Minimum Comms Transmit Delay	0 to 250 ms	2 ms	RW	Num				US
11.027	Silent Period	0 to 250 ms	0 ms	RW	Num				US
11.028	Drive Derivative	0 to 255		RO	Num	ND	NC	PT	
11.029	Software Version	0 to 99999999		RO			NC		
11.030	User Security Code	0 to 2147483647		RW	Num	ND			US
11.031	Motor Control Mode	Open-loop (1), RFC-A (2), RFC-S (3)		RW	Txt	ND		PT	
11.033	Drive Rated Voltage	200V (0), 400V (1), 575V (2), 690V (3)		RO	Txt				
11.034	Software Sub-version	0 to 99		RO	Num	ND	NC	PT	
11.035	Number Of Power Modules Test	-1 to 20	-1	RW	Num				US
11.036	NV Media Card File Previously Loaded	0 to 999	0	RO	Num		NC	PT	
11.037	NV Media Card File Number	0 to 999	0	RW	Num				Ш
11.038	NV Media Card File Type	None (0), Open-loop (1), RFC-A (2), RFC-S (3), Regen (4), User Prog (5)		RO	Txt		NC		
11.039	NV Media Card File Version	0 to 9999		RO	Num	ND	NC	PT	Ш
11.041	NV Media Card Disable Booting	Off (0) or On (1)	Off (0)	RW	Bit				US
11.042	Parameter Cloning	None (0), Read (1), Program (2), Auto (3), Boot (4)	None (0)	RW	Txt		NC		US
11.043	Load Defaults	None (0), Standard (1), US (2)	None (0)	RW	Txt		NC		
11.044	Menu Access Level	Menu 0 (0), All Menus (1), Read-only Menu 0 (2), Read-only (3), Status Only (4), No Access (5)		RW	Txt	ND		PT	
11.046	Defaults Previously Loaded	0 to 2000		RO	Num	ND	NC	PT	US
11.052	Serial Number LS	000000000 to 999999999		RO			NC	PT	
11.053	Serial Number MS	0 to 99999999			Num				
11.054	Drive Date Code	0 to 65535		RO	Num	ND	NC	PT	
11.056	Option Slot Identifiers	1234 (0), 1243 (1), 1324 (2), 1342 (3), 1423 (4), 1432 (5), 4123 (6), 3124 (7), 4132 (8), 2134 (9), 3142 (10), 2143 (11), 3412 (12), 4312 (13), 2413 (14), 4213 (15), 2314 (16), 3214 (17), 2341 (18), 2431 (19), 3241 (20), 3421 (21), 4231 (22), 4321 (23)	1234 (0)	RW				PT	
11.060	Maximum Rated Current	0.000 to 99999.999 A		RO	Num	ND	NC	PT	
11.061	Full Scale Current Kc	0.000 to 99999.999 A			Num				
11.062	Power Board Software Version Number	0.00 to 99.99			Num				П
11.063	Product Type	0 to 255			Num				\Box
11.064	Product Identifier Characters	1177956400 to 2147483647		RO					
11.065	Drive Rating And Configuration	00000000 to 99999999		RO					П
11.066	Power Stage Identifier	0 to 255		RO			NC		
11.067	Control Board Identifier	0.000 to 65.535			Num				
11.068	Internal I/O Identifier	0 to 255					NC		
11.069	Position Feedback Interface Identifier	0 to 255			Num				
11.070	Core Parameter Database Version	0.00 to 99.99		_	Num				
11.071	Number Of Power Modules Detected	0 to 20		_	Num				US
11.072	NV Media Card Create Special File	0 to 1	0		Num		NC		

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technica data	Diag	nostic		JL lis forma	
11.073	B NV N	ledia Card Ty	ре		None	e (0), SMART SD Card (2				RO	Txt	ND	NC	РТ	
11.075	NV N	ledia Card Re	ead-only Flag			Off (0) or On	,			RO	Bit	ND	NC	PT	
11.076	NV N	ledia Card Wa	arning Suppre	ession Flag		Off (0) or On	(1)			RO	Bit	ND	NC	PT	
11.077	7 NV N	ledia Card Fil	e Required V	ersion		0 to 9999	,			RW	Num	ND	NC	PT	
11.078	11.078 NV Media Card Action Status				Card S Card Use C Card Erro Card Erro Card Frul	lone (0), Activ lot 1 (2), Carc lot 3 (4), Carc Card Product er Prog (7), Card Data Exis Card Option (lard Read Only or (12), Card N I (14), Card Fi Card Rating (lard File Data lard Derivativ	d Slot 2 (3), d Slot 4 (5), (6), and Busy (8), tts (9), (10), y (11), No Data (13), le Error (15), (16),			RO	Txt	ND	NC	PT	
11.079	Drive	Name Chara	cters 1-4		-2147	483648 to 21	47483647		0	RW	Num			PT	US
11.080) Drive	Name Chara	cters 5-8		-2147	483648 to 21	47483647		0	RW	Num			PT	US
11.081	l Drive	Name Chara	cters 9-12		-2147	483648 to 21	47483647		0	RW	Num			PT	US
11.082	2 Drive	Name Chara	cters 13-16		-2147	483648 to 21	47483647		0	RW	Num			PT	US
11.084	Drive	Mode				n-loop (1), RF FC-S (3), Reg				RO	Txt	ND	NC	РТ	US
11.085	5 Secu	rity Status				ne (0), Read-c -only (2), No				RO	Txt	ND	NC	РТ	PS
11.086	11.086 Menu Access Status					u 0 (0), All M				RO	Txt	ND	NC	PT	PS
11.090	11.090 Keypad Port Serial Address					1 to 16	` ′		1	RW	Num				US
11.091	Addit	litional Identifier Characters 1			-2147	483648 to 21	47483647			RO	Num	ND	NC	PT	
11.092	2 Addit	ional Identifie	r Characters	2	-2147	483648 to 21	47483647			RO	Num	ND	NC	PT	
11.093	3 Addit	ional Identifie	r Characters	3	-2147	483648 to 21			RO	Num	ND	NC	PT		
11.095	5 Numb	er Of Rectifie	ers Detected			0 to 9				RO	Num	ND	NC	PT	
11.096	11.096 Number Of Rectifiers Expected 0				0 to 9	Ī		0	RW	Num				US	

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								i

10.13 Menu 12: User Functions 2

Menu 12 Single line diagram

	Devemeter	R	ange		1	Default				T	_		
	Parameter	Open-Loop	RFC-A	RFC-S	Open-Loop	RFC-A	RFC-S			Тур	е		
12.001	Threshold Detector 1 Output	Off (0	or On (1)					RO	Bit		NC		
12.002	Threshold Detector 2 Output	Off (0	or On (1)					RO	Bit	ND	NC		
12.003	Threshold Detector 1 Source	0.000	to 59.999			0.000		RW	Num			PT	_
12.004	Threshold Detector 1 Level	0.00 to	100.00 %			0.00 %		RW	Num				US
12.005	Threshold Detector 1 Hysteresis	0.00 t	o 25.00 %			0.00 %		RW	Num				US
12.006	Threshold Detector 1 Output Invert	Off (0	or On (1)			Off (0)		RW	Bit				US
12.007	Threshold Detector 1 Destination	0.000	to 59.999			0.000		RW	Num	DE		PT	US
12.008	Variable Selector 1 Source 1	0.000	to 59.999			0.000		RW	Num			PT	US
12.009	Variable Selector 1 Source 2	0.000	to 59.999			0.000		RW	Num			PT	US
12.010	Variable Selector 1 Mode	,	ıltiply (4), Di	ivide (5), (7),	ln		RW	Txt				US	
12.011	Variable Selector 1 Destination	0.000	to 59.999				RW	Num	DE		PT	US	
12.012	Variable Selector 1 Output	±10	00.00 %					RO	Num	ND	NC	PT	
12.013	Variable Selector 1 Source 1 Scaling	±	4.000			1.000		RW	Num				US
12.014	Variable Selector 1 Source 2 Scaling	±	4.000			1.000		RW	Num				US
12.015	Variable Selector 1 Control	0.00	to 100.00			0.00		RW	Num				US
12.016	Variable Selector 1 Enable	Off (0	or On (1)			On (1)		RW	Bit				US
12.023	Threshold Detector 2 Source	0.000	to 59.999			0.000		RW	Num			PT	US
12.024	Threshold Detector 2 Level	0.00 to	100.00 %			0.00 %		RW	Num				US
12.025	Threshold Detector 2 Hysteresis	0.00 t	o 25.00 %			0.00 %		RW	Num				US
12.026	Threshold Detector 2 Output Invert	Off (0	or On (1)			Off (0)		RW	Bit				US
12.027	Threshold Detector 2 Destination	0.000	to 59.999			0.000		RW	Num	DE		PT	US
12.028	Variable Selector 2 Source 1	0.000	to 59.999			0.000		RW	Num			PT	US
12.029	Variable Selector 2 Source 2	0.000	to 59.999			0.000		RW	Num			PT	US
12.030	Variable Selector 2 Mode		ıltiply (4), D	ivide (5), (7),	In	put 1 (0)		RW	Txt				US
12.031	Variable Selector 2 Destination	0.000 to 59.999			0.000			RW	Num	DE		PT	US
12.032	Variable Selector 2 Output	±100.00 %						RO	Num	ND	NC	PT	
12.033	Variable Selector 2 Source 1 Scaling	±4.000			1.000			RW	Num				US
12.034	Variable Selector 2 Source 2 Scaling	±4.000			1.000			RW	Num				US
12.035	Variable Selector 2 Control	0.00 to 100.00			0.00			RW	Num				US
12.036	Variable Selector 2 Enable	Off (0	or On (1)			On (1)		RW	Bit				US

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power- down save						

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								ı

Figure 10-19 Menu 12 Single Line Descriptions: Threshold detectors

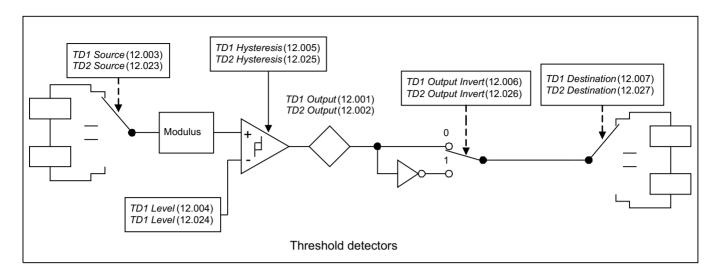
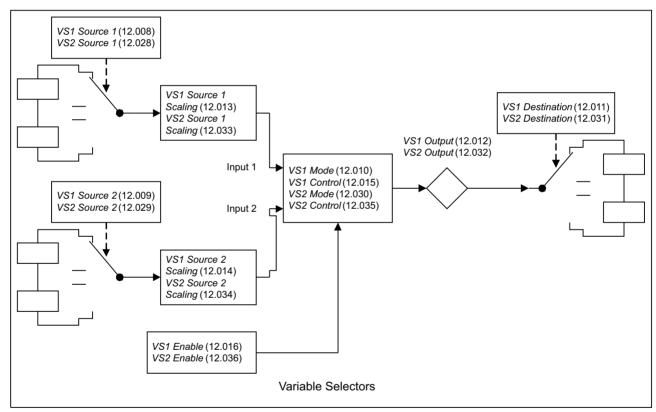
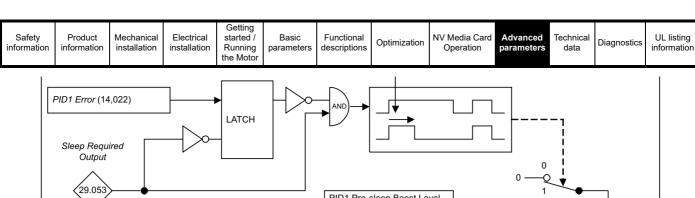
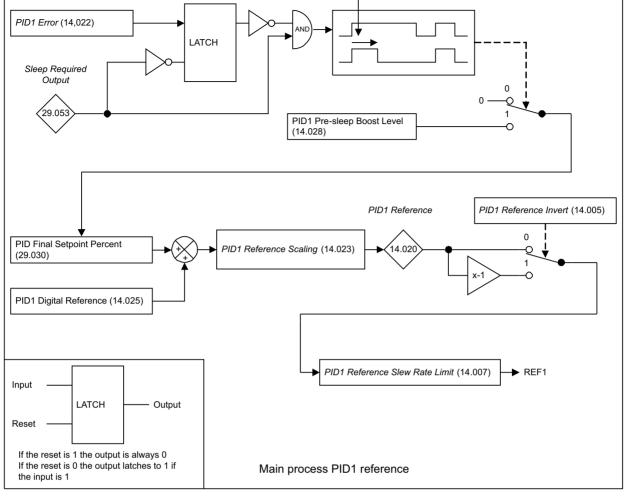



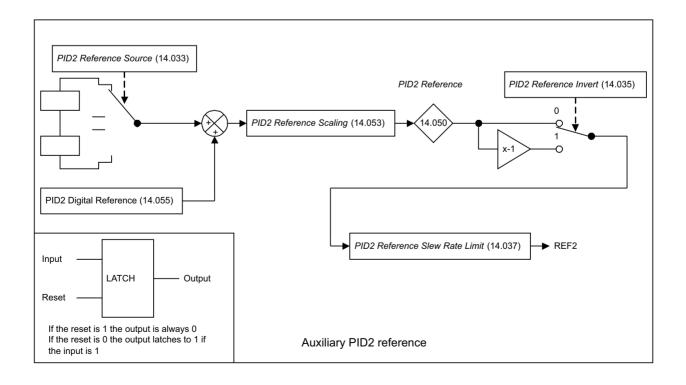
Figure 10-20 Menu 12 Single Line Descriptions: Variable Selectors

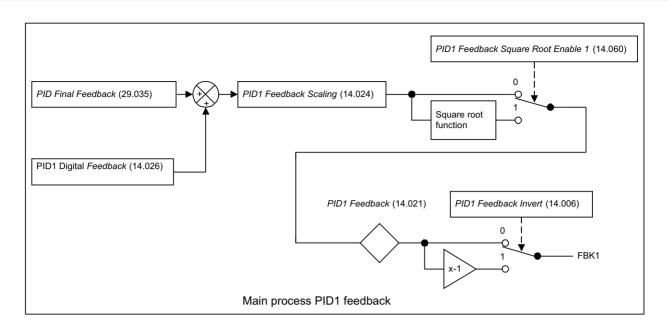
10.14 Menu 14: User PID controller

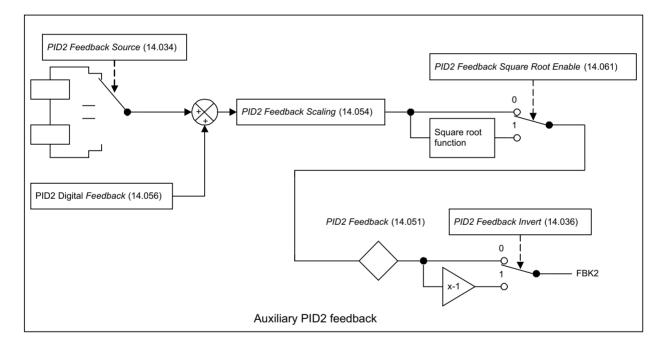

Menu 14 Single line Descriptions

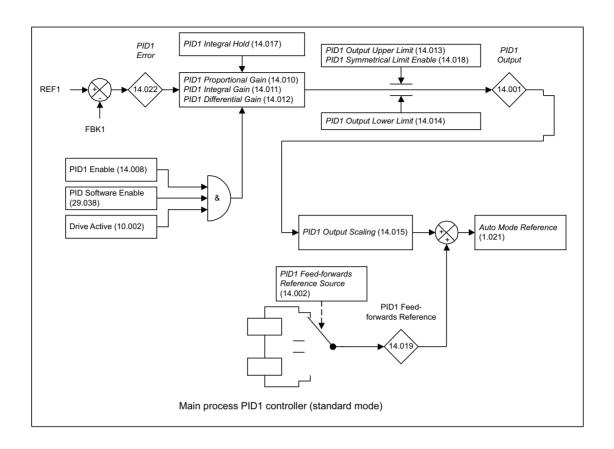

	Range	Default			_			
Parameter	Open-Loop RFC-A RFC-S	Open-Loop RFC-A RFC-S			Тур	е		
14.001 PID1 Output	±100.00 %		RO	Num	ND	NC	PT	
14.002 PID1 Feed-forwards Reference Source	0.000 to 59.999	0.000	RW	Num				US
14.003 PID1 Reference Source	0.000 to 59.999	29.030	RW	Num				US
14.004 PID1 Feedback Source	0.000 to 59.999	29.035	RW	Num			PT	US
14.005 PID1 Reference Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
14.006 PID1 Feedback Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
14.007 PID1 Reference Slew Rate	0.0 to 3200.0 s	0.0 s	RW	Num				US
14.008 PID1 Enable	Off (0) or On (1)	On (1)	RW	Bit			D.T.	US
14.009 PID1 Enable Source 1 14.010 PID1 Proportional Gain	0.000 to 59.999	29.038	RW	Num			PT	US
· · · · · · · · · · · · · · · · · · ·	0.000 to 4.000	2.000 1.000	RW	Num				US
14.011 PID1 Integral Gain 14.012 PID1 Differential Gain	0.000 to 4.000	0.000	RW	Num				US
14.013 PID1 Output Upper Limit	0.000 to 4.000 0.00 to 100.00 %	100.00 %	RW	Num Num				US
14.014 PID1 Output Opper Limit	±100.00 %	0.00 %	RW	Num				US
14.015 PID1 Output Scaling	0.000 to 4.000	1.000	RW	Num				US
14.016 PID1 Destination	0.000 to 4.000 0.000 to 59.999	1.021	RW	Num	DE		PT	US
14.017 PID1 Integral Hold	Off (0) or On (1)	Off (0)	RW	Bit	DL			00
14.017 FID1 Integral Floid 14.018 PID1 Symmetrical Limit Enable	Off (0) or On (1)	Off (0)	RW	Bit		-		US
14.019 PID1 Feed-forwards Reference	±100.00 %	Sii (0)	RO	Num	ND	NC	PT	- 55
14.020 PID1 Reference	±100.00 %		RO	Num	ND		PT	\vdash
14.021 PID1 Feedback	±100.00 %		RO	Num	ND		PT	
14.022 PID1 Error	±100.00 %		RO	Num	ND	NC	PT	\vdash
14.023 PID1 Reference Scaling	0.000 to 4.000	1.000	RW	Num		110	•	US
14.024 PID1 Feedback Scaling	0.000 to 4.000	1.000	RW	Num				US
14.025 PID1 Digital Reference	±100.00 %	0.00 %	RW	Num				US
14.026 PID1 Digital Feedback	±100.00 %	0.00 %	RW	Num				US
14.027 PID1 Enable Source 2	0.000 to 59.999	10.002	RW	Num			PT	US
14.028 PID1 Pre-sleep Boost Level	0.00 to 100.00 %	0.00 %	RW	Num				US
14.029 PID1 Pre-Sleep Maximum Boost Time	0.0 to 250.0 s	0.0 s	RW	Num				US
14.031 PID2 Output	±100.00 %		RO	Num	ND	NC	PT	
14.032 PID2 Feed-forwards Reference Source	0.000 to 59.999	0.000	RW	Num				US
14.033 PID2 Reference Source	0.000 to 59.999	0.000	RW	Num			PT	US
14.034 PID2 Feedback Source	0.000 to 59.999	0.000	RW	Num			РТ	US
14.035 PID2 Reference Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
14.036 PID2 Feedback Invert	Off (0) or On (1)	Off (0)	RW	Bit				US
14.037 PID2 Reference Slew Rate Limit	0.0 to 3200.0 s	0.0 s	RW	Num				US
14.038 PID2 Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
14.039 PID2 Enable Source 1	0.000 to 59.999	0.000	RW	Num			PT	US
14.040 PID2 Proportional Gain	0.000 to 4.000	1.000	RW	Num				US
14.041 PID2 Integral Gain	0.000 to 4.000	0.500	RW	Num				US
14.042 PID2 Differential Gain	0.000 to 4.000	0.000	RW	Num				US
14.043 PID2 Output Upper Limit	0.00 to 100.00 %	100.00 %	RW	Num				US
14.044 PID2 Output Lower Limit	±100.00 %	-100.00 %	RW	Num				US
14.045 PID2 Output Scaling	0.000 to 4.000	1.000	RW	Num	ļ			US
14.046 PID2 Destination	0.000 to 59.999	0.000	RW	Num	DE		PT	US
14.047 PID2 Integral Hold	Off (0) or On (1)	Off (0)	RW		<u> </u>			
14.048 PID2 Symmetrical Limit Enable	Off (0) or On (1)	Off (0)	RW	Bit	\			US
14.049 PID2 Feed-forwards Reference	±100.00 %		RO			NC		igwdap
14.050 PID2 Reference	±100.00 %		RO			NC		\vdash
14.051 PID2 Feedback	±100.00 %		RO	Num		NC		\vdash
14.052 PID2 Error	±100.00 %	1,000	RO	Num	ND	NC	ы	110
14.053 PID2 Reference Scaling	0.000 to 4.000 0.000 to 4.000	1.000	RW					US
14.054 PID2 Feedback Scaling 14.055 PID2 Digital Reference	±100.00 %	1.000 0.00 %	RW		<u> </u>	-		US
14.056 PID2 Digital Reference 14.056 PID2 Digital Feedback	±100.00 % ±100.00 %	0.00 %	RW		1			US
14.050 PID2 Digital Feedback 14.057 PID2 Enable Source 2	0.000 to 59.999	0.00 %	RW		1		PT	US
14.057 PID2 Enable Source 2 14.058 PID1 Feedback Output Scaling	0.000 to 59.999 0.000 to 4.000	1.000	RW		 		rl	US
14.000 FID I FEEUDACK Output Scaling	Fbk1 (0), Fbk2 (1), Fbk1 + Fbk2 (2),	1.000	LVV	INUIII	1			US
14.059 PID1 Mode Selector	Min Fbk (3), Max Fbk (4), Av Fbk (5),	, Fbk1 (0)		Txt				US
550 15 15 15 15 15 15 15	Min Error (6), Max Error (7)	Fbk1 (0)		1 71				55
14.060 PID1 Feedback Square Root Enable 1	Off (0) or On (1)	Off (0)	RW	Bit				US
14.061 PID2 Feedback Square Root Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
14.062 PID1 Feedback Square Root Enable 2	Off (0) or On (1)	Off (0)	RW					US
	(-, -, -, (, , ,	(0)						

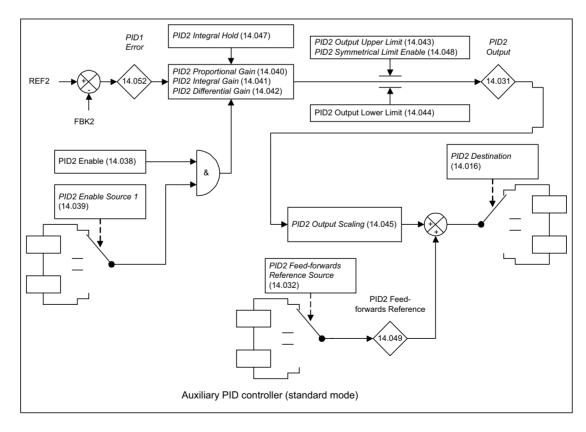

the Motor		Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------	--	-----------------------	---------------------	-------------------------	-------------------------	---------------------------------	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

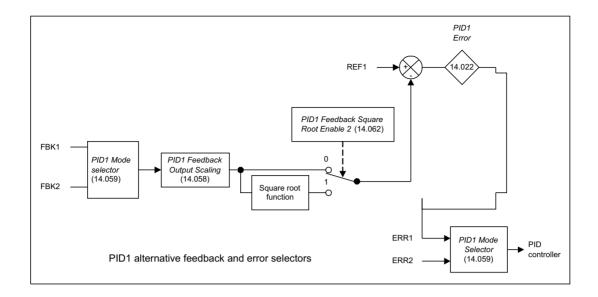

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	LIS	User save		Power-						
1 ''	i illorod		0301 3440	FO	down save						

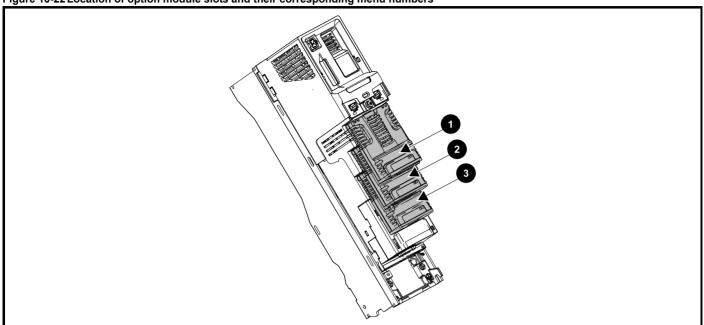

Figure 10-21 Menu 14 Logic diagrams











Functional descriptions UL listing Safety Product NV Media Card Mechanical Electrical started / Basic Technical Advanced Optimization Diagnostics information Running the Motor information installation installation parameters Operation parameters data information

10.15 Menus 15, 16 and 17: Option module set-up

Figure 10-22 Location of option module slots and their corresponding menu numbers

- 1. Solutions Module Slot 1 Menu 15
- 2. Solutions Module Slot 2 Menu 16
- 3. Solutions Module Slot 3 Menu 17

10.15.1 Parameters common to all categories

	Parameter	Range(३)	Default(⇔)			Тур	е		
mm.001	Module ID	0 to 65535		RO	Num	ND	NC	PT	
mm.002	Software Version	00.00.00.00 to 99.99.99		RO	Num	ND	NC	PT	
mm.003	Hardware Version	0.00 to 99.99		RO	Num	ND	NC	PT	
mm.004	Serial Number LS	0 to 9999999		RO	Num	ND	NC	PT	
mm.005	Serial Number MS	0 to 9999999		RO	Num	ND	NC	PT	
mm.006	Module Status	-2 to 3		RO	Num	ND	NC	PT	
mm.007	Module Reset	Off (0) to On (1)	Off (0)	RW	Bit		NC		

The option module ID indicates the type of module that is installed in the corresponding slot. See the relevant option module user guide for more information regarding the module.

Option module ID	Module	Category		
0	No module installed			
209	SI-I/O	Automation (I/O Expansion)		
443	SI-PROFIBUS			
447	SI-DeviceNet			
448	SI-CANopen	Fieldbus		
433	SI-Ethernet	Fleiabas		
432	SI-PROFINET RT			
434	SI-PROFINET V2			
105	SI-Encoder	Foodback		
106	SI-Universal Encoder	Feedback		
311	MCi200	Automation (Applications)		

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
miomiation	miomiduon	motanation	motanation	the Motor	paramotoro	docompliano		Operation	parameters	data		miormation

10.16 Menu 18: Application menu 1

	Parameter	Range(‡)			Default(⇒	·)	Туре				
	Faranietei	OL	RFC-A/S	OL	RFC-A	RFC-S			ıyı	Je	
18.001	Application Menu 1 Power-down Save Integer	-32768 to	32767		0		RW	Num			PS
18.002 to 18.010	Application Menu 1 Read-only Integer	-32768 to				RO	Num	ND	NC	US	
18.011 to 18.030	Application Menu 1 Read-write Integer	-32768 to 32767			0		RW	Num			US
18.031 to 18.050	Application Menu 1 Read-write bit	Off (0) or On (1)		Off (0)			RW	Bit			US
18.051 to 18.054	Application Menu 1 Power-down Save long Integer	-2147483648 to	0			RW	Num			PS	

RV	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
N	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

10.17 Menu 19: Application menu 2

	Parameter	Range(\$)			Default(⇔	•)	Туре				
	Farameter	OL	RFC-A/S	OL	RFC-A	RFC-S			ıyı	Je	
19.001	Application Menu 2 Power-down Save Integer	-32768 to	32767		0		RW	Num			PS
19.002 to 19.010	Application Menu 2 Read-only Integer	-32768 to			RO	Num	ND	NC	US		
19.011 to 19.030	Application Menu 2 Read-write Integer	-32768 to		0		RW	Num			US	
19.031 to 19.050	Application Menu 2 Read-write bit	Off (0) or	Off (0)			RW	Bit			US	
19.051 to 19.054	Application Menu 2 Power-down Save long Integer	-2147483648 to 2147483647			0		RW	Num			PS

RV	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
NE	No default value	NC	Not copied	I PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

10.18 Menu 20: Application menu 3

	Parameter	Range	e (\$)		Default(⇔	•)			Туре	
	raiailletei	OL	RFC-A/S	OL	RFC-A	RFC-S			Type	
20.001 to 20.020	Application Menu 3 Read-write Integer	-32768 to	768 to 32767		0		RW	Num		
20.021 to 20.040	Application Menu 3 Read-write Long Integer	-2147483648 to	0			RW	Num			

R۱	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit parameter	Txt	Text string	Bin	Binary parameter	FI	Filtered
NI	No default value	NC	Not copied	PT	Protected parameter	RA	Rating dependent	US	User save	PS	Power-down save	DE	Destination

406 Pump Drive F600 User Guide

Safety information Product information Product information Installation Installatio

10.19 Menu 22: Additional Menu 0 set-up

			Range(û)			Default(⇔)				_	
	Parameter	OL	RFC-A	RFC-S	OL	RFC-A	RFC-S			Туре	
22.001	Parameter 00.001 Set-up		<u> </u>			11.044	-	RW	Num	PT	US
22.002	Parameter 00.002 Set-up					11.042		RW	Num	PT	US
22.003	Parameter 00.003 Set-up					0.000		RW	Num	PT	US
22.004	Parameter 00.004 Set-up					29.157		RW	Num	PT	US
22.005	Parameter 00.005 Set-up					5.006		RW	Num	PT	US
22.006	Parameter 00.006 Set-up					5.007		RW	Num	PT	US
22.007	Parameter 00.007 Set-up					5.008		RW	Num	PT	US
22.008	Parameter 00.008 Set-up					5.009		RW	Num	PT	US
22.009	Parameter 00.009 Set-up				5.	010	0.000	RW	Num	PT	US
22.010	Parameter 00.010 Set-up					5.011		RW	Num	PT	US
22.011	Parameter 00.011 Set-up				5.	015	0.000	RW	Num	PT	US
22.012	Parameter 00.012 Set-up				5.013	0	.000	RW	Num	PT	US
22.013	Parameter 00.013 Set-up				0.000	5	.012	RW	Num	PT	US
22.014	Parameter 00.014 Set-up				0.	000	5.064	RW	Num	PT	US
22.015	Parameter 00.015 Set-up				0.	000	5.071	RW	Num	PT	US
22.016	Parameter 00.016 Set-up				4.007	0	000	RW	Num	PT	US
22.017	Parameter 00.017 Set-up					29.087		RW	Num	PT	US
22.018	Parameter 00.018 Set-up					5.042		RW	Num	PT	US
22.019	Parameter 00.019 Set-up					0.000		RW	Num	PT	US
22.020	Parameter 00.020 Set-up					0.000		RW	Num	PT	US
22.021	Parameter 00.021 Set-up					29.011		RW	Num	PT	US
22.022	Parameter 00.022 Set-up					1.006		RW	Num	PT	US
22.023	Parameter 00.023 Set-up					1.004		RW	Num	PT	US
22.024	Parameter 00.024 Set-up					29.012		RW	Num	PT	US
22.025	Parameter 00.025 Set-up					29.016		RW	Num	PT	US
22.026	Parameter 00.026 Set-up					1.022		RW	Num	PT	US
22.027	Parameter 00.027 Set-up					2.011		RW	Num	PT	US
22.028	Parameter 00.028 Set-up					2.021		RW	Num	PT	US
22.029	Parameter 00.029 Set-up	(0.000 to 59.99	9		29.022		RW	Num	PT	US
22.030	Parameter 00.030 Set-up					29.031		RW	Num	PT	US
22.031	Parameter 00.031 Set-up					29.032		RW	Num	PT	US
22.032	Parameter 00.032 Set-up					29.033		RW	Num	PT	US
22.033	Parameter 00.033 Set-up					29.048		RW	Num	PT	US
22.034	Parameter 00.034 Set-up					29.041		RW	Num	PT	US
22.035	Parameter 00.035 Set-up					29.042		RW	Num	PT	US
22.036	Parameter 00.036 Set-up					29.043		RW	Num	PT	US
22.037	Parameter 00.037 Set-up					29.044		RW	Num	PT	US
22.038	Parameter 00.038 Set-up					0.000		RW	Num	PT	US
22.039	Parameter 00.039 Set-up					0.000		RW	Num	PT	US
22.040	Parameter 00.040 Set-up					29.049		RW	Num	PT	US
22.041	Parameter 00.041 Set-up					29.050		RW	Num	PT	US
22.042	Parameter 00.042 Set-up					29.051		RW	Num	PT	US
22.043	Parameter 00.043 Set-up					29.052		RW	Num	PT	US
22.044	Parameter 00.044 Set-up					10.034		RW	Num	PT	US
22.045	Parameter 00.045 Set-up					10.035		RW	Num	PT	US

				Getting								
Safety information	Product information	Mechanical installation	Electrical installation	started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
information	illioilliation	installation	motanation	the Meter	parameters	acsoriptions		Operation	parameters	data		illioilliation

10.19 Menu 22: Additional Menu 0 set-up

	Daman: -4				Range(३)				De	fault(⇔)					T		
	Paramet	er		OL	RFC-A	RFC-	-S	OL	F	RFC-A	RFC	-S			Тур	e	
22.0	D58 Parameter	00.05	58 Set-up						2	9.072			RW	Num		PT	US
22.0	Parameter	00.05	59 Set-up						2	9.073			RW	Num		РТ	US
22.0	Parameter	00.06	60 Set-up						2	9.127			RW	Num		РТ	US
22.0	Parameter	00.06	61 Set-up						2	9.128			RW	Num		РТ	US
22.0	Parameter	00.06	62 Set-up						(0.000			RW	Num		РТ	US
22.0	Parameter	00.06	63 Set-up						(0.000			RW	Num		РТ	US
22.0	Parameter	00.06	64 Set-up						1	4.010			RW	Num		PT	US
22.0	Parameter	00.06	65 Set-up						1	4.011			RW	Num		РТ	US
22.0	Parameter	00.06	66 Set-up						1	4.020			RW	Num		РТ	US
22.0	Parameter	00.06	67 Set-up						1	4.021			RW	Num		РТ	US
22.0	Parameter	00.06	88 Set-up						1	4.001			RW	Num		PT	US
22.069 Parameter 00.069 Set-up 0.000 to 59.999)			;	5.001			RW	Num		PT	US
22.0	Parameter	00.07	70 Set-up						4	4.020			RW	Num		РТ	US
22.0	Parameter	00.07	71 Set-up						;	5.003			RW	Num		PT	US
22.0	Parameter	00.07	72 Set-up						-	7.028			RW	Num		РТ	US
22.0	Parameter	00.07	73 Set-up						2	9.003			RW	Num		РТ	US
22.0	Parameter	00.07	74 Set-up						1	1.078			RW	Num		РТ	US
22.0	Parameter	00.07	75 Set-up						2	9.036			RW	Num		РТ	US
22.0	Parameter	00.07	76 Set-up						(0.000			RW	Num		РТ	US
22.0	Parameter	00.07	77 Set-up						2	9.001			RW	Num		РТ	US
22.0	Parameter	00.07	78 Set-up						1	0.020			RW	Num		РТ	US
22.0	Parameter	00.07	79 Set-up						1	0.021			RW	Num		РТ	US
22.0	Parameter	00.08	30 Set-up						1	0.022			RW	Num		РТ	US
RW	Read / Write	RO	Read only	Num	Number parameter	Bit	Bit p	parameter	Txt	Text string	Bin	Binar paran		r	FI	Filtere	d
ND	No default value	NC	Not copied	PT	Protected parameter	RA	Rati	ng endent	US	User save	PS	Powe	r-do	wn	DE	Destin	ation

Safety information Product information Mechanical installation Installation Mechanical installation Installat

10.20 Menu 29: Pump Control

Menu 29 Single line Descriptions

	Parameter	Range	Default	Type RW Num ND NC F RW Num NC F					
		Open-Loop RFC-A RFC-S	Open-Loop RFC-A RFC-S						
	Pump Software Version	0 to 9999999							
29.002	Total Run Time	0 to 65535 hours	0 hours	RW	Num		NC	PT	PS
29.003	Operating Status	Inhibit STO (0), Off (Ready) (1), Hand Run (2), Waking (3), Pipe Fill (4), Auto Run (5), Auto Run Leader (6), Auto Run Assist (7), Pre-sleep (8), Sleeping (9), Cleaning (10), Level Stop (11) Timer Stop (12), Hand Timeout (13), Over-cycle (14), Fbck Loss Run (15), Dry Well Run (16), Dry Well Stop (17), Auto Stop Assist (18) Trip (19), Under Voltage (20)	, Inhibit STO (0)	RW	Txt		NC	PT	
29.004	Volume	0 to 2147483647	0	RW	Num		NC	рт	
	Flow	0.0 to 100000000.0	0.0	RW	Num			PT	
	Volume Scaling	0.000000 to 1000.00000	1.000000	RW	Num			PT	LIS
	Flow Scaling	0.000000 to 1000.000000	1.000000	RW	Num			PT	
	Flow Meter Pulse Input	Off (0) or On (1)	Off (0)	RW	Bit		NC		00
	Flow Meter Pulse Count	0 to 2147483647	0	RW	Num		NC	DT	DC
	Reset Volume Input			RW	Bit		NC	ГΙ	FO
29.010	Reset volume input	Off (0) or On (1)	Off (0)	KVV	DIL		NC		
29.011	Pump Control Mode	Single Pump (0), Cascade (1), Multi-leader (2)	Single Pump (0)	RW	Txt				US
	Control Input Mode	Input (0), Input & Keypad (1), Ctrl Wrd (2), Ctrl Wrd & Input (3)	Input & Keypad (1)	RW	Txt				US
	Hand Select Input	Off (0) or On (1)	Off (0)	RW	Bit		NC		
	Auto Select Input	Off (0) or On (1)	Off (0)	RW	Bit		NC		
29.016	Hand Mode Reference Select	Digital Speed (0), Analog Speed (1)	Digital Speed (0)	RW	Txt				US
29.017	Hand Mode Timeout	0.0 to 25.0 minutes	0.0 minutes	RW	Num				US
29.018	Auto Selected Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		
29.019	Hand Selected Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		
29.020	Auto Running Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		
	Auto Operational Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		
	PID Setpoint 0	0.00 to 327.67 psi	0.00 psi	RW	Num				US
	PID Setpoint 1	0.00 to 327.67 psi	0.00 psi	RW	Num				US
	PID Setpoint 2	0.00 to 327.67 psi	0.00 psi	RW	Num				US
	-			_	Num				US
	PID Setpoint 3	0.00 to 327.67 psi	0.00 psi	RW			110		US
	PID Setpoint Select Input 0	Off (0) or On (1)	Off (0)	RW	Bit		NC		
	PID Setpoint Select Input 1	Off (0) or On (1)	Off (0)	RW	Bit		NC		
	PID Selected Setpoint	0.00 to 327.67 psi	0.00 psi	RW	Num		NC		
	PID Final Setpoint	0.00 to 327.67 psi	0.00 psi	RW	Num		NC		
29.030	PID Final Setpoint Percent	0.00 to 100.00 %	0.00 %	RW	Num		NC		
29.031	PID Feedback Minimum Scaling	0.00 to 327.67 psi	0.00 psi	RW	Num				US
29.032	PID Feedback Maximum Scaling	0.01 to 327.67 psi 1.00 to 327.67 psi	100.00 psi	RW	Num				US
29.033	PID Feedback Filter Time Constant	0.00 to 327.67 s	1.00 s	RW	Num				US
29.034	PID Feedback Percent	±100.00 %	0.00 %	RW	Num				US
	PID Final Feedback Percent	±100.00 %	0.00 %	RW	Num				US
	PID Final Feedback	-327.68 to 327.67 psi	0.00 psi		Num		NC		
	PID Error	-327.68 to 327.67 psi	0.00 psi		Num	_			
	PID Software Enable	Off (0) or On (1)	Off (0)	RW			NC	РΤ	
	PID Feedback High Alarm Threshold	0.00 to 327.67 psi	0.00 psi		Num				US
	PID Feedback High Alarm Output	Off (0) or On (1)	Off (0)	RW		H			
	PID Feedback High Trip Threshold	0.00 to 327.67 psi	0.00 psi		Num	\vdash			US
	PID Feedback Low Delay	0.00 to 327.07 psi 0.0 to 6553.5 s	5.0 s		Num	H			US
	PID Feedback Low Mode	Disabled (0), Threshold (1), Bandwidth (2)	Disabled (0)	RW	Txt	\vdash			US
	PID Feedback Low Threshold	(7)				\vdash			US
		0.00 to 327.67 psi	2.00 psi	RW		\vdash			US
	PID At Setpoint Band	0.00 to 327.67 psi	0.35 psi			\vdash	NO		υS
	PID At Setpoint Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		
	PID Feedback Low Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		110
	PID Feedback Loss Action	Ignore (0), Trip (1), Fixed Speed (2)	Trip (1)	RW	Txt	$\vdash \vdash$			US
	Wake Detect Feedback Threshold	0.00 to 327.67 psi	1.00 psi		Num				US
	Wake Detect Delay	0.0 to 6553.5 s	5.0 s		Num				US
	Sleep Detect Speed Threshold	0.0 to 60.0 0.0 to 3000.0	25.0 750.0		Num				US
	Sleep Detect Delay	0.0 to 6553.5 s	5.0 s	_	Num				US
	Sleep Required Output	Off (0) or On (1)	Off (0)	RW	Bit		NC		
29.054	Sleep Active Output	Off (0), On (1)	Off (0)	RW	Txt		NC]	
29.055	Time Schedule Run Input Enable	Off (0) or On (1)	Off (0)	RW	Bit				US
29.056	Time Schedule Run Input	Off (0), On (1)	Off (0)	RW	Txt		NC		
29.057	Dry Well Low Load Detection Threshold	0.0 to 100.0 %	1.0.0/	DIA	Num				He
	Percent	0.0 to 100.0 %	1.0 %	KVV	inum				US

Safety information	Product n information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimizati	on NV Media Car Operation	d Advanced parameters	Technical data	Diagr	ostics		listing rmatior
29.058	Dry Well Low Lo	oad Detection	n Delay		0.0 to 6			5	0 s	RW	Num			US
29.059	Dry Well Low Lo	oad Mode		Disabl	led (0), Alarm Lower PID	n Only (1), Trip Output (3)	0 (2),	Disab	oled (0)	RW	Txt			US
29.060	Dry Well Low Lo	oad PID Outp	out Reduction		0.00 to 1			50.	00 %	RW	Num			US
	Dry Well Low Lo				0.0 to 6	553.5 s		5	0 s	RW	Num			US
	Dry Well Low Lo				Off (0),	. ,			f (0)	RW	Txt	N		
	Low Flow Meter Low Flow Meter		nold		0.0 to 214 0.0 to 6		-		0.0 0 s	RW RW	Num Num		+-	US
	Low Flow Meter		t		Off (0),				f (0)	RW	Txt	N		00
	Flow Switch Inp				Off (0),	On (1)		Or	n (1)	RW	Txt	N	2	US
	No Flow Switch				0.0 to 6				0 s		Num		_	US
	No Flow Switch No Flow Detect		d	0.0 to	Off (0),	On (1) 0.0 to 300	0.0		f (0) 0.0	RW RW	Txt Num	N	3	US
	No Flow Detect		u		60.0	0.0 to 300		5.0	150.0	RW	Num			US
29.071	No Flow Detect	ion Delay			0.0 to 6	553.5 s		5	0 s	RW	Num			US
	No Flow Setpoi				0.0 to 6				0 s		Num			US
	No Flow Setpoir No Flow Output				0.00 to 2		+		6 psi f (0)	RW RW	Num Txt	-		US
	'	•		Disa	. ,,	edback Level (1).		. /			-		
29.075	Pipe Fill Mode				Flow Sv		. "	Disab 	oled (0)	RW	Txt		\perp	US
	Pipe Fill Thresh				0.00 to 3				0 psi	RW	Num			US
	Pipe Fill Maxim				0.0 to 6				0 s f (0)	RW RW	Num	N		US
	Pipe Fill Done C Level Switch Hi				Off (0), Off (0),	. ,			f (0) f (0)	RW	Txt Txt	NO NO	_	H
	Level Switch Lo	· .			Off (0),	. ,			f (0)	RW	Txt	N		\square
	Level Switch Ho				0.0 to 6				0 s		Num			US
	Level Switch Mo					h Low Toggle			Only (0)	RW	Txt			US
	Maximum Drive At Maximum Dr			0.0 to	Off (0),	0.0 to 300	0.0	1.0	30.0 f (0)	RW RW	Num Txt	N	-	US
	External Pump				Off (0),	. ,			f (0)	RW	Txt	N		
29.086	Motor Thermal I	Protection In	put		Off (0),	On (1)		Of	f (0)	RW	Txt	N	2	
	Motor Thermal I		nable		Off (0) o	. ,			f (0)	RW	Bit		_	US
	Clean Manual In Clean On Start	nput			Off (0), Off (0) o	. ,	+		f (0) f (0)	RW RW	Txt Bit	N	ار	US
	Clean On Interv	ral			Off (0) o	. ,			f (0)	RW	Bit			US
29.091	Clean On Load	Current Thre	eshold		Off (0) o	r On (1)		Of	f (0)	RW	Bit			US
	Clean On Motor				Off (0) o	. ,			f (0)	RW	Bit			US
	Cleaning Phase Cleaning Phase				0.1 to 6 0.1 to 6		-		.0 s	RW RW	Num Num		+-	US
	Cleaning Phase				0.1 to 6				.0 s	RW	Num			US
	Clean On Interv				1 to 6553			1440	minutes	RW	Num			US
	Clean On Load		•		0.1 to 6				.0 s		Num			US
	Clean On Load Clean On Load				0.0 to 2		+		0 %	RW	Num Num			US US
	Clean Per Hour		THESHOL		1 to				5		Num			US
	Clean Per Hour			Alarm O	nly (0), Stop	Cleaning (1),	Trip (2)	Stop Cle	eaning (1)	RW				
	Pre-clean Load	_			±1000				0 %		Num	N		
	Post-clean Load			-	±1000				0 % f (0)	RW RW	Num Txt	N(igwdap igl[
	Clean Active Ot		ut		Off (0), Off (0),				f (0) f (0)	RW	_	N	_	H
	Assist Control N				Run Only (0)				Only (0)	RW				US
	Assist 1 Run Ou		-		Off (0),	. ,			f (0)	RW	_	N		
	Assist 1 Ready			-	Off (0),				f (0)	RW	_	NO NO		\blacksquare
	Assist 1 Runnin Assist 1 Runtim	<u> </u>			Off (0), 0 to 2147483	On (1) 647 minutes			f (0) nutes	RW RW	Txt Num	NO NO	_	+
	Assist 1 Lockou		1	<u> </u>	0.0 to 3				0 s		Num	N		\square
29.112	Assist 1 Lockou	t Output			Off (0),	On (1)		Of	f (0)	RW	Txt	N	2	
	Assist 2 Run Ou				Off (0),	. ,			f (0)	RW	_	N		igspace
	Assist 2 Ready Assist 2 Runnin			-	Off (0), Off (0),	. ,			f (0) f (0)	RW RW	_	N(_	$oldsymbol{oldsymbol{arphi}}$
	Assist 2 Runtim	<u> </u>			. , ,	647 minutes			nutes		Num	N		\square
29.117	Assist 2 Lockou	it Countdown	1		0.0 to 3	600.0 s		0	0 s	RW	Num	N		
29.118	Assist 2 Lockou	t Output			Off (0),	. ,	1 (4)	Ot	f (0)	RW	Txt	N	2	igspace
29.119	Assist Last Faile	ed Start		No Fa	iled Starts (0 Assist 2), Assist 1 Fai Fail (2)	1 (1),	No Faile	Starts (0)	RW	Txt			
29.120	Assist Starts Pe	er Hour			1 to	. ,			5	RW	Num		1	US
	Assist Over-cyc			,		l (0), Trip (1)			r Cool (0)	RW	_			US
	Add Assist Dela	•		001	0.0 to 6		0.0		0 s		Num	\perp	-	US
	Add Assist Ban Remove Assist			U.U to	0.0 to 6	0.0 to 300 553 5 s	iU.U	1.0	30.0 0 s		Num Num	+	+	US
	Alternation Time				0.0 to 327				hours		Num	$\overline{}$	+	US
	Alternation Time				0.0 to 327	6.7 hours			hours		Num	N	0	
29.127	Over-cycle Mod	le		Disabl	led (0), Alarn Inc Setp	n Only (1), Trip point (3)	0 (2),	Alarm	Only (1)	RW	Txt			US

Safety information	Product n information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimiza		ledia Card peration	Advanced parameters	Technica data	Diaç	gnostic		UL listing
29.128	Over-cycle Star	ts Per Hour			0 to	255	İ		5		RW	Num			US
	Over-cycle Set		ent		0.01 to				0.01	%	RW	Num			US
	Over-cycle Set				0.01 to 1				0.60		RW	Num			US
	Over-cycle Alar				Off (0),				Off (0)	RW	Txt		NC	
29.132	Multi-leader No	de ID			1 to	o 3			1		RW	Num			US
29.133	Multi-leader Ne	twork Loss M	lode	Rı	ın Single Pur	mp (0), Trip (1	1)	R	un Single l	Pump (0)	RW	Txt			US
29.134	Multi-leader No	de 1 Status V	Vord	00000000	00000000 to	o 1111111111	1111111	0	000000000	0000000	RW	Bin		ИC	
29.135	Multi-leader No	de 1 PID Out	put	±60		-3276.8 to 3			0.0		RW	Num		VС	
29.136	Multi-leader No	de 1 Control	Word	00000000	000000000 to	o 1111111111	1111111	0	000000000	0000000	RW	Bin	Į l	NC	
29.137	Multi-leader No	de 1 Lead Dr	ive		0 to				0		RW	Num		NC	
29.138	Multi-leader No	de 1 PID Fee	dback		-327.68 to				0.00		RW	Num		NC	
	Multi-leader No					o 1111111111		0	000000000	0000000	RW	Bin		NC	
	Multi-leader No		•	±60		-3276.8 to 3			0.0		RW	Num		VС	
	Multi-leader No			00000000		o 1111111111	1111111	0	00000000	0000000	RW	Bin		VC	
	Multi-leader No				0 to				0		RW	Num		VC	
	Multi-leader No				-327.68 to				0.00		RW	Num		VC	
	Multi-leader No					o 1111111111		0	000000000	0000000	RW	Bin		VC	
	Multi-leader No		•	±60		-3276.8 to 3			0.0		RW	Num		NC	
	Multi-leader No			00000000		<u>111111111</u>	1111111	0	000000000	0000000	RW	Bin		VC	
	Multi-leader No				0 to				0	2/	RW	Num		NC	_
	Multi-leader No				-327.68 to				0.00		RW	Num		VС	LIC
	Pump Control V Pump Control V		og rime	0000000	0.0 to	00.0 s o 111111111	1111111	0	2.0 9		RW RW	Num Bin	Ш,	NC	US
	Pump Control V					o 1111111111			000000000		RW	Bin		VC VC	
	Pump Status W					o 1111111111			000000000		RW	Bin		VC VC	
	Pump Status W					o 1111111111			000000000		RW	Bin		VC	
	Pump Alarm W					o 1111111111			000000000		RW	Bin		VC	
	Pump Software					Stop Softwar			Run Softw		RW	Txt		VC.	US
	Motor Type	Зюр				nanent-magn				ane (0 <i>)</i> anent-magne		Txt			03
	Keypad Power	Un In Auto		maaci	Off (0) o		51 (1)	madotion	Off (RW	Bit			US
	Assist 3 Run O				Off (0),	. ,			Off (RW	Txt		NC	- 00
	Assist 3 Ready				Off (0),	. ,			Off (,	RW	Txt		NC	US
	Assist 3 Runnin	_			Off (0),	. ,			Off (,	RW	Txt		VC	US
	Assist 3 Runtim	<u> </u>		(647 minutes			0 minu		RW	Txt		NC	
29.163	Assist 3 Lockou	ıt Countdown	1		0.0 to 3				0.0	3	RW	Txt		VС	
29.164	Assist 3 Lockou	ıt Output			Off (0),	On (1)			Off (0)	RW	Txt		NC	US
29.165	Assist 4 Run O	utput			Off (0),	On (1)			Off (0)	RW	Txt		NC	
29.166	Assist 4 Ready	Input			Off (0),	On (1)			Off (0)	RW	Txt		NC	US
29.167	Assist 4 Runnin	ig Input			Off (0),	On (1)			Off (0)	RW	Txt		VС	US
29.168	Assist 4 Runtim	ie		(0 to 2147483	647 minutes			0 minu	tes	RW	Num		NC	
	Assist 4 Lockou		<u> </u>		0.0 to 3				0.0		RW	Num		VС	
	Assist 4 Lockou				Off (0),	On (1)			Off (0)	RW	Txt		NC	US
	Number Of Pun				0 to				0		RW	Num			US
	Flow Compensa					r On (1)			Off (Bit			US
	Flow Compensa		•	0.0 to	60.0	0.0 to 30	0.0	25.0		750.0		Num	\sqcup		US
	Flow Compensa		•		0.00 to 32		-		50.00			Num	\sqcup		US
	Flow Compens		<u> </u>		0.0 to		-		50.0			Num	₩		US
	Flow Compens				0.00 to 32				100.00			Num	$\vdash \vdash$	_	US
	Flow Compens				0.00 to 1				100.00			Num	\vdash	_	US
	Flow Compensation Output Limit Flow Meter Source Select		LIITIIL		0.00 to 32				0.00 բ Pulse			Num	┝		US
	Flow Meter Source Select Flow Meter Analog Input				Pulse (0), a ±100.				0.00	` '	RW	Txt Num	\vdash	+	US
	Flow Meter Analog Input Flow Meter Analog Minimum Scaling				0.0 to 3		1		0.00		RW	_	\vdash	+	US
					0.0 to 3				100.			Num	\vdash	-	US
	Flow Meter Analog Maximum Scaling Flow Meter Analog Time Base			Per seco		ninute (1),Per	hour (2)		Per minu		RW	-	\vdash		US

No unit (0), CU (1), mm (2), m (3), UU (4), Revs (5), ° (6), UU/ms² (7), GPU (8), mm/s (9), UU/ms (10), rpm (11), Hz (12), kHz (13), MHz (14), GSU (15), CLSU (16), s/1000mm/s (17), UU/ms² (18), s/1000rpm (19), s/100Hz (20), GAU (21), CLAU (22), s²/1000mm/s (23), s²/UU/ms (24), s²/1000rpm (25), s²/ 100Hz (26), GJU (27), CLJU (28), Messages/ s (29), hours (30), minutes (31), s (32), ms (33), µs (34), ns (35), V (36), A (37), O (38), mH (39), kW (40), kVAr (41), MWh (42), kWh (43), °C (44), 1/°C (45), kgm² (46), Nm (47), Nm/A (48), V/1000rpm (49), bits (50), Bytes (51), kB (52), MB (53), bits/s (54), Baud (55),	UL listing information
RBaud (56), MBaud (57), PolePairs (58), % (59), V/ms (60), s/rad (61), s²/rad (62), 1/rad (63), mm/s² (64), mm/s² (10 (65), Poles (66), PPR (67), mm/s² (10 (68), mA (69), "F (70), psi (71), W (72), mBar (73), Bar (74), m²/h (75), Imin (76), hp (77), iml-g (78), gal/s (79), gal/min (80), gal/m (80), gal/m (81), ft²/s (82), ft²/min (83), ft²/h (84), lb (85), lb/s (86), lb/min (87), lb/h (88), ft (89), ft/s (90), ft/s² (91), ft/min (92), inch (93), inch/ms (94), inch/ms² (95), inch/s (96), inch/s² (97), "/ms (98), "/s (100), "s² (100), "s² (101), counts (102), counts/ms (103), counts/s² (106), inch wc (107), GPIDU (108), PPM (109), 1/min (110), pulses (111), l/s (112), l/h (113), m²/s (114), m²/min (115), kg/s (116), kg/min (117), kg/h (118), t/min (119), l/h h (120), m/s (121), m/min (122), Pa (123), kPa (124), m WG (125), mmHg (126), GPM (127), CFM (128), lb/in² (129), in WG (130), ft WG (130), gal (132), I (133), ft² (134), m² (135), ya² (136), af (137), km² (138), mi (139), km (140), lbF (141), PLI (142), lb/ft² (143), m/s (135), ya² (136), af (147), rad/s (145), rad/s² (146), rad/s² (147), m/min/s (148), ft/min/s (149), m/s² (150), ft/s² (151), CPR (152), UPR (153), mm/ rev (154), in/rev (155), mF (156), CMH (157), N (158)	US
29.185 PID Unit Decimal Places 0 to 5 2 RW Num	US
29.186 External Wake Input Off (0) or On (1) On (1) RW Bit 29.187 External Sleep Input Off (0) or On (1) Off (0) RW Bit	US US
	US
29.188 PID Feedback High Sleep Enable Off (0) or On (1) Off (0) RW Bit 29.189 Assist Sleep Detect Speed Threshold 0.0 to 60.0 0 to 3000.0 0.0 RW Num	US

RW	Read / Write	RO	Read-only	Bit	Bit parameter	Txt	Text string	Date	Date parameter	Time	Time parameter
Chr	Character parameter	Bin	Binary parameter	ΙP	IP address	Mac	MAC address	Ver	Version number	SMP	Slot, menu, parameter
Num	Number parameter	DE	Destination	ND	No default value	RA	Rating dependent	NC	Non-copyable	PT	Protected
FI	Filtered	US	User save	PS	Power-						
		-			down save						

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Menu 29 Logic diagrams

Figure 10-23 Functional Overview

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-							

Figure 10-24 Main Control

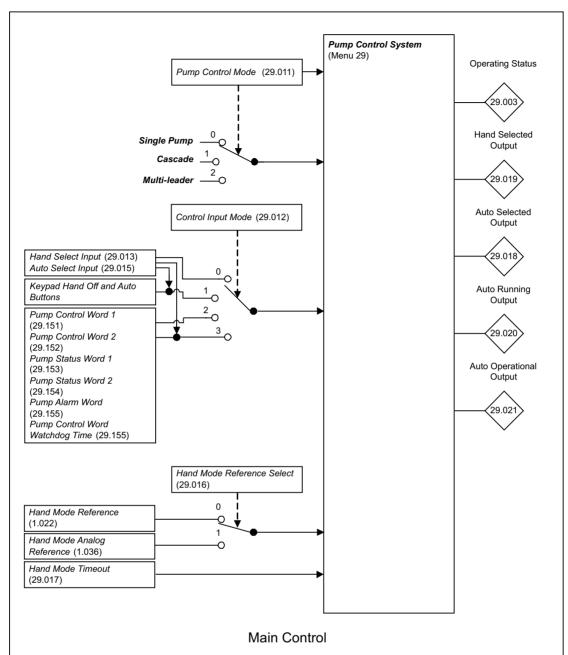
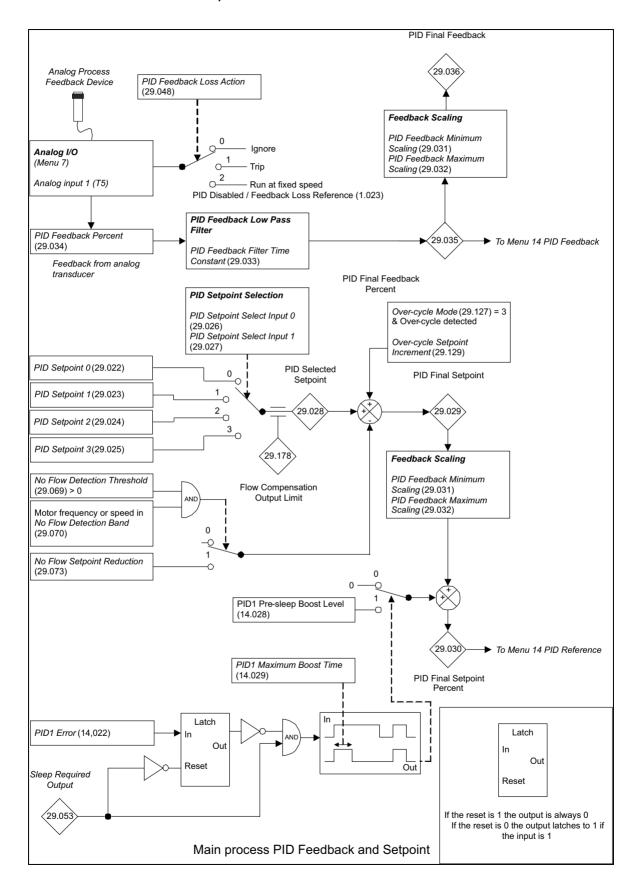
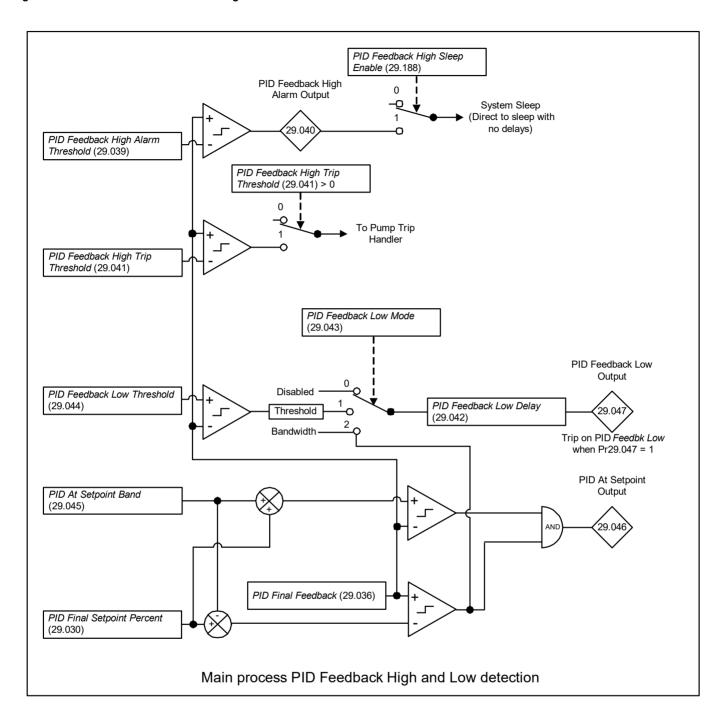




Figure 10-25 Main Process PID Feedback and Setpoint

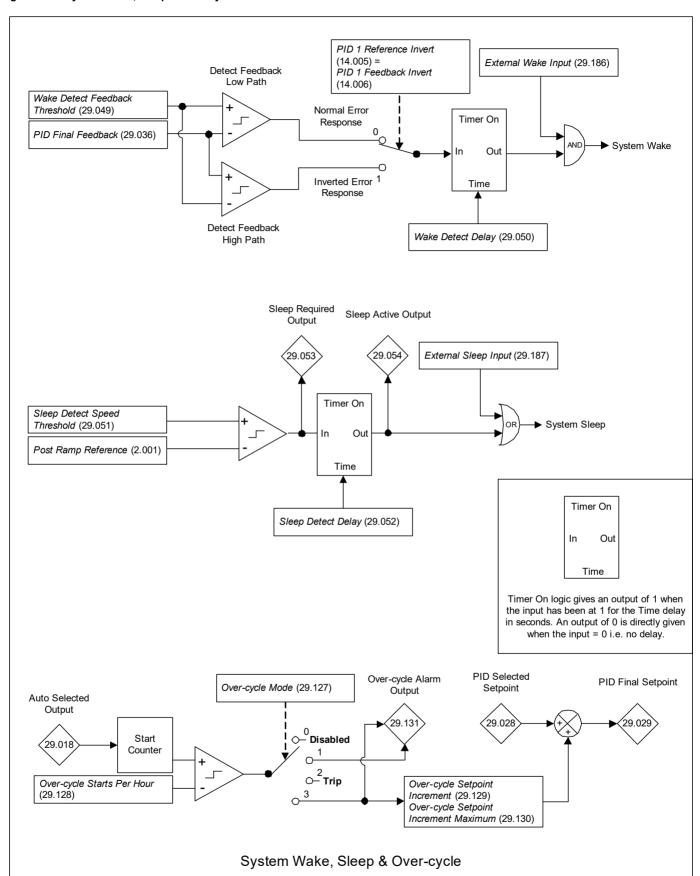

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	Ť	-		•				

Figure 10-26 Main Process PID Feedback High and Low detection

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Figure 10-27 System Wake, Sleep & Over-cycle

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	Ť	-		•				

Figure 10-28 Dry Well Low Detection

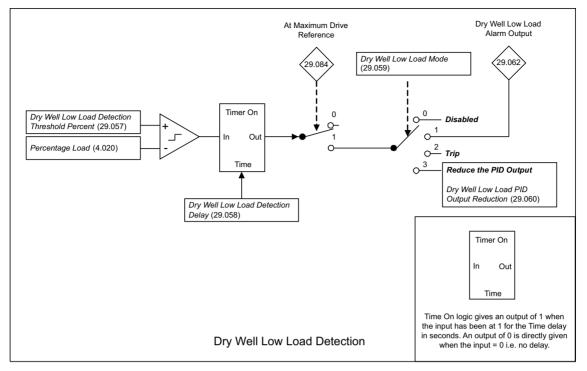
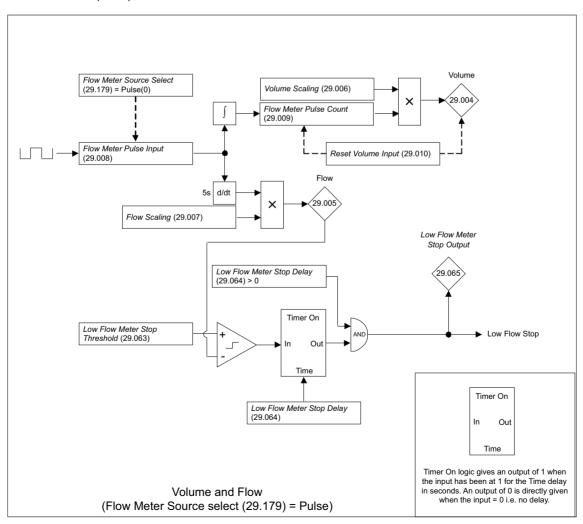
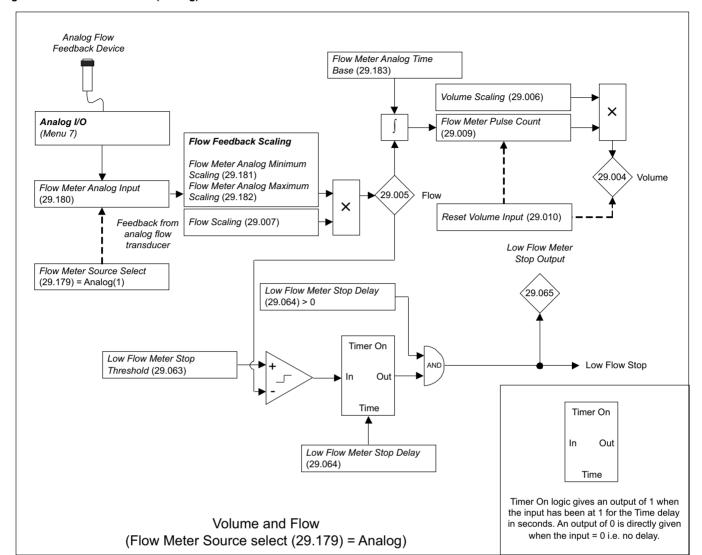




Figure 10-29 Volume and Flow (Pulse)

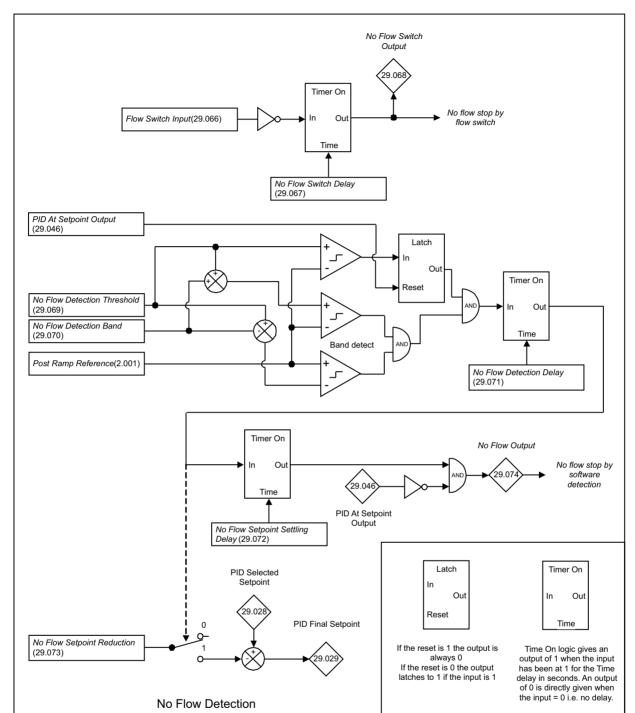

0 ()				Getting						-		
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-		·	·			i l

Figure 10-30 Volume and Flow (Analog)

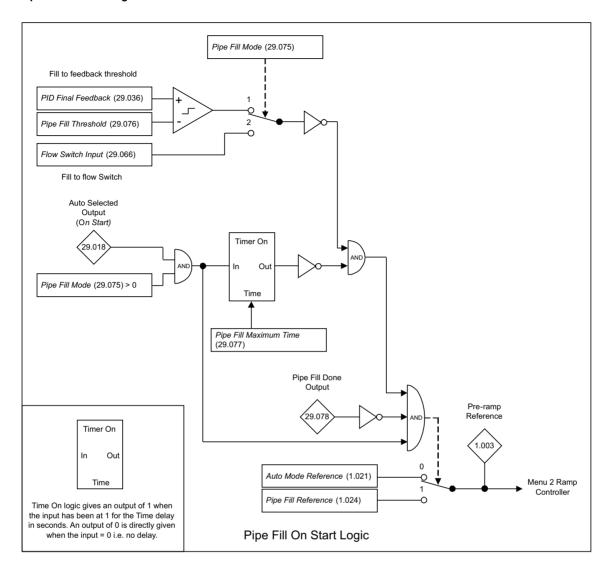

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		·		·				

Figure 10-31 No Flow Detection

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Figure 10-32 Pipe Fill On Start Logic

				Getting								
Safety information	Product information	Mechanical installation	Electrical installation	started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
IIIIOIIIIatioii	IIIIOIIIIalioii	iiistaliatioii	iristaliation	the Motor	parameters	descriptions		Operation	parameters	uala		illioilliation

Figure 10-33 Cleaning System

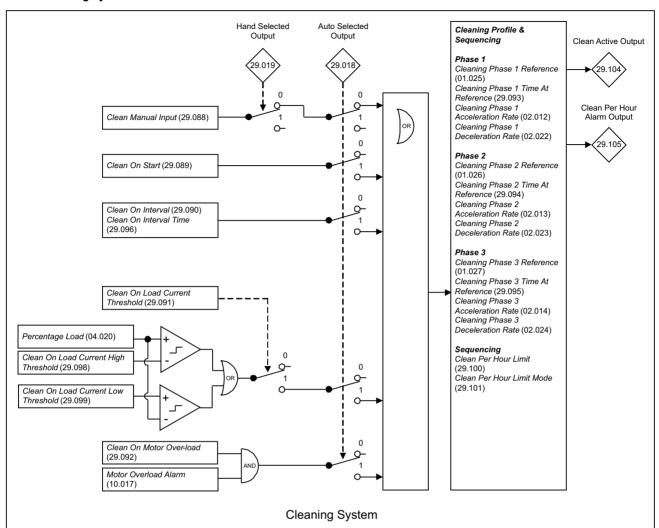
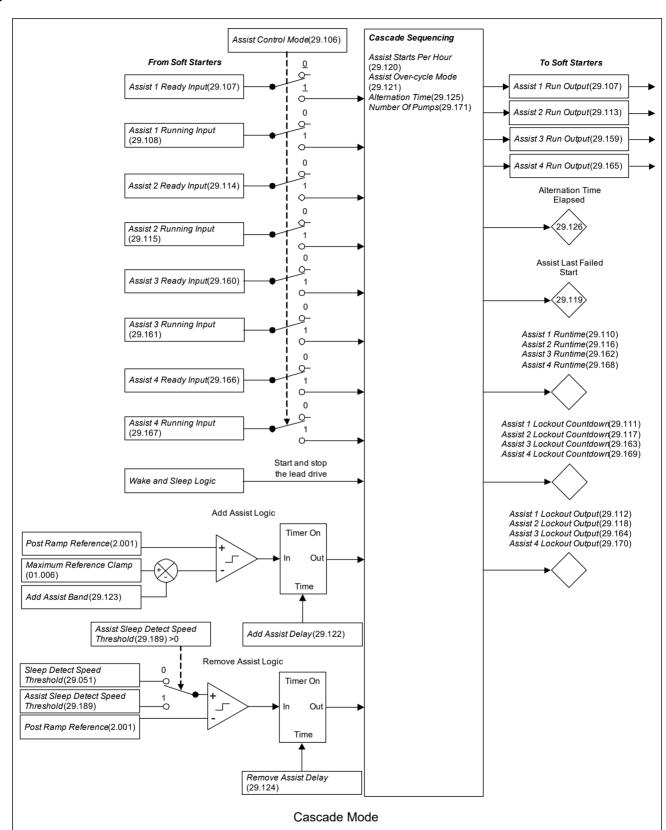
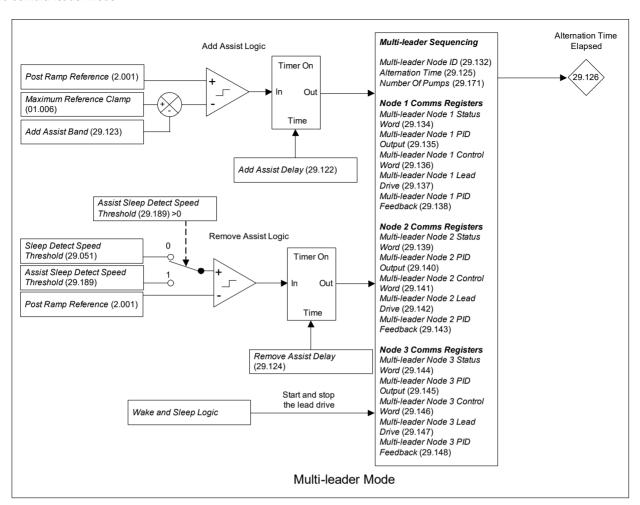




Figure 10-34 Cascade Mode

				Getting								
Safety information	Product	Mechanical installation	Electrical installation	started /	Basic	Functional	Optimization	NV Media Card		Technical data	Diagnostics	UL listing
iniormation	information	installation	installation	Running the Motor	parameters	descriptions	·	Operation	parameters	data		information

Figure 10-35 Multi-leader Mode

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-		·	Ť			

11 Technical data

11.1 Drive technical data

11.1.1 Power and current ratings (Derating for switching frequency and temperature)

For a full explanation of Normal Duty refer to Chapter 2.6 Ratings on page 16.

NOTE

For size 12 drives please refer to Unidrive M Power Module Frame 12 Installation Guide for information.

Table 11-1 Maximum permissible continuous output current @ 40 °C (104 °F) ambient

					Normal Du	ıty			
Model	Nomina	al rating	Maximum pe	ermissible co	ntinuous out	put current (A	A) for the follo	owing switchin	ıg frequencie
	kW	hp	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V									
03200066	1.1	1.5				6.6			
03200080	1.5	2.0				8.0			
03200110	2.2	3.0				11			10.2
03200127	3.0	3.0		12.1	10.2				
04200180	4.0	5.0							
04200250	5.5	7.5		24	22				
05200300	7.5	10		27.6	23.7				
06200500	11	15		42.3	24.5				
06200580	15	20	50 58 53						32.5
07200750	18.5	25		74.3	59.7				
07200940	22	30	94						59.7
07201170	30	40		117		114	96	74.3	59.7
08201490	37	50		1	49	•	146	125.2	93
08201800	45	60		180		160.2	148.8	126	93
09202160	55	75		2	16		184	128	93
09202660	75	100	26	66	258	218	184	128	93
10203250	90	125		325		313	266	194	144
10203600	110	150		360		313	266	194	144
100 V									
03400034	1.1	2.0				3.4			
03400045	1.5	2.0				4.5			
03400062	2.2	3.0				6.2			5.0
03400077	3.0	5.0			7.7			6.2	5.0
03400104	4.0	5.0			10.4			7.6	5.7
03400123	5.5	7.5		1	2.3		10.5	7.6	5.8
04400185	7.5	10			18.5			14.6	11.1
04400240	11	15		24		21.8	19.2	14.6	11.2
05400300	15	20		30		25.8	22.2	17.1	13.5
06400380	18.5	25	3					31	24.3
06400480	22	30		4	18		41	31	24.5
06400630	30	40	6	3	57	48	41	31	24.5
07400790	37	60	79					63	53.6
07400940	45	60		,	94		80.6	63	53.6
07401120	55	75		112		95.2	80.6	63	53.8

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
-----------------------	---------------------	-------------------------	-------------------------	--	---------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

					Normal Du	ty			
Model	Nomina	al rating	Maximum pe	rmissible co	ntinuous out	put current (A) for the folio	owing switchin	g frequencies
	kW	hp	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
11602750	250	300	275	265	220				
11603050	280	400	305	265	220				

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 11-2 Maximum permissible continuous output current @ 40 °C (104 °F) ambient with high IP insert installed

		Normal Duty										
Model		M	laximum permiss for the follo	sible continuous wing switching		A)						
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz					
00 V												
03200066				6.6								
03200080				8.0								
03200110			11	.0			9.7					
03200127	12.3	11.9	11.1	10.0	9.0	6.4	4.7					
04200180		14.5		13.5	12.2	10.5	9.6					
04200250		14.5		13.5	12.2	10.5	9.6					
05200300	25.5	25.2	24.9	24.3	23.7	22.5	21.6					
00 V												
03400034			3	.4			3.3					
03400045		4.5		4.4	4.1	3.6	3.3					
03400062	5.1	5.0	4.7	4.4	4.1	3.6	3.3					
03400077	7	.7	7.4	6.7	6.2	5.7	5.0					
03400104		8.3		7.6	6.9	6.0	5.2					
03400123		8.3		7.6	6.9	6.0	5.2					
04400185			8.6			8.4	6.9					
04400240			8.6			8.4	6.9					
05400300	17.1	15.6	14.4	12.6	11.4	9.6	8.7					
75 V		•	•			•						
05500039				3.9								
05500061				6.1								
05500100				10.0								

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Table 11-3 Maximum permissible continuous output current @ 50 °C (122 °F)

	Normal Duty										
Model	Мах	imum permissib	le continuous out	put current (A) f	or the following	switching freque	ncies				
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz				
0 V											
03200066	T			6.6							
03200080				8.0							
03200110			11			10.5	9.1				
03200127	1	12.7	12.6	12.2	11.7	10.5	9.1				
04200180				18			/				
04200250			22	2.2			20.2				
05200300	1	:	30		29.7	25.2	21.6				
06200500	†		50		49	38	30				
06200580		58		56	49	38	30.2				
07200750	†		75		<u>,L</u>	59.7	48.8				
07200940		94		92.1	80	59.7	48.9				
07201170	<u> </u>	117	112	92.4	80	59.7	49.1				
08201490	1	149	<u></u>	147	133	113	84				
08201800	<u> </u>	180	167	148	133	113	84				
09202160	 	216		197	168	117	84				
09202660	253	237	221	197	168	117	85				
10203250	325	320	302	266	241	176	130				
10203600	346	320	302	266	241	176	130				
00 V	<u> </u>										
03400034	T			3.4							
03400045	 			4.5							
03400062	 		6.2		5.9	5.4	4.4				
03400077	7.6	7.2	6.9	6.4	5.9	5.4	4.4				
03400104	 	10.4		9.3	8.5	6.9	5.1				
03400123	11.9	11.2	10.5	9.3	8.5	6.9	5.2				
04400185	18	17.5	17	16.3	15.8	12.2	9.3				
04400240	18	17.5	17	16.3	15.8	12.2	9.3				
05400300	+	25.5		23.6	20.4	15.6	12.3				
06400380			38		37	28	21.4				
06400480	+	48		43	36.5	27.4	21.4				
06400630	63	58	52	43	37	28	21.4				
07400790			79		73.5	57.7	49				
07400940	 	94		86.5	73.3	58.3	49				
07401120	 	112	109	87.4	72.8	58.3	49.3				
08401550	 	155	100	146	123	93	69				
08401840	 	184	180	146	123	93.8	69				
09402210		221	213	175	144	93.8	69				
09402660	253	237	213	176	144	98	69				
10403200		320	300	259	217	154	112				
10403200	343	320	300	260	217	154	112				
		415	374		240	155	112				
11404370	437			298							
11404870	462	415	374	298	240						

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Med Opera		Advanced parameters	Technical data	Diagnostics	UL listing information			
							Normal D	uty								
Мо	del		Maximu	ım permis	ssible con	tinuous ou	tput current	(A) for	the fol	lowing sw	vitching fre	equencies				
		2 k	Hz	3 kHz		4 kHz	6 kHz		8 k	Hz	12 kHz		16 kHz			
1140	5070	46	62	415		374	298		24	10						
575 V											-					
0550	0039						3.9									
0550	0061						6.1									
0550	0100					10										
0650	0120						12									
0650	0170					1	17						13.4			
0650	0220					22					17.8		13.4			
0650	0270				27				23	.5	17.8		15			
0650	0340			34			28.2		23	.5	18		15			
0650	0430	43	.0	41.7		36.1	28		23	.7	18		15			
0750	0530			53			46.7		35	.8	24.8		19			
0750	0730		73			65	46.7		35	.8	24.8		19			
0850	0860			86			76.7		64	.5	44.3		31.3			
0850	1080	10)4	97.2		90.7	76.7		64	.8	44.3		31.3			
0950	1250		•	125	•		114		9	0	62		48			
0950	1500			150			114 90				62	62 48				
1050	2000	20	00	184		154	114		9	0	62		48			
1150	2480		226			198										
1150	2880	26	62	241		198										
1150	3150	29	96	241		198										
690 V			•													
0760	0230					2	23						19			
0760	0300					30					24.8		19			
0760	0360				36				35	.8	24.8		19			
0760	0460				46				35	.8	24.8		19			
0760	0520			52			46.7		35	8.8	25		19			
0760	0730		73			65	46.7		35	.8	25		19			
0860	0860			86	•		76.7		64	.5	44.3		31.3			
0860	1080	10)4	97.2		90.7	76.7		64	.8	44.3		31.3			
0960	1250			125	•		114		9	0	62		48			
0960	1550		155			153	113		8	9	62		48			
1060	1720		172			153	114		8	9	62		48			
1060	1970		197			195	134		10)2	67		48			
1160	2250		205			198										
1160	2750	25	50	241		198										
1160	3050	29	96	241		198										

Note

55 °C ratings are available on request.

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	-	-		·	-			

11.1.2 Power dissipation

Table 11-4 Losses @ 40 °C (104 °F) ambient

	Normal Duty												
Model	Nomina	al rating	Drive Id	osses (W) takir	ng into accou	nt any curren	t derating for	the given cor	nditions				
	kW	hp	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kH:				
00 V													
03200066	1.1	1.5	88	93	95	99	104	113	122				
03200080	1.5	2	95	100	102	107	113	122	133				
03200110	2.2	3	117	123	126	133	139	151	146				
03200127	3	3	129	136	141	149	158	168	157				
04200180	4	5	171	180	187	201	216	244	273				
04200250	5.5	7.5	227	239	248	266	284	308	314				
05200300	7.5	10	280	291	302	324	344	356	342				
06200500	11	15	375	394	413	452	490	480	485				
06200580	15	20	442	463	484	528	522	481	486				
07200750	18.5	25	533	570	597	650	703	885	894				
07200940	22	30	671	718	751	815	881	890	899				
07201170	30	40	851	911	951	1004	911	920	929				
08201490	37	50	1339	1433	1536	1765	1943	1962	1982				
08201800	45	60	1638	1753	1894	1914	1985	2005	202				
09202160 (9A)	55	75	2028	2170	2312	2596	2448	2160	2031				
09202660 (9A)	75	100	2585	2754	2822	2623	2448	2156	2034				
09202160 (9E)	55	75	1889	2031	2174	2458	2348	2112	2006				
09202660 (9E)	75	100	2375	2554	2625	2482	2348	2108	2009				
10203250	90	125	2478	2672	2867	3123	2952	2701	2554				
10203600	110	150	2802	3016	3230	3126	2957	2706	2554				
00 V						1 7 1 2 1							
03400034	1.1	1.5	76	80	84	94	103	123	141				
03400045	1.5	2	84	88	92	104	115	137	160				
03400062	2.2	3	99	104	112	125	139	167	157				
03400077	3	5	108	114	122	137	153	149	147				
03400104	4	5	138	145	158	186	212	201	197				
03400123	5	7.5	155	163	179	209	208	201	200				
04400185	7.5	10	214	225	244	283	322	325	310				
04400240	11	15	269	283	307	325	329	325	315				
05400300	15	20	295	324	353	356	355	359	362				
06400380	18.5	25	378	417	456	532	613	652	645				
06400480	22	30	469	515	561	657	651	646	650				
06400630	30	40	616	656	659	650	646	643	649				
07400790	37	50	745	830	907	1062	1218	1230	1242				
07400790	45	60	896	999	1088	1264	1210	1253	1242				
07400940	55	75	1033	1152	1247	1218	1170	1182	1194				
08401550	75	100	1482	1652	1817	2154	2121	2142	2164				
08401330	90	125	1798	2004	2191	2333	2279	2302	2325				
09402210 (9A)	110	150	2431	2710	2989	3075	2992	2842	2833				
` '													
09402660 (9A)	132	200	3016	3191	3143	3063	3000	2856	2828				
09402210 (9E)	110	150	2286	2565	2844	2966	2917	2807	2815				
09402660 (9E)	132	200	2806	2998	2984	2955	2925	2821	2811				
10403200	160	250	3210	3582	3954	4148	4034	3939	3843				
10403610	200	300	3703	4121	4226	4154	4038	3947	3874				
11404370	225	350	4182	4576	4708	4444	4246						

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information			
		Normal Duty													
Mod	del	Nominal rating Drive losses (W) taking into account any current derating for the given condi								tions					
		kW	hp	2 l	Hz	3 kHz	4 kHz	6 kHz	8 kH	z 1:	2 kHz	16 kHz			
11404	1870	250	400	47	'34	4843	4708	4444	4246	3					
11405	5070	280	400	49	62	4843	4708	4444	4246	3					

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	•				·			

		un	e Motor						
					Normal Duty	1			
Model	Nomin	al rating	Drive Id	osses (W) taki	ng into accou	nt any curren	t derating for	the given cor	ditions
	kW	hp	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
75 V									
05500039	2.2	3	82	92	102	121	142	183	223
05500061	4	5	120	135	150	180	209	269	328
05500100	5.5	7.5	173	194	215	260	302	388	474
06500120	7.5	10	191	215	239	287	334	430	525
06500170	11	15	253	284	315	376	438	563	569
06500220	15	20	325	362	399	484	569	575	580
06500270	18.5	25	391	448	505	596	682	689	696
06500340	22	30	534	623	712	810	822	830	839
06500430	30	40	675	798	836	813	823	831	840
07500530	45	50	867	1004	1139	1358	1262	1275	1287
07500730	55	60	1078	1248	1375	1209	1122	1133	1145
08500860	75	75	1607	1861	2180	2814	2982	3012	3042
08501080	90	100	2050	2374	2753	2947	2963	2993	3023
09501250 (9A)	110	125	1707	1977	2247	2787	2723	2731	2859
09501500 (9A)	110	150	2087	2410	2734	2810	2692	2697	2859
09501250 (9E)	110	125	1595	1865	2135	2675	2644	2687	2831
09501500 (9E)	110	150	1933	2256	2580	2696	2616	2654	2831
10502000	130	200	2692	3137	2923	2696	2616	2654	2831
11502480	185	250	3391	3999	4097				
11502880	225	300	4004	4296	4097				
11503150	250	350	4439	4296	4097				
690 V									
07600230	18.5	25	363	428	491	617	743	793	970
07600300	22	30	468	551	631	791	952	962	971
07600360	30	40	560	660	754	941	1129	1140	1152
07600460	37	50	725	854	971	1206	1271	1284	1297
07600520	45	60	836	985	1117	1350	1275	1288	1301
07600730	55	75	1059	1248	1375	1209	1122	1133	1145
08600860	75	100	1579	1861	2180	2814	2945	2974	3004
08601080	90	125	2015	2374	2753	2947	2935	2964	2994
09601250 (9A)	110	150	1878	2213	2548	3218	3155	3266	3465
09601550 (9A)	132	175	2384	2797	3211	3232	3155	3267	3474
09601250 (9E)	110	150	1730	2065	2400	3070	3058	3215	3434
09601550 (9E)	132	175	2160	2573	2986	3083	3058	3216	3443
10601720	160	200	2420	2882	3270	3083	3052	3192	3472
10601970	185	250	2614	3132	3649	3667	3495	3633	3993
11602250	200	250	3225	3893	4497				
11602750	250	300	4023	4640	4497				
11603050	280	400	4576	4684	4540				

				Getting									ı
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Ontimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing	
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information	
				the Motor		-							

		tn	e Motor						
					Normal Duty	,			
Model	Nomin	al rating	Drive lo	sses (W) taki	ng into accou	nt any curren	t derating for	the given cor	ditions
	kW	hp	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
75 V									
05500039	2.2	3	82	92	102	121	142	183	223
05500061	4	5	120	135	150	180	209	269	328
05500100	5.5	7.5	173	194	215	260	302	388	474
06500120	7.5	10	191	215	239	287	334	430	525
06500170	11	15	253	284	315	376	438	563	569
06500220	15	20	325	362	399	484	569	575	580
06500270	18.5	25	391	448	505	596	682	689	696
06500340	22	30	534	623	712	810	822	830	839
06500430	30	40	675	798	836	813	823	831	840
07500530	45	50	867	1004	1139	1358	1262	1275	1287
07500730	55	60	1078	1248	1375	1209	1122	1133	1145
08500860	75	75	1607	1861	2180	2814	2982	3012	3042
08501080	90	100	2050	2374	2753	2947	2963	2993	3023
09501250 (9A)	110	125	1707	1977	2247	2787	2723	2731	2859
09501500 (9A)	110	150	2087	2410	2734	2810	2692	2697	2859
09501250 (9E)	110	125	1595	1865	2135	2675	2644	2687	2831
09501500 (9E)	110	150	1933	2256	2580	2696	2616	2654	2831
10502000	130	200	2692	3137	2923	2696	2616	2654	2831
11502480	185	250	3391	3999	4097				
11502880	225	300	4004	4296	4097				
11503150	250	350	4439	4296	4097				
90 V		•			1				
07600230	18.5	25	363	428	491	617	743	793	970
07600300	22	30	468	551	631	791	952	962	971
07600360	30	40	560	660	754	941	1129	1140	1152
07600460	37	50	725	854	971	1206	1271	1284	1297
07600520	45	60	836	985	1117	1350	1275	1288	1301
07600730	55	75	1059	1248	1375	1209	1122	1133	1145
08600860	75	100	1579	1861	2180	2814	2945	2974	3004
08601080	90	125	2015	2374	2753	2947	2935	2964	2994
09601250 (9A)	110	150	1878	2213	2548	3218	3155	3266	3465
09601550 (9A)	132	175	2384	2797	3211	3232	3155	3267	3474
09601250 (9E)	110	150	1730	2065	2400	3070	3058	3215	3434
09601550 (9E)	132	175	2160	2573	2986	3083	3058	3216	3443
10601720	160	200	2420	2882	3270	3083	3052	3192	3472
10601970	185	250	2614	3132	3649	3667	3495	3633	3993
11602250	200	250	3225	3893	4497				
11602750	250	300	4023	4640	4497				
11603050	280	400	4576	4684	4540				

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

Table 11-5 Losses @ 40 °C (104 °F) ambient with high IP insert installed

				Normal Duty			
Model	Driv	e losses (W) tak	king into consid	eration any curr	rent derating for	r the given condit	tions
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
200 V							
03200066	88	93	95	99	104	113	122
03200080	95	100	102	107	113	122	133
03200110	117	123	126	133	140	158	157
03200127	122	128	124	122	118	98	84
04200180	138	145	151	151	146	142	146
04200250	204	215	205	194	189	187	199
05200300	188	194	201	212	222	240	262
00 V							
03400034	76	80	84	94	103	123	137
03400045	84	88	92	102	105	110	134
03400062	80	84	85	89	92	109	134
03400077	108	114	117	122	135	172	203
03400104	112	118	134	155	173	221	267
03400123	112	118	134	155	173	221	267
04400185	100	105	114	132	153	197	207
04400240	96	101	111	131	152	197	207
05400300	118	118	119	124	132	152	183
575 V							
05500039	32	42	52	71	92	133	173
05500061	70	85	100	130	159	219	278
05500100	123	144	165	210	252	338	424

Table 11-6 Losses @ 50 °C (122 °F) ambient

				Normal Duty			
Model	D	rive losses (W) t	aking into acco	ount any currer	nt derating for t	he given conditi	ons
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
00 V							
03200066	88	93	95	99	104	113	122
03200080	95	100	102	107	113	122	133
03200110	117	123	126	133	139	144	139
03200127	129	136	140	143	147	151	150
04200180	171	180	187	201	216	253	297
04200250	203	214	223	244	265	312	334
05200300	280	291	302	324	341	325	312
06200500	375	394	413	452	480	431	594
06200580	442	463	484	510	483	432	451
07200750	538	570	597	650	703	710	717
07200940	678	718	751	799	750	758	765
07201170	848	898	898	805	751	759	766
08201490	1353	1433	1536	1741	1770	1788	1806
08201800	1640	1737	1740	1759	1771	1789	1807
09202160 (9A)	2028	2170	2312	2354	2256	2010	1910
09202660 (9A)	2431	2405	2368	2358	2245	2015	1922
09202160 (9E)	1889	2031	2174	2240	2172	1970	1889
09202660 (9E)	2241	2239	2223	2243	2161	1975	1900
10203250	2478	2625	2641	2625	2671	2490	2379
10203600	2666	2629	2643	2629	2678	2495	2374
0 V							
03400034	76	80	84	118	103	123	141
03400045	84	88	92	104	115	137	160
03400062	99	104	112	125	132	146	155
03400077	106	106	109	114	117	145	155
03400104	138	145	158	175	194	225	225
03400123	152	152	160	175	194	225	230
04400185	213	213	227	262	300	323	325
04400240	212	212	227	262	300	318	321
05400300	251	275	300	326	326	328	330
06400380	378	417	456	532	597	589	568
06400480	469	515	561	589	580	571	568
06400630	616	604	601	582	583	581	567
07400790	744	830	907	1062	1141	1152	1164
07400940	895	999	1087	1163	1138	1149	1161
07401120	1018	1136	1200	1118	1074	1085	1096
08401550	1480	1652	1815	2016	1970	1990	2010
08401840	1754	1957	2114	1998	1979	1999	2019
09402210 (9A)	2431	2710	2872	2799	2737	2639	2652
09402660 (9A)	2837	2926	2870	2814	2737	2660	2665
09402210 (9E)	2286	2565	2738	2709	2675	2611	2638
09402660 (9E)	2648	2760	2735	2723	2675	2632	2651

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	0-41141	NV Media Card	Advanced	Technical	Diamaratica	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		•			•			

	ure	NOIOIN S					
				Normal Duty			
Model	D	rive losses (W) t	aking into acco	ount any currer	t derating for t	ne given conditi	ons
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz
10403200	3210	3582	3681	3765	3700	3597	3591
10403610	3482	3598	3676	3776	3694	3625	3589
11404370	4182	4329	4228	3988	3843		
11404870	4456	4329	4228	3988	3843		
11405070	4456	4329	4228	3988	3843		
575 V							
05500039	82	92	102	121	142	183	223
05500061	120	135	150	180	209	269	328
05500100	173	194	215	260	302	388	474
06500120	191	215	239	287	334	430	525
06500170	253	284	315	376	438	563	515
06500220	325	362	399	482	569	500	519
06500270	391	448	505	596	612	613	652
06500340	534	623	712	737	737	747	749
06500430	675	774	763	734	742	748	750
07500530	936	988	1115	1225	1144	1155	1167
07500730	1161	1225	1228	1098	1030	1040	1051
08500860	1753	1850	2172	2540	2672	2699	2726
08501080	1980	2090	2291	2540	2684	2711	2738
09501250 (9A)	1707	1977	2247	2538	2456	2495	2699
09501500 (9A)	2087	2410	2734	2544	2456	2482	2676
09501250 (9E)	1595	1865	2135	2443	2392	2460	2674
09501500 (9E)	1933	2256	2580	2448	2392	2447	2652
10502000	2692	2841	2654	2448	2392	2447	2652
11502480	3191	3678	3532				
11502880	3965	3678	3532				
11503150	3965	3678	3632				
690 V							
07600230	359	428	491	617	743	750	758
07600300	463	551	631	791	958	968	977
07600360	554	660	754	944	1144	1155	1167
07600460	717	854	965	1206	1144	1155	1167
07600520	814	969	1094	1225	1144	1155	1167
07600730	1029	1225	1228	1098	1030	1040	1051

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
							Norma	al Duty				

				Normal Duty							
Model	D	rive losses (W) t	aking into acco	ount any curren	t derating for t	he given conditi	ons				
	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz				
08600860	1553	1850	2172	2540	2672	2699	2726				
08601080	1755	2090	2291	2540	2684	2711	2738				
09601250 (9A)	1878	2213	2548	2933	2882	2974	3248				
09601550 (9A)	2384	2797	3175	2918	2855	2974	3249				
09601250 (9E)	1730	2065	2400	2810	2803	2934	3223				
09601550 (9E)	2160	2573	2955	2796	2778	2934	3225				
10601720	2420	2882	2947	2805	2789	2932	3229				
10601970	2614	3132	3610	3243	3221	3420	3771				
11602250	3225	3893	4048								
11602750	4023	4186	4048								
11603050	4421	4230	4091								

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

Table 11-7 Power losses from the front of the drive when throughpanel mounted

Frame size	Power loss
3	≤ 50 W
4	≤ 75 W
5	≤ 100 W
6	≤ 100 W
7	≤ 204 W
8	≤ 347 W
9A/9E	≤ 480 W
10E/11E	≤ 480 W

11.1.3 Supply requirements

AC supply voltage:

200 V drive: 200 V to 240 V \pm 10 % 400 V drive: 380 V to 480 V \pm 10 % 575 V drive: 500 V to 575 V \pm 10 % 690 V drive: 500 V to 690 V \pm 10 %

Number of phases: 3

Maximum supply imbalance: 2 % negative phase sequence (equivalent to 3 % voltage imbalance between phases).

Frequency range: 45 to 66 Hz

For UL compliance only, the maximum supply symmetrical fault current must be limited to 100 kA.

11.1.4 Line reactors

Input line reactors reduce the risk of damage to the drive resulting from poor phase balance or severe disturbances on the supply network.

Where line reactors are to be used, reactance values of approximately 2 % are recommended. Higher values may be used if necessary, but may result in a loss of drive output (reduced torque at high speed) because of the voltage drop.

For all drive ratings, 2 % line reactors permit drives to be used with a supply unbalance of up to 3.5 % negative phase sequence (equivalent to 5 % voltage imbalance between phases).

Severe disturbances may be caused by the following factors, for example:

- Power factor correction equipment connected close to the drive.
- Large DC drives having no or inadequate line reactors connected to the supply.
- Across the line (DOL) started motor(s) connected to the supply such that when any of these motors are started, the voltage dip exceeds 20 %.

Such disturbances may cause excessive peak currents to flow in the input power circuit of the drive. This may cause nuisance tripping, or in extreme cases, failure of the drive.

Drives of low power rating may also be susceptible to disturbance when connected to supplies with a high rated capacity.

Line reactors are particularly recommended for use with the following drive models when one of the above factors exists, or when the supply capacity exceeds 175 kVA:

03200066, 03200080, 03200110, 03200127 03400034, 03400045, 03400062, 03400077

Model sizes 03400104 to 07600730 have an internal DC choke and model sizes 08201490 to 0801080 and frame 9A have internal AC line chokes so they do not require AC line reactors except for cases of excessive phase unbalance or extreme supply conditions. Drive sizes 9E,10E and 11E do not have internal input line reactors hence an external input line reactor must be used. For more information refer to section 4.2.3 *Drive model and input line reactor* on page 106.

When required, each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

When required each drive must have its own reactor(s). Three individual reactors or a single three-phase reactor should be used.

Reactor current ratings

The current rating of the line reactors should be as follows:

Continuous current rating:

Not less than the continuous input current rating of the drive Repetitive peak current rating:

Not less than twice the continuous input current rating of the drive

11.1.5 Motor requirements

No. of phases: 3 Maximum voltage:

> 200 V drive: 265 V 400 V drive: 530 V 575 V drive: 635 V 690 V drive: 765 V

11.1.6 Temperature, humidity and cooling method

Ambient temperature operating range:

- 20 °C to 55 °C (- 4 °F to 131 °F).

Output current derating must be applied at ambient temperatures

> 40 °C (104 °F).

Cooling method: Forced convection

Maximum humidity: 95 % non-condensing at 40 °C (104 °F)

11.1.7 Storage

-40 °C (-40 °F) to +55 °C (131 °F) for long term storage, or to +70 °C (158 °F) for short term storage.

Storage time is 2 years.

Electrolytic capacitors in any electronic product have a storage period after which they require reforming or replacing.

The DC bus capacitors have a storage period of 10 years.

The low voltage capacitors on the control supplies typically have a storage period of 2 years and are thus the limiting factor.

Low voltage capacitors cannot be reformed due to their location in the circuit and thus may require replacing if the drive is stored for a period of 2 years or greater without power being applied.

It is therefore recommended that drives are powered up for a minimum of 1 hour after every 2 years of storage.

This process allows the drive to be stored for a further 2 years.

11.1.8 Altitude

Altitude range: 0 to 3,000 m (9,900 ft), subject to the following conditions:

1,000 m to 3,000 m (3,300 ft to 9,900 ft) above sea level: de-rate the maximum output current from the specified figure by 1 % per 100 m (330 ft) above 1,000 m (3,300 ft)

For example at 3,000 m (9,900 ft) the output current of the drive would have to be de-rated by 20 %.

11.1.9 IP / UL Rating

The drive is rated to IP20 pollution degree 2 (dry, non-conductive contamination only) (NEMA 1). However, it is possible to configure the drive to achieve IP65 rating (sizes 3 to 8) or IP55 rating (size 9, 10 and 11) (NEMA 12) at the rear of the heatsink for through-panel mounting (some current derating is required).

In order to achieve the high IP rating at the rear of the heatsink with drive sizes 3,4 and 5 it is necessary to seal a heatsink vent by installing the high IP insert.

The IP rating of a product is a measure of protection against ingress and contact to foreign bodies and water. It is stated as IP XX, where the two

0.1.			- 1	Getting	ъ.			ND/14 II O I				
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
i				the Motor								

digits (XX) indicate the degree of protection provided as shown in Table 11-8 *IP Rating degrees of protection* on page 440.

Table 11-8 IP Rating degrees of protection

		-			
Fir	rst digit	Se	econd digit		
	otection against foreign bodies d access to hazardous parts	Protection against ingress of w			
0	Non-protected	0 Non-protected			
1	Protected against solid foreign objects of 50 mm Ø and greater (back of a hand)	1	Protected against vertically falling water drops		
2	Protected against solid foreign objects of 12.5 mm Ø and greater (finger)	2	Protected against vertically falling water drops when enclosure tilted up to 15°		
3	Protected against solid foreign objects of 2.5 mm Ø and greater (tool)	3	Protected against spraying water		
4	Protected against solid foreign objects of 1.0 mm Ø and greater (wire)	4	Protected against splashing water		
5	Dust-protected (wire)	5	Protected against water jets		
6	Dust-tight (wire)	6	Protected against powerful water jets		
7	-	7	Protected against the effects of temporary immersion in water		
8	-	8	Protected against the effects of continuous immersion in water		

Table 11-9 UL enclosure ratings

UL rating	Description
Type 1	Enclosures are intended for indoor use, primarily to provide a degree of protection against limited amounts of falling dirt.
Type 12	Enclosures are intended for indoor use, primarily to provide a degree of protection against dust, falling dirt and dripping non-corrosive liquids.

11.1.10 Corrosive gasses

Concentrations of corrosive gases must not exceed the levels given in:

- Table A2 of EN 50178:1998
- · Class 3C2 of IEC 60721-3-3

This corresponds to the levels typical of urban areas with industrial activities and/or heavy traffic, but not in the immediate neighborhood of industrial sources with chemical emissions.

11.1.11 RoHS compliance

The drive meets EU directive 2011/65/EU for RoHS compliance.

11.1.12 Vibration

Maximum recommended continuous vibration level 0.14 g r.m.s. broadband 5 to 200 Hz.

Note

This is the limit for broad-band (random) vibration. Narrow-band vibration at this level which coincides with a structural resonance could result in premature failure.

Bump Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard: IEC 60068-2-29: Test Eb:

Severity: 8 g, 6 ms, half sine

No. of Bumps: 600 (100 in each direction of each axis)

Random Vibration Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard: IEC 60068-2-64: Test Fh:

Severity: $1.0 \text{ m}^2/\text{s}^3 (0.01 \text{ g}^2/\text{Hz}) \text{ ASD from 5 to 20 Hz}$

-3 dB/octave from 20 to 200 Hz

Duration: 30 minutes in each of 3 mutually perpendicular axes.

Sinusoidal Vibration Test

Testing in each of three mutually perpendicular axes in turn.

Referenced standard: IEC 60068-2-6: Test Fc:

Frequency range: 5 to 500 Hz

Severity: 3.5 mm peak displacement from 5 to 9 Hz

10 m/s² peak acceleration from 9 to 200 Hz 15 m/s² peak acceleration from 200 to 500 Hz

Sweep rate: 1 octave/minute

Duration: 15 minutes in each of 3 mutually perpendicular axes. EN 61800-5-1:2007, Section 5.2.6.4. referring to IEC 60068-2-6

Frequency range: 10 to 150 Hz Amplitude: 10 to 57 Hz at 0.075 mm pk 57 to 150 Hz at 1g p

Sweep rate: 1 octave/minute

Duration: 10 sweep cycles per axis in each of 3 mutually

perpendicular axes

11.1.13 Starts per hour

By electronic control: unlimited

By interrupting the AC supply: ≤ 20 (equally spaced)

11.1.14 Start up time

This is the time taken from the moment of applying power to the drive, to the drive being ready to run the motor:

Sizes 3 to 6 = 2.5 sSizes 7 to 12 = 5 s

11.1.15 Output frequency / speed range

In all operating modes (Open loop, RFC-A, RFC-S) the maximum output frequency is limited to 550 Hz.

11.1.16 Accuracy and resolution

Speed:

The absolute frequency and speed accuracy depends on the accuracy of the crystal used with the drive microprocessor. The accuracy of the crystal is 100 ppm, and so the absolute frequency/speed accuracy is 100 ppm (0.01 %) of the reference, when a preset speed is used. If an analog input is used the absolute accuracy is further limited by the absolute accuracy of the analog input.

The following data applies to the drive only; it does not include the performance of the source of the control signals.

Open loop resolution:

Preset frequency reference: 0.1 Hz Precision frequency reference: 0.001 Hz

Closed loop resolution

Preset speed reference: 0.1 rpm Precision speed reference: 0.001 rpm Analog input 1: 11 bit plus sign Analog input 2: 11 bit plus sign

Current:

The resolution of the current feedback is 10 bit plus sign.

Accuracy: typical 2 % worst case 5 %

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	Ť			•	-			

11.1.17 Acoustic noise

The heatsink fan generates the majority of the sound pressure level at 1 m produced by the drive. The heatsink fan on all drive sizes are a variable speed fan. The drive controls the speed at which the fan runs based on the temperature of the heatsink and the drive's thermal model system.

Table 11-10 gives the sound pressure level at 1 m produced by the drive for the heatsink fan running at the maximum and minimum speeds.

Table 11-10 Acoustic noise data

Size	Max speed dBA	Min speed dBA		
3	62.8	42.9		
4	62.6	45.8		
5	61.1	41.9		
6	65.3	48.2		
7	66.8	49.6		
8	67.9	49.8		
9A/9E/10E	75	52.6		
11E	82.5	58		

11.1.18 Overall dimensions

- H Height including surface mounting brackets
- W Width
- D Projection forward of panel when surface mounted
- F Projection forward of panel when through-panel mounted
- R Projection rear of panel when through-panel mounted

Table 11-11 Overall drive dimensions

Size			Dimension		
Size	Н	W	D	F	R
3	382 mm (15.04 in)	83 mm (3.27 in)	200 mm	134 mm	67 mm (2.64 in)
4	391 mm (15.39 in)	124 mm (4.88 in)	(7.87 in)	(5.28 in)	67 mm (2.64 in)
5	391 mm	143 mm	200 mm	135 mm	67 mm
	(15.39 in)	(5.63 in)	(7.87 in)	(5.32 in)	(2.64 in)
6	391 mm	210 mm	227 mm	131 mm	96 mm
	(15.39 in)	(8.27 in)	(8.94 in)	(5.16 in)	(3.78 in)
7	557 mm	270 mm	280 mm	187 mm	92 mm
	(21.93 in)	(10.63 in)	(11.02 in)	(7.36 in)	(3.62 in)
8	804 mm	310 mm	290 mm	190 mm	100 mm
	(31.65 in)	(12.21 in)	(11.42 in)	(7.48 in)	(3.94 in)
9A	1108 mm	310 mm	290 mm	190 mm	100 mm
	(43.61 in)	(12.21 in)	(11.42 in)	(7.48 in)	(3.94 in)
9E and	1069 mm	310 mm	290 mm	190 mm	99 mm
10E	(42.09 in)	(12.21 in)	(11.42 in)	(7.48 in)	(3.90 in)
11E	1242 mm	310 mm	313 mm	190 mm	122 mm
	(48.9 in)	(12.21 in)	(12.32 in)	(7.48 in)	(4.8 in)

11.1.19 Weights

Table 11-12 Overall drive weights

Size	Model	kg	lb
3	03400104, 03400123	4.5	9.9
3	All other variants	4.0	8.8
4		6.5	14.30
5		7.4	16.30
6		14	30.90
7	All variants	28	61.70
8	All variants	52	114.64
9A		66.5	146.6
9E/10E		46	101.40
11E		63	138.9

11.1.20 Input current, fuse and cable size ratings

The input current is affected by the supply voltage and impedance.

Typical input current

The values of typical input current are given to aid calculations for power flow and power loss.

The values of typical input current are stated for a balanced supply.

Maximum continuous input current

would be significantly lower.

The values of maximum continuous input current are given to aid the selection of cables and fuses. These values are stated for the worst case condition with the unusual combination of stiff supply with bad balance. The value stated for the maximum continuous input current would only be seen in one of the input phases. The current in the other two phases

The values of maximum input current are stated for a supply with a 2 % negative phase-sequence imbalance and rated at the maximum supply fault current given in Table 11-13.

Table 11-13 Supply fault current used to calculate maximum input currents

Model	Symmetrical fault level (kA)
All	100

Getting started / Safety Electrical installation Functional descriptions Technical data Product **UL** listing Mechanical Basic NV Media Card Advanced Optimization Diagnostics information Running the Motor information installation parameters Operation parameters information

Fuses

The AC supply to the drive must be installed with suitable protection against overload and short-circuits. Table 11-14 to Table 11-18 shows the recommended fuse ratings. Failure to observe this requirement will cause risk of fire.

Table 11-14 AC Input current and fuse ratings (200 V)

	Typical	Maximum	Maximum			Fus	se rating			
Model	input	continuous	overload input		IEC			UL / USA		
Model	current	input current	current	Nominal	Maximum		Nominal	Maximum	Class	
	Α	Α	Α	Α	Α	Class	Α	Α	Class	
03200066	8.2	10.4	15.8	16			20			
03200080	9.9	12.6	20.9	20	25	aC	20	25	CC, J or T*	
03200110	14	17	25	20	25	gG	25	25	CC, J of 1	
03200127	16	20	34	25			23			
04200180	17	20	30	25	25	aC	25	25	CC, J or T*	
04200250	23	28	41	32	32	gG	30	30	55, 0 51 1	
05200300	24	31	52	40	40	gG	40	40	CC, J or T*	
06200500	42	48	64	63	63	gG	60	60	CC, J or T*	
06200580	49	56	85	03	03	gO	60	- 00		
07200750	58	67	109	80	80		80	80		
07200940	73	84	135	100	100	gG	100	100	CC, J or T*	
07201170	91	105	149	125	125		125	125		
08201490	123	137	213	200	200	αD	200	200	HSJ	
08201800	149	166	243	200	200	gR	225	225	ПОЛ	
09202160	172	205	270	250	250	αD	250	250	HSJ	
09202660	228	260	319	315	315	gR	300	300	пол	
10203250	277	305	421	400	400	αP	400	400	HSJ	
10203600	333	361	494	450	450	gR	450	450	ПОЛ	

Table 11-15 AC Input current and fuse ratings (400 V)

	Typical	Maximum	Maximum			Fus	e rating			
Model	input	continuous	overload input		IEC			UL / USA		
Model	current	input current	current	Current	Nominal	Maximum		Nominal	Maximum	Class
	Α	Α	Α	Α	Α	Class	Α	Α	Class	
03400034	5	5	7							
03400045	6	7	9	10	10	10		10	10	
03400062	8	9	13			aC			CC, J or T*	
03400077	11	13	21			gG	20			
03400104	12	13	20	20	20			20		
03400123	14	16	25							
04400185	17	19	30	25	25	. gG	25	25	CC, J or T*	
04400240	22	24	35	32	32	gG	30	30	00,001	
05400300	26	29	52	40	40	gG	35	35	CC, J or T*	
06400380	32	36	67				40			
06400480	41	46	80	63	63	gG	50	60	CC, J or T*	
06400630	54	60	90				60			
07400790	67	74	124	100	100		80	80		
07400940	80	88	145	100	100	gG	100	100	CC, J or T*	
07401120	96	105	188	125	125		125	125		
08401550	137	155	267	250	250	αP	225	225	HSJ	
08401840	164	177	303	250	250	gR	223	223	нол	

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

	Typical	Maximum	Maximum			Fus	se rating		
Model	input	continuous	overload input		IEC			UL / USA	
Woder	current	input current	current	Nominal	Maximum	Class	Nominal	Maximum	Class
	Α	Α	Α	Α	Α	Class	Α	Α	Class
09402210	211	232	306	315	315	gR	300	300	HSJ
09402660	245	267	359	510	313	giv	350	350	1100
10403200	306	332	445	400	400	gR	400	400	HSJ
10403610	370	397	523	450	450	gix	450	450	1100
11404370	424	449	579	500	500				
11404870	455	492	613	300	300	gR	600	600	HSJ
11405070	502	539	752	630	630				

Table 11-16 AC Input current and fuse ratings (575 V)

	Typical	Maximum	Maximum			Fus	e rating		
Model	input	continuous	overload input		IEC			UL / USA	
wodei	current	input current	current	Nominal	Maximum	01	Nominal	Maximum	01
	Α	Α	Α	Α	Α	Class	Α	Α	Class
05500039	4	4	7	10			10	10	
05500061	6	7	9	10	20	gG	10	10	CC, J or T*
05500100	9	11	15	20			20	20	
06500120	12	13	22	20			20		
06500170	17	19	33	32	40		25	30	
06500220	22	24	41	40			30		CC T*
06500270	26	29	50	50		gG	35		CC, J or T*
06500340	33	37	63	30	63		40	50	
06500430	41	47	76	63			50		
07500530	41	45	75	50	50	~C	50	50	CC, J or T*
07500730	57	62	94	80	80	gG	80	80	CC, J 01 1
08500860	74	83	121	125	125	aD	100	100	HSJ
08501080	92	104	165	160	160	gR	150	150	пол
09501250	145	166	190	150	150	aD	150	150	HSJ
09501500	145	166	221	200	200	gR	175	175	пол
10502000	177	197	266	250	250	gR	250	250	HSJ
11502480	240	265	327						
11502880	285	310	395	400	400	gR	400	400	HSJ
11503150	313	338	473						

Table 11-17 400 V drive input current, fuse rating and cable size

	Maximum continuous	F	use (6 p	er drive)		Nomi	nal cable s	ize (Europ	ean) mm²	Nominal cable size (USA)			
Model	input current	II	IEC		JSA	Input 6 pulse	Input 12 pulse	Output	Cable type	Input 6 pulse	Input 12	Output	
	3 ph	Nom	Class	Nom	Clas	o puise	12 puise		(input & output)	puise	pulse		
	Α	Α	Olass	Α	s	mm²	mm²	mm²		kcmil	kcmil	kcmil	
12404800T	720	550		400		4 x 120	2 x 120	3 x 150		4 x 3/0 AWG (85 mm ²)	2 x 3/0 AWG (85 mm ²)	4 x 1/0 AWG (53.5 mm ²)	
12405660T	777	550	aR	450	gR	4 x 150	2 x 150	4 x 120	XLPE/EPR	4 x 3/0 AWG (85 mm ²)	2 x 3/0 AWG (85 mm ²)	4 x 2/0 AWG (67.4 mm ²)	
12406600T	845	550	aix	500	giv	4 X 150	2 X 130	3 x 185	ALF L/LF IX	4 x 4/0 AWG (107.2 mm ²)	2 x 4/0 AWG (107.2 mm ²)	4 x 3/0 AWG (85 mm ²)	
12407200T	995	550		550		4 x 185	2 x 185	4 x 185		4 x 250 Kcmil (127.2 mm ²)	2 x 250 Kcmil (127.2 mm ²)	4 x 4/0 AWG 107.2 mm ²)	

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		-						

Table 11-18 AC Input current and fuse ratings (690 V)

		Maximum	Maximum			Fuse	rating		
Model	Typical input current	continuous	overload input		IEC			UL / USA	
wodei	0	input current	current	Nominal	Maximum	Class	Nominal	Maximum	Class
	Α	Α	Α	Α	Α	Class	Α	Α	Class
07600230	18	20	32	25			25		
07600300	23	26	41	32	50		30	50	
07600360	28	31	49	40	- 50	aC	35	30	CC, J
07600460	36	39	65	50		gG	50		or T*
07600520	40	44	75	30	80		30	80	
07600730	57	62	92	80	- 00		80	00	
08600860	74	83	121	125	125	gR	100	100	HSJ
08601080	92	104	165	160	160	giv	150	150	1100
09601250	124	149	194	150	150	gR	150	150	HSJ
09601550	145	171	226	200	200	gix	200	200	1100
10601720	180	202	268	225	225	gR	250	250	HSJ
10601970	202	225	313	250	250	gR	250	250	1100
11602250	225	256	379						
11602750	217	302	425	400	400	gR	400	400	HSJ
11603050	298	329	465						

^{*} These fuses are fast acting.

Note

Ensure cables used suit local wiring regulations.

The following nominal cable sizes are only a guide. The mounting and grouping of cables affects their current-carrying capacity, in some cases smaller cables may be acceptable but in other cases a larger cable is required to avoid excessive temperature or voltage drop. Refer to local wiring regulations for the correct size of cables.

Table 11-19 Cable ratings (200 V)

			Cable siz mn	` '					ize (UL) WG	
Model		Input			Output		In	put	Out	tput
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum
03200066	4.5			1.5			14		4.4	
03200080	1.5	4	B2	1.5	4	B2	14	10	14	10
03200110	4	4	DZ	4	4	D2	12	10	10	10
03200127	4			4			12		12	
04200180	6	8	B2	6	8	B2	10	8	10	8
04200250	8	0	DZ	8	0	D2	8	0	8	0
05200300	10	10	B2	10	10	B2	8	8	8	8
06200500	16	25	B2	16	25	B2	4	3	4	3
06200580	25	25	DZ	25	25	DZ	3	3	3	3
07200750	35			35			2		2	
07200940	33	70	B2	33	70	B2	1	1/0	1	1/0
07201170	70			70			1/0		1/0	
08201490	95	2 x 70	B2	95	2 x 70	B2	3/0	2 x 1	3/0	2 x 1
08201800	2 x 70	2 X 10	DZ	2 x 70	2 x 7 0	DZ	2 x 1	2 7 1	2 x 1	2 / 1
09202160	2 x 70	2 x 185	B1	2 x 95	2 x 150	B2	2 x 2/0	2 x 500	2 x 2/0	2 x 350
09202660	2 x 95	2 1 100	וט	2 x 120	2 X 130	DZ	2 x 4/0	2 X 300	2 x 4/0	2 X 330
10203250	2 x 120	2 x 185	B1	2 x 120	2 x 150	С	2 x 250	2 x 500	2 x 250	2 x 350
10203600	2 x 150	2 X 103	С	2 x 120	2 X 130	C	2 x 300	2 x 300	2 x 300	2 X 330

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor	Ť			•	-			

Table 11-20 Cable ratings (400 V)

			Cable siz mr						ize (UL) WG	
Model		Input			Output		In	put	Out	tput
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum
03400034							18		18	
03400045	1.5			1.5			16		16	
03400062		4	B2		4	B2		10		10
03400077		4	62		4	DZ	14	10	14	10
03400104	2.5			2.5						
03400123							12		12	
04400185	4	6	B2	4	6	B2	10	8	10	8
04400240	6	0	DZ	6	U	DZ	8	0	8	0
05400300	6	6	B2	6	6	B2	8	8	8	8
06400380	10			10			6		6	
06400480	16	25	B2	16	25	B2	4	3	4	3
06400630	25			25			3		3	
07400790	35			35			1		1	
07400940	50	70	B2	50	70	B2	2	1/0	2	1/0
07401120	70			70			1/0		1/0	
08401550	2 x 50	2 x 70	B2	2 x 50	2 x 70	B2	2 x 1	2 x 1/0	2 x 1	2 x 1/0
08401840	2 x 70	2 X 10	DZ.	2 x 70	2 × 10	DZ	2 x 1/0	2 X 1/0	2 x 1/0	2 X 1/0
09402210	2 x 70	2 x 185	B1	2 x 95	2 x 150	B2	2 x 3/0	2 x 500	2 x 2/0	2 x 350
09402660	2 x 95	2 X 100	ы	2 x 120	2 X 100	DZ	2 x 4/0	2 X 300	2 x 4/0	2 X 000
10403200	2 x 120	2 x 185	С	2 x 120	2 x 150	С	2 x 300	2 x 500	2 x 250	2 x 350
10403610	2 x 150	2 X 100		2 x 150	2 X 100		2 x 350	2 X 000	2 x 300	2 7 000
11404370				2 x 185	2 x 185		4 x	3/0		
11404870 11405070	4 :	x 95	С	2 x 240	2 x 240	С	4 x	: 4/0	2 x	400

Table 11-21 Cable ratings (575 V)

			Cable siz mr						ize (UL) NG	
Model		Input			Output		In	put	Ou	tput
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum
05500039	0.75			0.75			16		16	
05500061	1	1.5	B2	1	1.5	B2	14	16	14	16
05500100	1.5			1.5	1		14		14	1
06500120	2.5			2.5			14		14	
06500170	4			4	1		10		10	1
06500220	6	25	B2	6	25	B2	10	3	10	3
06500270	40	25	B2		25	B2	8	3	8	3
06500340	10			10			6		6	
06500430	16						6		6	
07500530	16	0.5	B2	16	0.5	DO.	4	2	4	3
07500730	25	25	B2	25	- 25	B2	3	3	3	3
08500860	35	50	B2	35	- 50	B2	1	1	1	1
08501080	50	50	DZ	50	50	D2	ı	I	ı	
09501250	2 x 70	2 x 185	B2	2 x 35	2 x 150	B2	2 x 1	2 x 500	2 x 3	2 x 350
09501500	2 X 70	2 X 100	DZ	2 x 50	2 X 130	DZ	2 X I	2 X 300	2 x 1	2 X 350
10502000	2 x 70	2 x 185	B2	2 x 70	2 x 150	B2	2 x 2/0	2 x 500	2 x 2/0	2 x 350
11502480	2	x 70		2)	k 70			2 x	3/0	•
11502880	2:	x 95	С	2)	k 95	С		2 x	4/0	
11503150	2 x	(120		2 x	120			2 x	250	

Table 11-22 Cable ratings (690 V)

			Cable siz mr	` '					ize (UL) NG	
Model		Input			Output		In	put	Ou	tput
	Nominal	Maximum	Installation method	Nominal	Maximum	Installation method	Nominal	Maximum	Nominal	Maximum
07600230							8		8	
07600300	10			10			6		6	
07600360		25	B2		25	B2	6	3	6	3
07600460	16	25	D2	16	25	62	4	3	4	3
07600520	16			16	1		4		4	
07600730	25			25	1		3		3	
08600860	50	70	B2	50	70	D0	2	1/0	2	1/0
08601080	70	10	DZ	70	10	B2	1/0	1/0	1/0	1/0
09601250	2 x 50	2 x 185	B2	2 x 35	2 x 150	B2	2 x 1	2 x 500	2 x 3	2 x 350
09601550	2 x 70	2 X 100	DZ	2 x 50	2 X 130	DZ	2 x 1/0	2 X 300	2 x 1	2 X 330
10601720	2 x 70	2 x 185	B2	2 x 70	2 x 150	B2	2 x 2/0	2 x 500	2 x 1/0	2 x 350
10601970	2 x 95	2 X 103	52	2 X 10	2 X 130	DZ	2 x 3/0	2 X 300	2 x 2/0	2 x 330
11602250	2	x 70		2 :	x 70			2 x	3/0	
11602750	2	x 95	С	2 ,	x 95	С		2 x	4/0	
11603050	1 4	X 30		2 /	x 30			2 x	250	

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor		·			·			

11.1.21 Protective ground cable ratings

Table 11-23 Protective ground cable ratings

Input phase conductor size	Minimum ground conductor size
≤ 10 mm²	Either 10 mm² or two conductors of the same cross-sectional area as the input phase conductor.
> 10 mm² and ≤ 16 mm²	The same cross-sectional area as the input phase conductor
> 16 mm² and ≤ 35 mm²	16 mm²
> 35 mm ²	Half of the cross-sectional area of the input phase conductor

11.1.22 Maximum motor cable lengths

Table 11-24 Maximum motor cable lengths (200 V drives)

			200 V Nominal A	C supply voltage				
Madal	N	laximum perm	issible motor cable	e length for each of	the following sw	itching frequenc	ies	
Model	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz	
03200066								
03200080		10	0 m (330 ft)			FO (40F #)	27 (420 ft)	
03200110		130 m (425 f	t)	75 m (245 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
03200127	200 m	200 m (660 ft)		100 m (330 ft)				
04200180	200 m	200 m (660 ft)		100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
04200250	200 111 (000 11)		150 m (490 ft)	100 111 (330 11)	75 III (245 II)	50 III (105 II)	37 111 (120 11)	
05200300	200 m	(660 ft)	150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
06200500	200 m	200 m (660 ft)		100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
06200580	200 111	(000 11)	130 111 (430 11)	150 m (490 ft) 100 m (330 ft)		30 III (103 II)	37 111 (120 11)	
07200750					93 m (305 ft)			
07200940	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)		62 m (203 ft)	46 m (151 ft)	
07201170								
08201490	250 m	(000 ft)	107 m (614 ft)	105 m (410 ft)	02 m (205 ft)	60 m (202 ft)	46 m (151 ft)	
08201800	250 m (820 ft)		187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)	
09202160	250 m (820 ft)		187 m (614 ft)	405 (440.5)	93 m (305 ft)	00 ··· (000 ft)	46 m (151 ft)	
09202660	250 111	(020 11)	107 111 (014 11)	125 m (410 ft)	95 111 (305 11)	62 m (203 ft)	40 111 (151 11)	
10203250	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)	
10203600] 230 111	(020 11)	107 111 (014 11)	123 111 (410 11)	95 111 (303 11)	02 111 (203 11)	40 111 (131 11)	

Table 11-25 Maximum motor cable lengths (400 V drives)

			400 V Nominal AC s	supply voltage				
M1-1	Ма	ximum permi	ssible motor cable l	ength for each of	the following sv	vitching frequen	cies	
Model	2 kHz	2 kHz 3 kHz 4 kHz 6 kHz 8 kHz		8 kHz	12 kHz	16 kHz		
03400034			65 m (210 ft)	•				
03400045		100) m (330 ft)			1		
03400062		130 m (425	ft)			50 m (165 ft)		
03400077		·		, ,	75 m (245 ft)		37 m (120 ft)	
03400104	200 m	(660 ft)	150 m (490 ft)	100 m (330 ft)	, ,			
03400123	-	200 111 (000 11)						
04400185								
04400240	200 m (660 ft)		150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
05400300	200 m (660 ft)		150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
06400380								
06400480	200 m	(660 ft)	150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft)	
06400630								
07400790								
07400940	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)	
07401120								
08401550	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)	
08401840		,	, ,	, ,	,	,	, ,	
09402210	250 m (820 ft)		187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)	
09402660			, ,	` /	` ′	` ′	` '	
10403200	250 m (820 ft)		187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)	
10403610		,	, ,	` /	` '	` '	` '	
11404370								
11404870	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)			
11405070								

Table 11-26 Maximum motor cable lengths (575 V drives)

		5	75 V Nominal AC s	upply voltage							
Model	Maximum permissible motor cable length for each of the following switching frequencies										
Model	2 kHz	3 kHz	4 kHz	6 kHz	6 kHz 8 kHz		16 kHz				
05500039											
05500061	200 m	(660 ft)	150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 ft				
05500100											
06500120											
06500170											
06500220	200 m	(660 ft)	150 m (490 ft)	100 m (330 ft)	75 m (245 ft)	50 m (165 ft)	37 m (120 f				
06500270	200 m (660 ft)		130 111 (490 11)	100 111 (000 11)	73111 (24311)	30 111 (103 11)	07 III (120 II)				
06500340											
06500430											
07500530	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151				
07500730	230 111	(020 11)		123 111 (410 11)	95 111 (303 11)	02 111 (203 11)	46 m (151 ft)				
08500860	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft				
08501080	230 111	(020 11)	107 111 (014 11)	123 111 (410 11)	95 111 (303 11)		46 m (151 ft)				
09501250	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 f				
09501500	250 m (820 ft)		107 111 (01411)	123 111 (410 11)	33 III (303 It)						
10502000	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 f				
11502480											
11502880	250 m	(820 ft)	187 m (614 ft)								
11503150	, ,										

Pump Drive F600 User Guide

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
--------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Table 11-27 Maximum motor cable lengths (690 V drives)

		69	90 V Nominal AC s	upply voltage							
Model	Maximum permissible motor cable length for each of the following switching frequencies										
Model	2 kHz	3 kHz	4 kHz	6 kHz	8 kHz	12 kHz	16 kHz				
07600230											
07600300				125 m (410 ft) 93 m (305 ft)							
07600360	250 m	(820 ft)	187 m (614 ft)		93 m (305 ft)	62 m (203 ft)	46 m (151 ft)				
07600460	250 111	250 m (820 ft)		123 111 (410 11)	33 111 (303 11)	02 111 (203 11)	40 111 (151 11)				
07600520											
07600730											
08600860	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)				
08601080	230 111	(820 11)	107 111 (014 11)				46 111 (151 11.)				
09601250	250 m	(820 ft)	187 m (614 ft)	125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)				
09601550	230 111	(620 11)	107 111 (014 11)	123 111 (410 11)	93 111 (303 11)	02 111 (203 11)	40 111 (131 11)				
10601720	250 m	250 (020 f)		125 m (410 ft)	93 m (305 ft)	62 m (203 ft)	46 m (151 ft)				
10601970	250 m (820 ft)		187 m (614 ft)	123 111 (4 10 11)	95 111 (305 11)	02 111 (203 11)	46 111 (151 11)				
11602250											
11602750	250 m	250 m (820 ft)									
11603050	. ,										

[·] Cable lengths in excess of the specified values may be used only when special techniques are adopted; refer to the supplier of the drive.

[•] The default switching frequency is 3 kHz for Open-loop and RFC-A and 6 kHz for RFC-S mode.

The maximum cable length is reduced from that shown in section 4.9.1 *Cable types and lengths* on page 117 if high capacitance or reduced diameter motor cables are used. For further information, refer to section 4.9.2 *High-capacitance / reduced diameter cables* on page 118.

Minimum resistances and power ratings for the braking resistor at 40 °C (104 °F)

Table 11-28 Braking resistor resistance and power rating (200 V)

Model	Minimum resistance*	Instantaneous power rating	Continuous power rating
	Ω kW		kW
03200066			0.75
03200080	22	7.7	1.1
03200110	22	1.1	1.5
03200127			2.2
04200180	18	9.4	3
04200250	10	5.4	4
05200300	19	8.9	5.5
06200500	10	16.9	7.5
06200580	10	10.9	11
07200750	4.5	37.6	15
07200940	7.0	01.0	18.5
07201170	4.5	37.6	22
08201490	2.3	73.5	30
08201800	2.0	7 0.0	37
09202160 (9A)	2	84.5	45
09202660 (9A)	2	04.5	55
09202160 (9E)	1.4	120.8	45
09202660(9E)	1.4	120.0	55
10203250	1.7	99.5	75
10203600	1.7	00.0	90

Table 11-29 Braking resistor resistance and power rating (400 V)

Table 11-29 Diam	any resistor les	sistance and powe	1 1ating (400 V)
Model	Minimum resistance*	Instantaneous power rating	Continuous power rating
	Ω	kW	kW
03400034			0.75
03400045	74	9.2	1.1
03400062	74	9.2	1.5
03400077			2.2
03400104	50	13.6	3
03400123	30	13.0	4
04400185	37	18.3	5.5
04400240	37	10.5	7.5
05400300	40	16.9	11
06400380			15
06400480	20	33.8	18.5
06400630			22
07400790			30
07400940	7.5	90.2	37
07401120			45
08401550	6.3	107.4	55
08401840	0.5	107.4	75
09402210 (9A)	3.6	187.8	90
09402660 (9A)	0.0	107.0	110
09402210 (9E)	2.6	260	90
09402660 (9E)	2.0	200	110
10403200	3.1	218.1	132
10403610	0.1	210.1	160
11404370	1.83	369.4	185
11404870	1.2	563.4	200
11405070	1.2	555.1	250

Table 11-30 Braking resistor resistance and power rating (575 V)

Model	Minimum resistance*	Instantaneous power rating	Continuous power rating
	Ω	kW	kW
05500039			1.5
05500061	80	12.1	2.2
05500100			4
06500120			5.5
06500170			7.5
06500220	15	64.1	11
06500270	10	04.1	15
06500340			18.5
06500430			22
07500530	11	87.4	30
07500730	""	07.4	37
08500860	5.5	174.8	45
08501080	0.0	174.0	55
09501250 (9A)	5.1	188.5	75
09501500(9A)	5.1	100.5	90
09501250 (9E)	3.3	291.3	75
09501500 (9E)	J.3	291.3	90
10502000	3.3	291.3	110
11502480			150
11502880	1.83	525.2	185
11503150			225

Table 11-31 Braking resistor resistance and power rating (690 V)

Model	Minimum resistance*	Instantaneous power rating	Continuous power rating			
	Ω	Ω kW				
07600230			15			
07600300			18.5			
07600360	13	107.3	22			
07600460	13	107.3	30			
07600520						
07600730			45			
08600860	5.5	253.5	55			
08601080	3.3	200.0	75			
09601250(9A)	6.5	214.5	90			
09601500(9A)	0.5	214.5	110			
09601250(9E)	4.2	224.0	90			
09601500 (9E)	4.2	331.9	110			
10601720	4.2	331.9	132			
10601970	3.8	366.8	160			
11602250			185			
11602750	2.2	633.6	200			
11603050			250			

^{*} Resistor tolerance: ±10 %

Table 11-32 Frame 12 Minimum resistance values and peak power rating for the braking resistor at 40 °C (104 °F)

Voltage range	Minimum resistance* Ω	Instantaneous Power Rating (kW)	Average Power for 60 s (kW)
400 V	2.6	234	209

^{*} Resistor tolerance: ±10 %

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

11.1.23 Torque settings

Table 11-33 Drive control and relay terminal data

Model	Connection type	Torque setting
All	Plug-in terminal block	0.5 Nm (4.4 lb in)

Table 11-34 Drive power terminal data

Pump	AC and mot	or terminals	DC ter	minals	Ground t	erminals	
DrivePump Drive F600 frame size	Recommended	Maximum	Recommended	Maximum	Recommended	Maximum	
3 and 4	Plug-in terminal block		T20 To	rx (M4)	T20 Torx (M4) / M	4 Nut (7 mm AF)	
3 anu 4	0.7 Nm (6.2 lb in)	0.8 Nm (7.1 lb in)	2.0 Nm (17.7 lb in)	2.5 Nm (22.1 lb in)	2.0 Nm (17.7 lb in)	2.5 Nm (22.1 lb in)	
5	Plug-in terminal block		T20 Torx (M4) / M	4 Nut (7 mm AF)	M5 Nut (8 mm AF)		
Ü	1.5 Nm (13.3 lb in)	1.8 Nm (15.9 lb in)	1.5 Nm (13.3 lb in)	2.5 Nm (22.1 lb in)	2.0 Nm (17.7 lb in)	5.0 Nm (44.3 lb in)	
6	M6 Nut (1	0 mm AF)	M6 Nut (1	0 mm AF)	M6 Nut (1	0 mm AF)	
Ü	6.0 Nm (53.1 lb in)	8.0 N m (70.8 lb in)	6.0 Nm (53.1 lb in)	8.0 Nm (70.8 lb in)	6.0 Nm (53.1 lb in)	8.0 Nm (70.8 lb in)	
7	M8 Nut (1	3 mm AF)	M8 Nut (1	3 mm AF)	M8 Nut (1	3 mm AF)	
,	12 Nm (106.2 lb in)	14 Nm (123.9 lb in)	12 Nm (106.2 lb in)	14 Nm (123.9 lb in)	12 Nm (106.2 lb in)	14 Nm (123.9 lb in)	
8 to 11	M10 Nut (17 mm AF)	M10 Nut (17 mm AF)	M10 Nut (17 mm AF)		
0 10 11	15 Nm (132.8 lb in)	20 Nm (177 lb in)	15 Nm (132.8 lb in)	20 Nm (177 lb in)	15 Nm (132.8 lb in)	20 Nm (177 lb in)	

Table 11-35 Plug-in terminal block maximum cable sizes

Model size	Terminal block description	Max cable size
All	11 way control connectors	1.5 mm² (16 AWG)
All	2 way relay connector	2.5 mm² (12 AWG)
3	6 way AC power connector	6 mm² (10 AWG)
4	— 0 way AC power connector	Olilli (10 AWG)
5	3 way AC power connector 3 way motor connector	8 mm² (8 AWG)
6		
7		
8	2 way low voltage power 24 V supply connector	1.5 mm² (16 AWG)
9A/9E		
10E/11E		

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

11.1.24 Electromagnetic compatibility (EMC)

This is a summary of the EMC performance of the drive. For full details, refer to the *EMC Data Sheet* which can be obtained from the supplier of the drive.

Table 11-36 Immunity compliance

Standard	Type of immunity	Test specification	Application	Level
IEC61000-4-2 EN61000-4-2	Electrostatic discharge	6 kV contact discharge 8 kV air discharge	Module enclosure	Level 3 (industrial)
IEC61000-4-3 EN61000-4-3	Radio frequency radiated field	10 V/m prior to modulation 80 - 1000 MHz 80 % AM (1 kHz) modulation	Module enclosure	Level 3 (industrial)
IEC61000-4-4	Fast transient burst	5/50 ns 2 kV transient at 5 kHz repetition frequency via coupling clamp	Control lines	Level 4 (industrial harsh)
EN61000-4-4	rasi ilansieni puisi	5/50 ns 2 kV transient at 5 kHz repetition frequency by direct injection	Power lines	Level 3 (industrial)
		Common mode 4 kV 1.2/50 μs waveshape	AC supply lines: line to ground	Level 4
IEC61000-4-5 EN61000-4-5	Surges	Differential mode 2 kV 1.2/50 μs waveshape	AC supply lines: line to line	Level 3
		Lines to ground	Signal ports to ground ¹	Level 2
IEC61000-4-6 EN61000-4-6	Conducted radio frequency	10V prior to modulation 0.15 - 80 MHz 80 % AM (1 kHz) modulation	Control and power lines	Level 3 (industrial)
IEC61000-4-11 EN61000-4-11	Voltage dips and interruptions	-30 % 10 ms +60 % 100 ms -60 % 1 s <-95 % 5 s	AC power ports	
IEC61000-6-1 EN61000-6-1:2007	Generic immunity star industrial environment	dard for the residential, commercial and light -		Complies
IEC61000-6-2 EN61000-6-2:2005	Generic immunity star	ndard for the industrial environment		Complies
IEC61800-3 EN61800-3:2004	Product standard for a (immunity requirement	djustable speed power drive systems ts)	Meets immunity requirements	ents for first and

¹ See section Surge immunity of control circuits - long cables and connections outside a building on page 135 for control ports for possible requirements regarding grounding and external surge protection

Emission

The drive contains an in-built filter for basic emission control. An additional optional external filter provides further reduction of emission. The requirements of the following standards are met, depending on the motor cable length and switching frequency.

Table 11-37 Size 3 emission compliance (200 V drives)

Motor cable	Switching Frequency (kHz)									
length (m)	2	3	4	6	8	12	16			
Using internal filter:										
0 – 2		C3 C4								
Using internal f	ilter and f	errite ring	(2 turns	s).						
0 – 10		C3				C4				
10-20		C3			C	:4				
Using external	filter:	lter:								
0 – 20	C1	C1	C2	C2	C2	C2	C2			
20 – 100	C2	C2	C3	C3	C3	C3	C3			

Table 11-38 Size 3 emission compliance (400 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal f	ilter:								
0 – 5		C3			С	4			
Using internal f	ilter and fe	errite rin	g (2 turr	ıs):					
0 – 10			C3			С	:4		
Using external	filter:								
0 – 20	C1	C1	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

452 Pump Drive F600 User Guide

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
--------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------

Table 11-39 Size 4 emission compliance (200 V drives)

Motor cable	Switching Frequency (kHz)									
length (m)	2	3	4	6	8	12	16			
Using internal filter:										
0 – 2		C3 C4								
Using internal f	ilter and fe	errite ring	g (2 turn	s):						
0 – 4	C	3			C4					
Using external	Using external filter:									
0 – 20	C1	C1	C2	C2	C2	C2	C2			
20 – 100	C2	C2	C3	C3	C3	C3	C3			

Table 11-40 Size 4 emission compliance (400 V drives)

Motor cable		Switching Frequency (kHz)									
length (m)	2	3	4	6 8 12			16				
Using internal f	Using internal filter:										
0 – 4		C3 C4									
Using internal f	ilter and fe	errite rin	g (2 turr	ıs):							
0 – 10	C	3			C4						
Using external	filter:										
0 – 20	C1	C1	C2	C2	C2	C2	C2				
20 – 100	C2	C2	C3	C3	C3	C3	C3				

Table 11-41 Size 5 emission compliance (200 V drives)

Motor cable		Swi	tching l	Frequer	ncy (kH	z)				
length (m)	2	3	4	6	8	12	16			
Using internal filter:										
0 – 2	0 – 2 C3 C4									
Using internal	filter and	ter and ferrite ring (1 turn – no advantage to 2 turns):								
0 – 2			C3 C4							
0 – 5		C3			С	4				
0 – 7	(C3			C4					
0 – 10	C3			C4	1					
Using external	filter:	Iter:								
0 – 20	C1	C1	C2	C2	C2	C2	C2			
20 – 100	C2	C2	C3	C3	C3	C3	C3			
20 100	ŰŽ.	J.		- 00		- 00	-00			

Table 11-42 Size 5 emission compliance (400 V drives)

Motor cable		Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16			
Using internal filter:										
0 – 4		C3 C4								
0 – 10	C3			С	4					
No advantage t	o using f	errite rin	g							
Using external	filter:									
0 – 20	C1	C1 C1 C2 C2 C2 C2 C2								
20 – 100	C2	C2	C3	C3	C3	C3	C3			

Table 11-43 Size 5 emission compliance (575 V drives)

Motor cable		Swi	tching l	requer	ncy (kH	z)		
length (m)	2	3	4	6	8	12	16	
Using internal f	ilter:							
-	C4							
Using internal f	ilter and	ferrite ring	g (2 turr	ıs):				
0 – 4		C3			С	:4		
0 – 2			C3			C	:4	
Using external	filter:	Iter:						
0 – 20	C1	C1	C2	C2	C2	C2	C2	
20 – 100	C2	C2	C3	C3	C3	C3	C3	

Table 11-44 Size 6 emission compliance (200 V drives)

Motor cable		Switching Frequency (kHz)								
length (m)	2 3 4 6 8					12	16			
Using internal f	ilter:	ter:								
0 – 2	C3		C4							
Using internal f	ilter and	er and ferrite ring (1 turn – no advantage to 2 turns):								
0 – 2			C3			С	4			
0 – 5		C3			С	4				
0 – 7	С	3			C4					
0 – 10	C3			С	:4					
Using external	filter:	Iter:								
0 – 20	C1	C1	C2	C2	C2	C2	C2			
20 – 100	C2	C2	C3	C3	C3	C3	C3			

Table 11-45 Size 6 emission compliance (400 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	3 4 6 8 12 1						
Using internal f	ilter:								
0 – 4		C3	C3 C4						
0 – 10	C3			С	:4				
No advantage t	to using f	errite rin	ıg						
Using external	filter:								
0 – 20	C1	C1 C2 C2 C2 C2 C2							
20 – 100	C2	C2	C2 C3 C3 C3 C3 C3						

Table 11-46 Size 6 emission compliance (575 V drives)

Motor cable		Switching Frequency (kHz)									
length (m)	2	3	12	16							
Using internal f	Using internal filter:										
-	C4										
Using internal f	ilter and ferrite ring (2 turns):										
0 – 4		C3			C	4					
0 – 2			C3			C4	4				
Using external	filter:	ïlter:									
0 – 20	C1	C1	C2	C2	C2	C2	C2				
20 – 100	C2	C2	C3	C3	C3	C3	C3				

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor					-			

Table 11-47 Size 7 emission compliance (200 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter	:								
0 – 100	C4	C4	C4	C4	C4	C4	C4		
Using external filte	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-48 Size 7 emission compliance (400 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter	:								
0 – 100	C4	C4	C4	C4	C4	C4	C4		
Using external filte	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-49 Size 7 emission compliance (575 and 690 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter	:								
0 – 100	C4	C4	C4	C4	C4	C4	C4		
Using external filter	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-50 Size 8 emission compliance (200 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter	:								
0 – 10	C3	C3	C3	C3	C3	C3	C3		
Using external filte	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-51 Size 8 emission compliance (400 V drives)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter	:								
0 – 10	C3	C3	C3	C3	C3	C3	C3		
Using external filte	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-52 Size 8 emission compliance (575 V and 690 V drives)

			•	•					
Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter:									
0 – 100	C4	C4	C4	C4	C4	C4	C4		
Using external filte	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-53 Size 9E and 10E emission compliance (all voltages)

Motor cable	Switching Frequency (kHz)								
length (m)	2	3	4	6	8	12	16		
Using internal filter	:								
0 – 100	C3	C3	C3	C3	C3	C3	C3		
Using external filte	r:								
0 – 20	C2	C2	C2	C2	C2	C2	C2		
20 – 100	C2	C2	C3	C3	C3	C3	C3		

Table 11-54 Size 11 emission compliance (all voltages)

Motor cable		cy (kHz)			
length (m)	2	3	4	6	8
Using internal filter	r:				
0 – 50	C3	C3	C3	C3	C3
100	C3	C3	C3	C3	C4
Using external filte	er:				
20	C2	C2	C2	C2	C2
100	C2	C2	C3	C3	C3

Key (shown in decreasing order of permitted emission level):

EN 61800-3 second environment, restricted distribution (Additional measures may be required to prevent interference)

E2U EN 61800-3 second environment, unrestricted distribution

Industrial generic standard EN 61000-6-4

EN 61800-3 first environment restricted distribution (The following caution is required by EN 61800-3)

This is a product of the restricted distribution class according to IEC 61800-3. In a residential environment this product may cause radio interference in which case the user may be **CAUTION** required to take adequate measures.

R Residential generic standard EN 61000-6-3 EN 61800-3 first environment unrestricted distribution

EN 61800-3 defines the following:

- The first environment is one that includes residential premises. It also includes establishments directly connected without intermediate transformers to a low-voltage power supply network which supplies buildings used for residential purposes.
- The second environment is one that includes all establishments other than those directly connected to a low-voltage power supply network which supplies buildings used for residential purposes.
- Restricted distribution is defined as a mode of sales distribution in which the manufacturer restricts the supply of equipment to suppliers, customers or users who separately or jointly have technical competence in the EMC requirements of the application of drives.

EN 61800-3:2004+A1:2012

The 2004 revision of the standard uses different terminology to align the requirements of the standard better with the EC EMC Directive.

Safety	Product	Mechanical	Electrical	Getting started /	Basic	Functional	Optimization	NV Media Card		Technical	Diagnostics	UL listing
information	information	installation	installation	9	parameters	descriptions		Operation	parameters	data	g	information
				the Motor								

Power drive systems are categorized C1 to C4:

Category	Definition	Corresponding code used above
C1	Intended for use in the first or second environments	R
C2	Not a plug-in or movable device, and intended for use in the first environment only when installed by a professional, or in the second environment	I
C3	Intended for use in the second environment, not the first environment	E2U
C4	Intended for use in the second environment in a system rated at over 400 A, or in a complex system	E2R

Note that category 4 is more restrictive than E2R, since the rated current of the PDS must exceed 400 A or the supply voltage exceed 1000 V, for the complete PDS.

11.2 Optional external EMC filters

Table 11-55 EMC filter cross reference

Model	CT part number					
200 V						
03200066 to 03200127	4200-3230					
04200180 to 04200250	4200-0272					
05200300	4200-0312					
06200500 to 06200580	4200-2300					
07200750 to 07201170	4200-1132					
08201490 to 08201800	4200-1972					
09202160 to 09202660 (9A)	4200-3021					
09202160 to 09202660 (9E)	4200-4460					
10203250 to 10203600	4200-4460					
400 V						
03400034 to 03400123	4200-3480					
04400185 to 04400240	4200-0252					
05400300	4200-0402					
06400380 to 06400630	4200-4800					
07400790 to 07401120	4200-1132					
08401550 to 08401840	4200-1972					
09402210 to 09402660 (9A)	4200-3021					
09402210 to 09402660 (9E)	4200-4460					
10403200 to 10403610	4200-4460					
11404370 to 11405070	4200-0400					
575 V						
05500039 to 05500100	4200-0122					
06500120 to 06500430	4200-3690					
07500530 to 07500730	4200-0672					
08500860 to 08501080	4200-1662					
09501250 to 09501500 (9A)	4200-1660					
09501250 to 09501500 (9E)	4200-2210					
10502000	4200-2210					
11502480 to 11503150	4200-0690					
690 V						
07600230 to 07600730	4200-0672					
08600860 to 08601080	4200-1662					
09601250 to 09601550 (9A)	4200-1660					
09601250 to 09601550 (9E)	4200-2210					
10601720 to 10601970	4200-2210					
11602250 to 11603050	4200-0690					

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
				the Motor								

11.2.1 EMC filter ratings

Table 11-56 Optional external EMC filter details

	-	continuous	Voltage	rating			ssipation	Ground lea	ıkage	
	cur	rent				at rated	current	Balanced supply		Discharge
CT part number	@ 40 °C (104 °F)	@ 50 °C (122 °F)	IEC	UL	IP rating	@ 40 °C (104 °F)	@ 50 °C (122 °F)	phase-to-phase and phase-to-ground	Worst case	resistors
	Α	Α	٧	٧		W	w	mA	mA	MΩ
4200-3230	20	18.5	250	300		20	17	2.4	60	
4200-0272	27	24.8	250	300		33	28	6.8	137	
4200-0312	31	28.5	250	300		20	17	2.0	80	
4200-2300	55	51	250	300		41	35	4.2	69	
4200-3480	16	15	528	600	20	13	11	10.7	151	1.68
4200-0252	25	23	528	600	20	28	24	11.1	182	1.00
4200-0402	40	36.8	528	600		47	40	18.7	197	
4200-4800	63	58	528	600		54	46	11.2	183	
4200-0122	12	11	760	600						
4200-3690	42	39	760	600		45	39	12	234	

11.2.2 Overall EMC filter dimensions

Table 11-57 Optional external EMC filter dimensions

			Dimensi	ion (mm)			10/-	laula 4
CT part number	ŀ	1	,	W)	vve	ight
number	mm	inch	mm	inch	mm	inch	kg	lb
4200-3230	426	16.77	83	3.27	41	1.61	1.9	4.20
4200-0272	437	17.20	123	4.84	60	2.36	4.0	8.82
4200-0312	437	17.20	143	5.63	60	2.36	5.5	12.13
4200-2300	434	17.09	210	8.27	60	2.36	6.5	14.30
4200-3480	426	16.77	83	3.27	41	1.61	2.0	4.40
4200-0252	437	17.20	123	4.84	60	2.36	4.1	9.04
4200-0402	437	17.20	143	5.63	60	2.36	5.5	12.13
4200-4800	434	17.09	210	8.27	60	2.36	6.7	14.80
4200-0122	437	17.20	143	5.63	60	2.36	5.5	12.13
4200-3690	434	17.09	210	8.27	60	2.36	7.0	15.40
4200-1132	270	10.63	90	3.54	205	5.9	6.0	13.20
4200-0672	270	10.63	90	3.54	205	5.9	6.2	13.70
4200-1972	300	11.81	120	4.72	170	6.69	9.6	21.10
4200-1662	270	10.63	90	3.54	205	8.07	9.4	20.70
4200-3021	339	13.34	230	9.06	120	4.72	11	24.25
4200-4460	105	4.13	360	14.2	245	9.65	12	26.50
4200-0400	135	5.32	386	15.2	260	10.2	14.7	32.41
4200-1660	360	14.7	245	9.65	105	4.13	5.2	11.46
4200-2210	105	4.13	360	14.2	245	9.65	10.3	22.71
4200-0690	135	5.32	386	15.2	260	10.2	16.75	36.90

				Getting								
Safety information	Product information	Mechanical installation	Electrical installation	started / Running	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
		otaauo	otaa.io	the Motor	parametere	4000.191.01.0		operation.	parametere			

11.2.3 EMC filter torque settings

Table 11-58 Optional external EMC Filter terminal data

CT next number		Power connections		Ground co	nnections
CT part number	Bar hole diameter	Max cable size	Max torque	Ground stud size	Max torque
4200-1132		50 mm²	8.0 Nm		
4200-0672		(1/0 AWG)	(70.8 lb in)	M10	18 Nm
4200-1972		95 mm²	20 Nm	IVITO	(159.3 lb in)
4200-1662		(3/0 AWG)	(177 lb in)		
4200-0122			2.3 Nm (20.4 lb in)		
4200-0252		16 mm²			4.8 Nm
4200-0272		(6 AWG)	1.8 Nm	M6	(42.5 lb in)
4200-0312	N/A		(15.9 lb in)		
4200-0402					
4200-3230		4 mm² (12 AWG)	0.8 Nm (7.1 lb in)	M5	3.0 Nm
4200-3480		4 mm² (12 AWG)	0.8 Nm (7.1 lb in)	M5	(26.6 lb in)
4200-2300					
4200-4800		16 mm² (6 AWG)	2.3 Nm (20.4 lb in)	M6	4.8 Nm (42.5 lb in)
4200-3690		(0 AVVO)	(20.4 15 111)		(42.3 lb li1)
4200-3021	10.8 mm				
4200-4460	11 mm			M10	18 Nm
4200-1660	10.8 mm	N/A	20 Nm (265 5 lb in)	IVI I U	(159.3 lb in)
4200-2210	11 mm	IN/A	30 Nm (265.5 lb in)		
4200-0400	10.5 mm			M12	25 Nm
4200-0690	10.5 mm			IVI I Z	(221.25 lb in)

UL listing Functional Safety Product Mechanical Flectrical started / Rasic NV Media Card Advanced Technical Ontimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

12 Diagnostics

The keypad display on the drive gives various information about the status of the drive. The keypad display provides information on the following categories:

- Trip indications
- Alarm indications
- · Status indications

12.1 Trip indications

The output of the drive is disabled under any trip condition so that the drive stops controlling the motor. If the motor is running when the trip occurs it will coast to a stop.

During a trip condition, where a KI-Keypad is being used, the upper row of the display indicates that a trip has occurred and the lower row of the keypad display will display the trip string. Some trips have a sub-trip number to provide additional information about the trip. If a trip has a sub-trip number, the sub-trip number is flashed alternately with the trip string unless there is space on the second row for both the trip string and the sub-trip number in which case both the trip string and sub-trip information is displayed separated by a decimal place.

The back-light of the KI-Keypad display will also flash during a trip condition. If a display is not being used, the drive LED Status indicator will flash with 0.5 s duty cycle if the drive has tripped. Refer to Figure 13-2.

Trips are listed alphabetically in Table 12-3 based on the trip indication shown on the drive display. Alternatively, the drive status can be read in Pr 10.001 'Drive Healthy' using communication protocols. The most recent trip can be read in Pr 10.020 providing a trip number. It must be noted that the hardware trips (HF01 to HF20) do not have trip numbers. The trip number must be checked in Table 12-4 to identify the specific trip.

Example

- 1. Trip code 2 is read from Pr 10.020 via serial communications.
- 2. Checking Table 12-3 shows Trip 2 is an Over Volts trip.

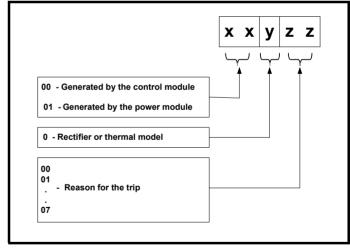
- 3. Look up Over Volts in Table 12-3.
- 4. Perform checks detailed under *Diagnosis*.

12.2 Identifying a trip / trip source

Some trips only contain a trip string whereas some other trips have a trip string along with a sub-trip number which provides the user with additional information about the trip.

A trip can be generated from a control system or from a power system. The sub-trip number associated with the trips listed in Table 12-1 is in the form xxyzz and used to identify the source of the trip.

Table 12-1 Trips associated with xxvzz sub-trip number


Over Volts	OHt dc bus
OI ac	Phase Loss
OI Brake	Power Comms
PSU	OI Snubber
OHt Inverter	Temp Feedback
OHt Power	Power Data
OHt Control	

The digits xx are 00 for a trip generated by the control system. For a single drive (not part of a multi-power module drive), if the trip is related to the power system then xx will have a value of 01, when displayed the leading zeros are suppressed.

The y digit is used to identify the location of a trip which is generated by a rectifier module connected to a power module (if xx is non zero). For a control system trip (xx is zero), the y digit, where relevant is defined for each trip. If not relevant, the y digit will have a value of zero.

The zz digits give the reason for the trip and are defined in each trip description.

Figure 12-1 Key to sub-trip number

For example, if the drive has tripped and the lower line of the display shows 'OHt Control.2', with the help Table 12-2 below the trip can be interpreted as; an over temperature has been detected; the trip was generated by fault in the control module, the control board thermistor 2 over temperature.

Table 12-2 Sub-trip identification

Source	XX	у	ZZ	Description
Control system	00	0	01	Control board thermistor 1 over temperature
Control system	00	0	02	Control board thermistor 2 over temperature
Control system	00	0	03	Control board thermistor 3 over temperature

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

12.3 Trips, Sub-trip numbers

Table 12-3 Trip indications

Trip		Diagnosis								
An Input 1 Loss	Analog input 1	current loss								
		rip indicates that a current loss was detected in current mode on Analog input 1 (Terminal 5, 6). In 4-20 mA ides loss of input is detected if the current falls below 3 mA.								
28	Recommended									
20	Check controlCheck the A	ol wiring is correct ol wiring is undamaged nalog Input 1 Mode (07.007) al is present and greater than 3 mA								
An Input 2 Loss	Analog input 2	current loss								
	20-4 mA modes	indicates that a current loss was detected in current mode on Analog input 2 (Terminal 7). In 4-20 mA and loss of input is detected if the current falls below 3 mA.								
20	Recommended a	actions:								
29		ol wiring is correct								
		ol wiring is undamaged nalog Input 2 Mode (07.011)								
		al is present and greater than 3 mA								
An Output Calib	Analog output of	calibration failed								
		calibration of one or both of the analogue outputs has failed. This indicates that the drive hardware has e is applied to the output via a low impedance, possibly due to a wiring error. The failed output can be sub-trip number.								
	Sub-trip	Reason								
040	1	Output 1 failed (Terminal 9)								
219	2	Output 2 failed (Terminal 10)								
	Remove all t	actions: iring associated with analog outputs he wiring that is connected to analog outputs and perform a re-calibration by power cycling the drive. s replace the drive								
App Menu Changed	Customization	table for an application module has changed								
		Changed trip indicates that the customization table for an application menu has changed. The menu that ed can be identified by the sub-trip number.								
	Sub-trip	Reason								
	1	Menu 18								
217	2	Menu 19								
217	3	Menu 20								
	If more than one this trip on the	e menu has changed the lowest menu has priority. Drive user parameters must be saved to prevent next power-up.								
	Recommended	actions:								
	Reset the trip	p and perform a parameter save to accept the new settings								
Assist 1 Cycle		Soft Starter Assist 1 starting too many times in an hour								
121		by the Pump software in the event of Soft Starter Assist 1 starting too many times in an hour as defined by Hour (29.120). This trip is only active when Assist Over-cycle Mode (29.121) = Trip and the Pump Control Cascade.								
Assist 2 Cycle	Soft Starter Ass	sist 2 starting too many times in an hou								
122		by the Pump software in the event of Soft Starter Assist 2 starting too many times in an hour as defined by Hour (29.120). This trip is only active when Assist Over-cycle Mode (29.121) = Trip and the Pump Control Cascade.								
-	1 '									

460 Pump Drive F600 User Guide

Safety nformation	Product information		Electrical nstallation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listir informati	
Т	rip						Diagnos						
Auto	tune 1							ot be reached					
		The drive	has trippe	ed during			e of the trip ca	an be identified					
		Sub-trip	י		Rea	son				nended a			
		1				not change ving rotating	when positior autotune.	brake is re	leased). the positio	n feedba	s free to turn (i.e. mechanica feedback is selected correctly.		
		2					peed during leasurement.	static load		is not too	turn and that large for the		
		3	The required commutation signal edge could not be found during a rotating auto-tune with a Commutation Only position feedback device. Check that the position feedback signals are connected correctly.									e	
		4			ovement an Il movemen		pe produced	Reduce the	e angular m	ovement	required.		
	11	5	auto-t	The second part of the minimal movement test during auto-tuning cannot locate the motor flux position accurately. Reduce the angular movement required.									
		6	station	The phasing offset angle is measured twice during a stationary auto-tune and the results are not within 30° of each other. If a minimal movement test is being used a excessive motor movement is occurring du test reduce the required angle movement. Otherwise try and increase the required an movement.							ring the		
		7	is sele	The motor is moving when a phasing test on enable s selected and the drive is enabled, but the motor is still moving at a speed above the zero speed hreshold. Ensure that the motor is is enabled.							r is stationary before the drive		
		9	phasir	ng test wit	h a constra	e minimal m ined motor i uired mover	t was not	Reduce the	e angular m	ovement	required.		
Auto	otune 2	Position f	eedback	direction	n incorrect								
		The drive I number.	has trippe	ed during	a rotating a	utotune. The	e cause of the	e trip can be ic	lentified fro	m the ass	sociated sub	-trip	
		Sub-tr	rip				ı	Reason					
		1	l l	e position totune	feedback o	direction is ir	ncorrect wher	n position feed	back is beir	ng used o	during a rotat	ting	
•	12	2					being used fo wave based	or position feed position.	lback and t	he comm	s position is	rotating	
		 Check 	motor ca	able wiring	j is correct viring is corr	rect							

Safety nformation	Product information	Mechanical installation	Electrica installation		Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information			
Tı	rip						Diagnos	is							
Auto	tune 3	Measured	d inerti	a has excee	ded the pa	rameter ra	nge or comr	nutation sign	als change	ed in wror	ng direction	1			
				oped during a e associated	•		nechanical lo	ad measurem	ent test. Th	e cause o	f the trip car	n be			
		Sub-ti	-					Reason							
		2						ange during a direction durin			surement				
		3						entify the moto	<u> </u>	autoturie					
1	13			THE HICOHAIT	- Iour Iouu to			Thirty the mote	i iiioitia						
				actions for	-										
				cable wiring ack device U		commutation	n signal wirin	g is correct							
		Recomme	lecommended actions for sub-trip 3: Increase the test level. If the test was carried out at standstill repeat the test with the motor rotating within the recommended speed range.												
Auto	tune 4					•			y within the	recomme	nueu speeu	range.			
Auto	turie 4		commutation signal did not change during a rotating auto-tune position feedback device with commutation signals is being used (i.e AB Servo, FD Servo, FR Servo, SC Servo or												
_	. 4							ot change duri				70 01			
1	14	Recommo	ended	actions:											
		Check fee	edback	device U cor	mmutation s	signal wiring	is correct (E	ncoder termin	als 7 and 8	3).					
Auto	tune 5		Check feedback device U commutation signal wiring is correct (Encoder terminals 7 and 8). V commutation signal did not change during a rotating auto-tune												
		A position feedback device with commutation signals is being used (i.e AB Servo, FD Servo, FR Servo, SC Se Commutation Only encoder) and the V commutation signal did not change during a rotating auto-tune.													
1	15		sition feedback device with commutation signals is being used (i.e AB Servo, FD Servo, FR Servo, SC Servo or imutation Only encoder) and the V commutation signal did not change during a rotating auto-tune. ommended actions: ck feedback device V commutation signal wiring is correct (Encoder terminals 9 and 10). ommutation signal did not change during a rotating auto-tune												
		Check fee	edback	device V cor	nmutation s	signal wiring	is correct (E	ncoder termin	als 9 and 1	0).					
Auto	tune 6	W commi	utation	signal did ı	not change	during a r	otating auto	-tune							
		-				_	_	ed (i.e AB Ser				√o or			
1	16	Recomme		• ,	and the W o	commutatio	n signal did n	ot change dur	ing a rotatii	ng auto-tui	ne.				
					mmutation	sional wirin	a is correct (F	Encoder termir	nals 11 and	12)					
Auto	tune 7						ution set inc			/.					
		An Autotu	<i>ıne 7</i> tri		during a ro	tating autot	une, if the mo	otor poles or th	e position	feedback r	esolution ha	ave been			
1	17	Recommo	ended	actions:											
				er revolution umber of pole											
Autotune	e Stopped	Autotune	e test st	topped befo	re comple	tion									
			•		n completing	g an autotu	ne test, beca	use either the	drive enab	e or the dr	ive run wer	e remove			
1	18	Recommo			· · · · · · · · · · · · · · · · · · ·		4th do do -								
					• (,	active during 5 during auto	g the autotune tune	•						
Bkground	d Watchdg			k taking lon											
1:	23	This trip is	s called	by the Pum	p software i	n the event	of the Backg	round task tak	ing longer	than 15 s	to execute.				
Brake R	Too Hot	Braking r	resisto	r overload ti	med out (l	² t)									
1	10	The Brake Accumula (10.031) a	e R Too ator (10 . and Bra	Hot indicate	es that brak lated using r Resistand	ing resistor Braking Re	sistor Rated	timed out. Th Power (10.030 Too Hot trip is)), Braking	Resistor T	hermal Time	e Constar			
1	19	Recommo													
		• If an e	externa	l thermal pro	tection devi	ce is being	used and the	_		e overload	protection i	s not			
			If an external thermal protection device is being used and the braking resistor software overload protection is not required, set Pr 10.030, Pr 10.031 or Pr 10.061 to 0 to disable the trip.												
C,	AM	CAM		11 10.030,1	1 10.031 0	F1 10.001	to o to disabi	e me mp.							

Safety information		Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data		UL listing nformation		
Т	Ггір						Diagnos	s						
Card F	ile Error	Card File	e Error											
1	185				,				,	range. This err ct (i.e. file type)		so occur		
Card U	Jser Prog	Card Us												
1	177					te-only user user progra		rive to a card,	but there is	no user progra	am prese	ent in the		
Card	d Busy	NV Medi	ia Card ca	nnot be a	ccessed as	s it is being	accessed b	y an option r	nodule					
1	178	already b	peing acce	essed by a	n option mo	dule. No da	ta is transferi	ed.		Card, but the N		a Card is		
Card D	erivative					the one in			<u>'</u>	<u>'</u>				
1	188	-	arameter difference file is being written to the drive, but the value of <i>Drive Derivative</i> (11.028) in the file header is trent to the value in the drive.											
Card Da	ata Exists	NV Medi	ia Card da	ata locatio	n already o	contains da	ta							
	179	An attern	npt is bein	g made to	write to a fil	e that alread	ly exists.							
Card F	File Data	NV Medi	ia Card pa	arameter s	et not com	patible with	n current dri	ve mode						
1	187	The drive	e mode, re	equired def	aults or pro	duct type in	a parameter	difference file	are not cor	mpatible with th	e drive			
Card	d Error	NV Medi	V Media Card data structure error											
		(if it exist	the data structure on the card. Resetting this trip will cause the drive to erase the <mcdf> folder from the NV media card (if it exists) and create the correct folder structure. On an SD card, whilst this trip is still present, missing directories will be created, and if the header file is missing it will be created. The following sub-trip numbers are used with this trip: Sub-trip Reason </mcdf>											
		Sub-	trip				F	Reason						
1	182	1	1 The required folder and file structure is not present											
		2			ile is corrup									
		3	Two or more files in the <mcdf\> folder have the same file identification number.</mcdf\>											
		ErasEnsu	ire the car	ata block a	d correctly	npt the proce	ess							
Car	d Full	NV Medi	ia Card fu	II										
		enough s	space left	on the card		npt has beer	made to cre	ate a data blo	ck on a NV	Media Card, b	ut there i	is not		
1	184		nended a											
				olock or the NV Media		Media Card	to create spa	ace						
Card	No Data			ata not fou										
												a Card.		
			<i>d No Data</i> is transfer	trip indicat	tes that an a	attempt has	been made t	o access non-	existent file	or block on a l	VV Media			
1	183	No data		trip indicat	tes that an a	attempt has	been made t	o access non-	existent file	or block on a i	NV Media			
1	183	No data Recomn • Ensu	is transfer n ended a u ure data bl	trip indicat red. ctions: ock numbe	er is correct									
	183 Option	No data Recomn • Ensu	is transfer n ended a u ure data bl	trip indicat red. ctions: ock numbe	er is correct					or block on a l				
		No data Recomn Ensu NV Medi The Care the drive data tran the value	is transfer nended active data bline data bline data card transfer do Option to both the conster, but its	trip indicatored. ctions: ock number ip; option ip indicate ption modes a warning e card. This	er is correct modules ir s that parar ule categori g that the da	nstalled are neter data o es are differ ata for the op	different be r default diffe ent between tion modules	tween source rence data is source and de that are differ	e drive and being trans estination d rent will be		rive IV Media does not	stop the		

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information		
Tr	ip						Diagnos	sis						
Card P	roduct	NV Media	a Card da	ta blocks	are not co	mpatible w	ith the drive	e derivative						
								it between the nave one of the				s trip is		
		Sub-tri	ip				Re	eason						
		1	power can l	If <i>Drive Derivative</i> (11.028) is different between the source and target drives, this trip is initiated either at power-up or when the SD Card is accessed. Data is still transferred, since this is a warning trip; the trip can be suppressed by entering code 9666 in parameter xx.000, and resetting the drive (this applies the warning suppression flag to the card).										
17	75	2	the p	f <i>Product Type</i> (11.063) is different between the source and target drives or if corruption is detected in he parameter file, this trip is initiated either at power-up or when the SD Card is accessed. This trip can be reset but no data are transferred in either direction between the drive and the card.										
		3	Data	Unidrive SP parameter value was found that has no equivalent parameter on the destination drive. ata is still transferred, since this is a warning trip; the trip can be suppressed by entering code 9666 in r xx.000, and resetting the drive (this applies the warning suppression flag to the card).										
		• Use a	Lecommended actions: Use a different NV Media Card This trip can be suppressed by setting Pr mm.000 to 9666 and resetting the drive											
Card F	Rating	NV Media	a Card Tri	ip; The vo	Itage and	or current	rating of th	e source and	destinatio	n drives a	re differen	t		
18	86	and / or vo Pr mm.00 not stop th destinatio Recomme • Reset • Ensur	oltage ration of the data train drive. ended act the drive the drive that the	ings are di syyy) is atto ansfer but etions: to clear the drive ratio	fferent betweempted between be	ween source ween the da g that rating ent paramet	e and destina ata block on a specific para ers have tran	ferred from a I ation drives. The a NV Media Ca ameters with the	nis trip also ard and the ne RA attrib	applies if a drive. The	compare (Card Ratin	using g trip does		
Oand Da	ad Oute						00 to 9666 a	nd resetting th	e drive.					
Card Re	ead Only	The Card block. A N Recommo	Read Onlow NV Media ended action the read so in the N	ly trip indic Card is re tions: only flag b V Media C	ad-only if the y setting Pland	n attempt hane read-only	flag has been on the flag has been on the flag has been discounted by the flag has been discou	eset the drive.	This will cle					
Cord	Clot		-					nd resetting th						
Card	Slot	The Card	Slot trip is	s initiated, module d	if the trans	fer of an opt	ion module a	nsfer has faile application prog ppens this trip	gram to or f					
		Recomm	ended ac	tions:										
			Ensure the source / destination option module is installed on the correct slot											
Clean Ov	ver-cycle	-			ng too mai		-							
12	20		This trip is called by the Pump software in the event of the pump cleaning cycle running too many times as defined by Clean Per Hour Limit (29.100). This trip is only active if Clean Per Hour Limit Mode (29.101) = Trip.											
Clor	ning	Cloning	system to	back-up	the drive a	and option	modules							
10	02	40001 to 4	40999) or	restore th	e drive and	option mod	dules (param	rive and option eter mm.000 v the reason for	alues from					

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information			
Tı	rip						Diagnos	is							
Config	uration	The nun	nber of p	ower modu	ıles install	ed is differe	ent from the	modules exp	ected						
			•	•			Power Module ower module	les Detected (11.071) doe	es not mat	ch the previ	ous value			
		Recomn	nended a	ctions:											
1	11	EnsulationSet FormulationThis trip defined to	Ensure all the power modules have powered up correctly												
		• Ensu	ire that al	I the extern			ted correctly.								
							kpected (11.0	196) is correct.							
Contro	ol Word	•	o initiated from the <i>Control Word</i> (06.042) e <i>Control Word</i> trip is initiated by setting bit 12 on the control word in Pr 06.042 when the control word is enabled												
		(Pr 06.0 4	Control Word trip is initiated by setting bit 12 on the control word in Pr 06.042 when the control word is enabled 06.043 = On). commended actions:												
9	35	Recommended actions: • Check the value of Pr 06.042.													
	55	Disa Bit 12 of	Disable the control word in <i>Control Word Enable</i> (Pr 06.043) tit 12 of the control word set to a one causes the drive to trip on Control Word												
0/ 1/1/			hen the control word is enabled, the trip can only be cleared by setting bit 12 to zero atchdog bit15 not being toggled for Watchdog Time												
Ctrl Wrd	Watchdg							1	AE A la la		f \A/-4-1-d	Ti			
1:	24	(29.150)	seconds	This proted	cts the syst	em in the ev	ent that a HI	l) watchdog bit MI or PLC that 2) = Ctrl Wrd c	is controlling	ng the sys					
Curren	t Offset	Current	Current feedback offset error												
		The current feedback offset is too large to be trimmed correctly. The sub-trip relates to the output phase for which the offset error has been detected.													
		Sub-	trip	Phase											
		1	ι	J											
2:	25	2	؛ ١	/											
		3	١	V											
		Recomn	nended a	ctions:											
		• Ensu	ire that th	ere is no po	-	current flow er of the drive	-	tput phases of	the drive w	hen the d	rive is not e	nabled			
Data Cl	hanging	Drive pa	rameters	are being	changed										
	97	enable, i mode, or will caus or transfo drive is a	e. <i>Drive</i> and transferred this triperring a dactive, and	Active (10.0 ing data fro to be initiate erivative or do so the trip	m an NV m ed if the dri user progra	e user action nemory card ive is enable am to the dr	ns that chang or a position d during the ive. It should	drive paramete ge drive param feedback dev transfer are w be noted that and then the di	eters are lo ice to the di riting a para none of the	pading def rive. The f ameter or ese action	aults, chang ile system a macro file to	ging drive ctions that the drive,			
	71		nended a												
		LoadCharTran	ling defaunging driv sferring d	ılts e mode	/ Media Ca		wing is being n feedback o	g carried out: device							

Safety Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Operat		Advanced parameters	Technical data	Diagnostics	UL listing information				
Trip			l		l	Diagnos	is									
Derivative ID	There is a	a problen	n with the	identifier	associated	with deriva		ıe wh	ich custo	mizes the	drive					
Derivative ib		problem	with the id	lentifier ass		derivative in						or the trip is				
247	Sub-tri	ip				Re	ason	on								
241	1	Ther	e should b	e a derivati	ive image ir	the product	but this h	t this has been erased.								
	2			s out of ran												
	3	The	derivative	image has	been chang	jed.										
Derivative Image	Derivativ	e Image e	error													
		ative Ima	ge trip ind	icates that a	an error has	been detect	ed in the	deriva	ative image	e. The sub	o-trip numbe	r indicates				
	Sub-trip			Rea	ison					Comment	is					
	1	Divide by	y zero													
	2	Undefine														
	3	Attempte paramete		meter access												
	4	Attempte	ed access to	non-existen	t parameter											
	5	Attempte	ed write to re	ead-only para	ameter											
	6			-range write												
	7			n write-only p		- in-correct or 1	thoro									
	30		than 6 byte			s incorrect, or t e header version	on ie 100		hen the drivned. The im		up or the imag will not run.	e is				
	31	provided	by the driv	e.		tack than can l	AS	30.								
	32	maximur	n allowed.			higher than the	e As	30.								
	40	suspend	The timed task has not completed in time and has been suspended.													
	41		ndefined function called, i.e. a function in the host system vector ole that has not been assigned.						AS 40.							
	51				CRC check fa	iled		As 30.								
248	52	Customi	sable menu	table CRC c	heck failed			As 30.								
240	53	Customi	sable menu	table change	ed		proloa	Occurs when the drive powers-up or the image is programmed and the table has changed. Defaults ar loaded for the derivative menu and the trip will keep occurring until drive parameters are saved.								
	61	The option	on module f	itted in slot 1	is not allowed	d with the deriv	rative As	30.	_							
	62	The option	on module f	itted in slot 2	is not allowed	d with the deriv	rative As	30.								
	63	image.				d with the deriv	As	30.								
	64	image.				d with the deriv	As	30.								
	70	fitted in a	any slot.			ative image is r	As	30.								
	71	present.			•	ted in slot 1 no	As	30.								
	72	present.			•	ted in slot 2 no	AS	30.								
	73	present.			•	ted in slot 3 no	As	30.								
	74	present.			•	ted in slot 4 no	ot As	30.								
	80				control boar				rom within t	he image c	ode.					
	81			atible with the	control boar	d serial numbe	r As	80.								
	Recomm Contact th			ive												

Safety information	Product information		Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data Diagnostics	UL listing information				
T	rip						Diagnos	is							
Desti	nation	Two or m	ore parar	neters ar	e writing to	the same	destination	parameter							
1	99	within the	drive are	writing to	the same p	arameter.			Ü	ons (Menus 5, 7, 8, 9	,				
Drive	e Size					ed drive siz				<u>'</u>					
2	24	The Drive connected Recomme	Size trip d. ended ac	indicates i	that the cor	ntrol PCB ha			size of the p	power circuit to which	it is				
Dry	Well	Dry Well I				IICI									
	15	-	called by			in the event	of a Dry Wel	Low Load de	tection whe	n <i>Dry Well Low Load</i>	Mode				
EEPR	OM Fail	Default pa	ault parameters have been loaded												
			EEPROM Fail trip indicates that default parameters have been loaded. The exact cause/reason of the trip can be stiffied from the sub-trip number. Reason												
		Sub-tri	р				Re	ason							
		1													
		2	The CRC's applied to the parameter data stored in internal non-volatile memory indicate that a valid set of parameters cannot be loaded												
		3					non-volatile the previous		tside the all	owed range for the pr	roduct				
		4				e has chang									
		5	1 0												
			6 The internal I/O hardware has changed												
			7 The position feedback interface hardware has changed												
9	31		8 The control board hardware has changed												
		If the last I If one of the parameter	The checksum on the non-parameter area of the EEPROM has failed The drive holds two banks of user save parameters and two banks of power down save parameters in non-volatile memory. If the last bank of either set of parameters that was saved is corrupted a User Save or Power Down Save trip is produced. If one of these trips occurs the parameters values that were last saved successfully are used. It can take some time to save parameters when requested by the user and if the power is removed from the drive during this process it is possible to corrupt the data in the non-volatile memory.												
		the other possible to with defau Load Defau Recomme	condition to use the ult param faults (11. ended ac	ns given e data tha neters. Th 043) is se tions: e and per	in the table at has been be trip can be to a non- form a rese	e above occ n saved pre only be res zero value.	urs EEPRO viously, and et if Pr mm.0	M Fail.xxx trip so the drive	o is produc will be in l is set to 1	s are corrupted or o ed. If this trip occur owest allowed drive 0, 11, 1233 or 1244 o	s it is not mode				
					drive to su		ouppiy to th	o dilvo io rom	oved						
Encoder	187 - 197	Not applie													
187	- 197														
Enco	der 12	Drive is c	ommunio	cating wit	th the enco	der									
		This trip in	ndicates th	nat the dri	ve is comm	unicating wi	th the encode	er but the enco	oder type is	not recognised.					
		Sub-trip)				Ro	eason							
		1	1 Drive position feedback interface 1												
1	62	2	Drive	position f	eedback in	terface 2									
			the encod	der setup	parameters ler supports	manually. s auto-config	uration.								

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information		
Т	rip						Diagnos	sis						
Enco	der 13	Drive is	communi	cating wit	th the enco	der								
		modified	with data ı	read from	the encode	r as a resul		f range during figuration. The						
		Sub-tri	p				R	eason						
		x1	Rota	ry lines pe	r revolution	error								
		x2	x2 Linear comms pitch error x3 Linear line pitch error x4 Rotary turns bits error											
		х3												
1	63	x4												
		x5	x5 Communications bits error											
		х6	x6 Calculation time is too long											
		x7	x7 Line delay measured is longer than 5us											
		• Ente	Recommended actions: Enter the encoder setup parameters manually. Check to see if the encoder supports auto-configuration.											
Enco	der 14				th the enco		<u> </u>							
1	64	number i out of rar those tha BiSS Range cl padding	s one then nge in P2 A at do are list necking is a value outs	the data in Additional sted below applied to ide +/-16 to	s out of ran Configurati the turns pa hen the trip	ge in P1 Acon (03.174) adding (decons is initiated	ditional Conf . Not all posit imal digits 5-	sition feedback iguration (03.0 ion feedback of 3) and position each case the	74), or if the devices use padding (c	e sub-trip the additi	number is 2 ional configu	the data is uration, but		
Evt Du	mp Fault		Pump Fa		st signilical	it z digits iri	ulcate the nu	inibel of bits.						
	nip Fault 16		•	•	n coffware	in the event	of the Exter	nal Pump Faul	t Innut (20	095) boing	s sot to On(1	1)		
	nal Trip		rnal trip is		p soliware	iii tile eveli	Of the Lateri	iai Fuilip i aui	t IIIput (29.	neal (con	set to On(1).		
LAIGH	nai IIIp	An Exter	nal Trip ha	s occurred				fied from the so a value of 6 in		ber display	yed after the	trip string.		
		Sub-ti	rip				Re	eason						
		1	Exte	rnal Trip N	1ode (08.01	0) = 1 or 3	and Safe Tor	que Off input 1	is low					
		2	Exte	rnal Trip N	<i>lode</i> (08.0 1	0) = 2 or 3	and Safe Tor	que Off input 2	2 is low					
	6	3	Exte	rnal Trip (*	10.032) = 1									
		ChecChecIf extChecSelection	Recommended actions: Check the Safe Torque Off signal voltage on terminal 29 equals to 24 V Check the value of Pr 08.009 which indicates the digital state of terminal 29, equates to 'on'. If external trip detection of the Safe Torque Off input is not required, set Pr 08.010 to Off (0). Check the value of Pr 10.032. Select 'Destinations' (or enter 12001) in Pr mm.000 and check for a parameter controlling Pr 10.032. Ensure Pr 10.032 or Pr 10.038 (= 6) is not being controlled by serial comms											
Н	F01	Data pro	cessing e	rror: CPL	J address (error								
		failed.	nended ac	tions:				This trip indica	tes that the	control P	CB on the d	Irive has		
		• Hard	ware rault	– ∪ontact	the supplie	er of the driv	/e							

Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Т	Ггір						Diagnos	is				
Н	F02	Data pro	ocessing e	error: DM	AC address	error						
		failed.	02 trip indic		a DMAC ad	dress error l	nas occurred	. This trip indic	cates that th	ne control	PCB on the	drive has
		• Hard	lware fault	Contact	the supplie	r of the driv	е					
Н	F03	Data pro	ocessing e	error: Illeç	gal instruct	ion						
		The HF0 failed.	3 trip indic	ates that a	an illegal ins	struction has	occurred. T	his trip indicate	es that the	control Po	CB on the dri	ve has
			nended ac									
						r of the driv	е					
Н	F04				gal slot inst							
		The HF0 failed.	04 trip indic	ates that a	an illegal slo	ot instruction	has occurre	d.This trip indi	cates that t	he contro	I PCB on the	drive has
		Recomr	nended ac	tions:								
		• Hard	lware fault	Contact	the supplie	r of the driv	е					
Н	F05	_			lefined exc							
		has faile	d.		an undefine	d exception	error has occ	urred. This trip	indicates t	hat the co	ontrol PCB or	n the drive
			nended ac									
L	FAC					er of the drive	e					
H	F06	_			erved exce	-	ror boo ooou	rred. This trip i	ndicates th	at the acr	tral DCD on	the drive
		has faile		ales mai d	a reserveu t	exception er	TOT TIAS OCCU	ireu. Tilis tilp i	nuicales in	at the cor	IIIOI FCB OII	lile ulive
		Recomr	nended ac	tions:								
		• Hard	dware fault	Contact	the supplie	r of the driv	е					
Н	F07	Data pro	cessing e	error: Wat	chdog failu	ıre						
		The HF0	7 trip indic	ates that a	a watchdog	failure has c	ccurred. This	s trip indicates	that the co	ntrol PCB	on the drive	has failed.
		Recomr	nended ac	tions:								
		• Hard	dware fault	Contact	the supplie	r of the driv	е					
Н	F08	Data pro	ocessing e	error: CPl	J Interrupt	crash						
		The HF0 failed.	08 trip indic	ates that a	a CPU inter	rupt crash h	as occurred.	This trip indica	ates that the	e control l	PCB on the o	drive has
		Recomr	nended ac	tions:								
						er of the drive	е					
Н	F09				e store ove							
		The HF0 failed.	9 trip indic	ates that a	a free store	overflow ha	s occurred. T	his trip indicat	tes that the	control P	CB on the dr	rive has
			nended ac									
						r of the driv						
H	F10	-				ting system						25 (1
		drive has	s failed.		a Paramete	r routing sys	tem error ha	s occurred. Th	is trip indica	ates that	the control P	CB on the
			nended ac									
						er of the driv						
Н	IF11					ROM failed						
		has faile	d.		access to th	e drive EEP	ROM has fai	led. This trip ir	ndicates tha	at the con	trol PCB on t	the drive
			nended ac									
I		• Hard	lware fault	Contact	the supplie	er of the drive	е					

Safety Produ		chanical callation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	gnostics	UL listing information	
Trip							Diagnos	is					
HF12	D	ata nro	cossina	arror: Maii	nrogram	stack over							
111 12	TI	he <i>HF1</i>	2 trip indi	cates that t	he main pro	ogram stack			ne stack cai	n be identified	by the s	sub-trip	
		Sub-	trip		Sta	ack						ļ	
		1	В	ackground	l tasks								
		2	Т	imed tasks	;								
		3	N	lain systen	n interrupts								
	R	lecomm	ended a	ctions:									
	•	Hard	ware fault	– Contact	the supplie	er of the driv	'e						
HF13		•				•	ith hardware						
	10	n the dri Recomm Re-pi	ive has fa ended a crogram th	iled. The s ctions: e drive wit	ub-trip num	nber gives the	ne actual ID o	code of the cor		ip indicates tha nardware.	at the co	introl PCB	
HF14	D	Hardware fault – Contact the supplier of the drive lata processing error: CPU register bank error											
	TI ha	The HF14 trip indicates that a CPU register bank error has occurred. This trip indicates that the control PCB on the drive has failed. Recommended actions:											
	.				the sunnlie	er of the driv	'Δ						
HF15	D				J divide err		-						
	TI fa	he <i>HF1</i> : ailed.		cates that a			occurred. Th	is trip indicate	s that the c	ontrol PCB on	the driv	e has	
		Hard	ware fault	– Contact	the supplie	er of the driv	'e						
HF16	D			error: RTC									
	TI	he <i>HF1</i>	6 trip indic	cates that a	a RTOS erro	or has occu	rred. This trip	indicates tha	t the contro	I PCB on the d	lrive has	failed.	
	R	ecomm	ended a	ctions:									
	•	Hard	ware fault	– Contact	the supplie	er of the driv	e						
HF17	D	ata pro	cessing	error: Clo	ck supplied	to the cor	ntrol board is	s out of speci	ification				
				cates that t drive has		pplied to the	e control boa	rd logic is out	of specifica	tion. This trip i	ndicates	that the	
	R		ended a										
	•					er of the driv							
HF18	TI	he <i>HF1</i>	8 trip indi	cates that t				when writing o	option modu	ıle parameter (data. Th	e reason	
	[:	Sub-trip	0			Reason							
	-	1	Progra	ımming err	or while wri	iting menu i	n flash						
		2	_			setup men							
	-	3	_				menus failed	t					
	R	lecomm	ended ac	tions:									
	•	Hard	ware fault	- Contact	the supplie	r of the drive	е.						
HF19	D	ata pro	cessing	error: CRC	check on	the firmwa	re has failed	d					
	TI	he <i>HF1</i>	9 trip indi	cates that t	he CRC ch	eck on the o	drive firmware	e has failed.					
	R	lecomm	ended ac	tions:									
	•		rogram th ware fault		the supplie	r of the drive	е						

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information		
Т	rip						Diagnos	is						
Н	F20	Data pro	cessing e	rror: ASI	C is not co	mpatible w	ith the hard	ware						
			0 trip indica		he ASIC ve	rsion is not	compatible w	rith the drive fir	mware. The	e ASIC ve	ersion can be	e identified		
		Recomm	Recommended actions:											
		• Hard	Hardware laute - Contact the Supplier of the drive											
HF23	to HF25	Hardwa	Hardware fault											
		Recomm	ended acti	ons:										
		• Hard	ware fault	- Contact	the supplie	r of the drive	e							
I/O O	verload	Digital o	utput ove	rload										
				•			drawn from 2 ving condition	24 V user supp is:	ly or from t	he digital	output has e	exceeded		
						gital output								
	 The combined maximum output current from outputs 1 and 2 is 100 mA The combined maximum output current from output 3 and +24 V output is 100 mA 													
Recommended actions:														
Check total loads on digital outputs														
			ck control v	•										
		• Che	ck output w	ırıng is ur	damaged									

		ı		Cattin a			1	ī	1						
Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information			
Т	[rip						Diagnos	sis							
Indu	ctance	This trip	occurs in	RFC-S m	node when	the drive l	nas detected	I that the mot	or inducta	nces are r	not suitable).			
		being att	empted. Th	ne trip is e	ither cause		the ratio or d	t the motor inc ifference betw				•			
		If the ind	uctance ra	tio or diffe	rence is to	o small this	is because o	ne of the follow	wing conditi	ons is true	: :				
		(No-load	Lq (05.07 2	?)- Ld (05.	024)) / Ld	(05.024) < 0).2								
			Lq (05.072	2) - Ld (05	. 024)) < (K	/ Full Scale	Current Kc	(11.061))H							
		where:				,		Ī							
		Driv	ve Rated v	oltage (1	1.033)		K								
				0 V		0.0073									
				0 V		0.0146									
				75 V		0.0174									
			69	0 V		0.0209									
		measure applied in													
		The spec	The specific reasons for each of the sub-trips and recommended actions are given in the table below. Sub-trip Reason												
	8	Sub-tri	Sub-trip Reason 1 The inductance ratio or difference is too small when the drive has been started in sensorless mode.												
	O	1	The inc	uctance r	atio or diffe	erence is too	small when	the drive has l	been starte	d in senso	rless mode.				
		2	The saturation characteristic of the motor cannot be measured when the drive has been started in												
		3	motor for induction induct	ux during ctance diff ck is being	a stationar erence is to g used the measured	y auto-tune oo small wh measured v	in RFC-S mo en carrying o alue for <i>Posi</i>	an attempt is in ode. This trip is out a phasing to tion Feedback d No-load Lq (also produ est on starti Phase Ang	ced when ing in RFC gle (03.025	the inductar -S mode. If 5) may not b	nce ratio position e			
		4	is initia	ed if the c	change can	not be dete	cted when ar	ne change of ir n attempt is ma a phasing tes	ade to perfo	orm a statio	onary auto-t				
		EnsuRecommEnsu	ended Act	C Low Spo ons For S C Low Spo	eed Mode (Sub-trip 2: eed Mode (lient (1), Curre							
			e. The trip a												
		Recomm	ended acti	ons for su	ıb-trip 4:	Dawf: ····	and in the second			_					
			-					ement or rotati ack device wit	-		ls or absolut	te position			
Inducto	r Too Hot		Too Hot		- 1- 22311					98-		,			
	93	Not appli	cable												
Inter-	connect	Multi-po	wer modu	le drive i	nterconne	ction cable	error								
1	103	be noted	that this tr	p is also i	nitiated if th	ne communi	cation fails e	d the fault whe	ectifier signa						
	land				island sup		Sun commur	nicating correc	uy.						
	160	Not appli		eu to all	isianu sup	, איץ									
	ad Mode			removed	when the	drive is rec	eivina the e	peed reference	e from the	kevnad					
	34		applicable	Sinoveu	witeri tile	unive 13 180	CIVILIS LITE S	poeu reierent	, tile	neypau					
	- 1	1401.6	-PP.IOGDIG												
Low	/ Load	Low load	d detector	is set un	to produc	e a trip on	low load de	tection							
	38	This trip i		if the low	load detect			trip on low loa	ad detection	and this	condition oc	curs. See			
			-	•											

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Car Operation	d Advanced parameters	Technical data Diagnost	UL listing information
Ti	rip						Diagnos	is			
Line	Sync	Line Sy	nc								
	39	Not appl	licable								
Motor O	ver Temp		ver Temp								
	18		is called by hermal Prot				of the Motor	Thermal Prote	ection Input ((29.086) being set t	ວ Off(0) when
Motor '	Too Hot	-	current over								
2	20	constant on Moto. Recomr Ensu Che If se ratin Tune Che	t (Pr 04.015 r Too Hot we mended acture the load ck the load en during a g of the driven.	tions: I is not jan on the mo n auto-tur ve speed par s signal fo	19 displays .019 gets t nmed / stick otor has note test in R ameter (RF r noise	the motor to 100 %. king t changed FC-S mode	emperature a	as a percenta	ge of the ma	05.007) and motor aximum value. The 05.007 is ≤ Heavy	drive will trip
Name	e Plate		nic namepl								
		reason f	or the trip c			ctronic name the sub-trip	•	er between th		the motor has faile	d. The exact
		Sı	ub-trip			Reason			D	etails	
			1		nunication etected.	error with th	e encoder ha	most en trip. It is namepla	coder errors possible tha ite could cau	sub-trip will occur will cause and end at incorrect data in t use this trip, and so uld be verified.	oder he
			2	namepl of entri- greater	ate. This is es is out of than 168, o	range, i.e. I	use the numb ess than 1 or ated CRC do	position		lid nameplate in the evice or there is a d te area.	
1	76		3	The excout.	change witl	h the encod	er has timed	interface encoder initialise If the en module the positis not pr suitable selected	e, then this o is not conne d. coder is con interface, the tion feedbac esent on the position feed	nected to a drive ccurs because the ected to the drive or nected to an option en this occurs beca k interface (i.e. P1 or option module, or dback device is not e no device is conne	n luse or P2) a
		EnsuWhe all thWhe instaChe	en writing the ne namepla en transferri alled.	device er e motor ol te data. ng betwee coder has	oject (xx.00 en option m	00 = 11000), nodule and 6	ensure that t		coder memo	e data ory has at least 256 s a feedback option	•
Netwo	rk Loss	Event o	of a loss Et	hernet R	ΓMoE com	ms from th	is drive to it	's Leader in	a Multi-lead	ler system.	
		This trip Multi-lea setting A	is called by ider system	the Pum . This trip Network I	p software is enabled oss Mode	in the event when <i>Multi-</i>	of a loss Eth	ernet RTMoE	E comms fro e (29.133) =	m this drive to it's L Trip. The trip may b ping the drive will re	e disabled by

Safety formation	Product information	Mechanical installation	Electrical installation	Getting started / Running pathe Motor	Basic arameters	Functi descrip		nization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information			
Tri	ip		<u> </u>				D	iagnos	is		ı					
OHt E	•	Braking	IGBT over-	-temperatu	re			g								
10		The OHt thermal r	Brake over- model. mended act	-temperatui	e trip ind				over-tempera		en detect	ted based or	n software			
			U		U	er thar	n or equal	to the m	ninimum resist	ance value						
OHt Co	ontrol	This OH	stage over t Control trip tor location i	indicates t	hat a con	trol sta	age over-te	mperat	ture has been	detected. F	rom the s	sub-trip 'xxyz	z', the			
		S	ource	xx	У		ZZ			Descrip	otion					
		Contr	ol system	00	0		01	Contro	l board thermis	stor 1 over t	temperatu	ıre				
		Contr	ol system	00	0		02	Contro	l board thermis	stor 2 over t	temperatu	ıre				
		Contr	ol system	00	0		03	I/O boa	ard thermistor	over tempe	rature					
23	.	ChecChecChecIncreRedu	Recommended actions: Check enclosure / drive fans are still functioning correctly Check enclosure ventilation paths Check enclosure door filters Increase ventilation Reduce the drive switching frequency Check ambient temperature DC bus over temperature The OHt dc bus trip indicates a DC bus component over temperature based on a software thermal model. The drive													
OHt de	c bus	DC bus	Check ambient temperature													
		output countries of the moon o	urrent and D rameter rea stor does no ource rol system o possible i	oc bus rippliches 100 % t stop in 10 xx 00 m a multi-p this source	e. The est then an seconds y 2 ower mo	otimate OHt do the dri	d tempera c bus trip is ive trips im zz 00 system for	ture is described in the second secon	conents within displayed as a ed. The drive welly. us thermal mous over-tempers a percentage	percentage vill attempt t Descri del gives tr	e of the tri o stop the iption ip with su	p level in Pr e motor befo b-trip 0	o7.035. re tripping.			
		8	ource	xx	V		ZZ			Descri	intion					
		 	ol system	01	y 0	+	00	Powe	er stage gives		•					
27	7	• Chec • Chec • Redu • Redu • Chec	Pr 05.011) – Disable slip Disable dyna Select fixed Select high s Disconnect t Reduce spea	upply voltagipple level cle coad trourrent standard many services a compensation of the load and ed loop gaind feedback int demand if	ability. If uettings w) ion (Pr 05 operation 5.014 = F ce vector d completins (Pr 03 filter value filter (Pr 0	unstablith motors (Pr 0	le; tor namepl 5.013 = 0) - (Open lo lation (Pr 0 tating auto Pr 03.011, 3.042) - (I	n loop) - (Oper op) 05.020 tune (P 07.03.0 RFC-A,	n loop) = 1) – (Open lo r 05.012) – (R 12) – (RFC-A, RFC-S) S)	oop) FC-A, RFC		5.009, Pr 05	.010,			
		1 5 5 1 7	Disable dyna Select fixed Select high s Disconnect t Reduce spee Add a speed Add a currer Check encod	amic V to F boost (Pr 0 stability spathe load and ed loop gaind feedback of demand to der signals) a f	operation 5.014 = Face vector d complet ns (Pr 03 filter value for noise	operation (Pr 0 05.014 = Fixed) ace vector moduled complete a roins (Pr 03.010, Filter value (Pr 0 filter (Pr 04.012) for noise with a	operation (Pr 05.013 = 0) 15.014 = Fixed) – (Open locate vector modulation (Pr 0d complete a rotating autoins (Pr 03.010, Pr 03.011, If filter value (Pr 03.042) – (Filter (Pr 04.012) – (RFC-Afor noise with an oscillosce	operation (Pr 05.013 = 0) - (Ope 15.014 = Fixed) – (Open loop) ace vector modulation (Pr 05.020 d complete a rotating autotune (P ns (Pr 03.010, Pr 03.011, Pr 03.0 filter value (Pr 03.042) – (RFC-A, filter (Pr 04.012) – (RFC-A, RFC-	toperation (Pr 05.013 = 0) - (Open loop) 15.014 = Fixed) - (Open loop) 16.014 = Fixed) - (Open loop) 17.015 = Fixed) - (Open loop) 18.016 = Fixed) - (Open loop) 19.017 = Fixed - (Open loop) 19.018 = Fixed - (Open loop) 19.018 = Fixed - (Open loop) 19.019 = Fixed - (Open loop)	toperation (Pr 05.013 = 0) - (Open loop) 15.014 = Fixed) - (Open loop) 16.014 = Fixed) - (Open loop) 17.015 = Fixed) - (Open loop) 18.016 = Fixed) - (Open loop) 19.017 = Fixed Open loop) 19.018 = Fixed Open loop) 19.018 = Fixed Open loop) 10.019 =	toperation (Pr 05.013 = 0) - (Open loop) 15.014 = Fixed) - (Open loop) 16.015 = Fixed) - (Open loop) 17.016 = Fixed) - (Open loop) 18.017 = Fixed) - (Open loop) 19.018 = Fixed) - (Open loop) 19.019 = Fixed - (O	r operation (Pr 05.013 = 0) - (Open loop) 15.014 = Fixed) - (Open loop) ace vector modulation (Pr 05.020 = 1) - (Open loop) d complete a rotating autotune (Pr 05.012) - (RFC-A, RFC-S) ns (Pr 03.010, Pr 03.011, Pr 03.012) - (RFC-A, RFC-S) filter value (Pr 03.042) - (RFC-A, RFC-S) filter (Pr 04.012) - (RFC-A, RFC-S) for noise with an oscilloscope (RFC-A, RFC-S)			

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running p the Motor	Basic arameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
T	rip						Diagnos	is				
OHt I	nverter	Inverter	over temp	erature ba	sed on th	ermal mod	el					
								en detected ba as given belov		rmware th	ermal mode	l. The su
		S	ource	xx	У	zz			Descrip	tion		
		Contr	ol system	00	1	00		Inv	verter therm	nal model		
		Contr	ol system	00	3	00		Braki	ng IGBT the	ermal mod	lel	
		Contr	ol system	00	4	00		Re	ctifier thern	nal model		
;	21	RedEnsiRedIncreRedChe	nended act uce the selecture Auto-sward actions acceled uce acceled uce motor lock DC bus rure all three	ected drive sitching Fred cle ration / dec oad ipple	switching quency Ch	frequency nange Disal rates	ole (05.035) i alanced	is set to Off				
		Recomn	nended act	ions with s	sub-trip 3	00:						
			uce the bral	ŭ								
		ChedChedRed	nended act ck the AC s ck the DC b uce duty cy uce motor lo	upply voltaç us ripple le cle.	ge balance		i.					

Safety	Product	Mechanical	Electrica	Getting	Basic	Fur	nctional	0		NV Media Card	Advanced	Technical	Diamentin	UL listing
information	information	installation	installatio	n Running the Motor	parameters	des	criptions	Optimizatio	n	Operation	parameters	data	Diagnostics	information
Tr	rip							Diagn	osi	is				
OHt F	Power			er temperatu										
		is indicat	ting the o	over-tempera a multi-modu	ture. The t	herm	nsitor nu	mbering is	s di	detected. The ifferent for a sed with one or	ingle modu	le type d	rive (i.e. no p	arallel
		S	ource	xx		у		ZZ			Des	cription		
		Powe	er system	n 01		0		ZZ	Th	nermistor loca	tion defined	d by zz in	the power bo	oard
		Powe	er system	n 01	Rectifie	er nu	ımber	ZZ	Th	nermistor loca	tion defined	d by zz in	the rectifier	
		Multi-mo	odule ty	pe system:										
		Sou	rce	>	¢χ		у	ZZ			D	escriptio	on	
		Powers		power mod			0	01		U phase po				
		Powers	-	power mod			0	02		V phase po				
2	22	Powers		power mod			0	03		W phase p	ower devic	е		
		Powers		power mod			0	05		General po	wer systen	n		
		Powers	system	power mod	dule numbe	er	0	00)	Braking IG	BT			
		Recommended actions: Check enclosure / drive fans are still functioning correctly Force the heatsink fans to run at maximum speed Check enclosure ventilation paths Check enclosure door filters Increase ventilation Reduce the drive switching frequency Reduce duty cycle Decrease acceleration / deceleration rates Reduce motor load Check the derating tables and confirm the drive is correctly sized for the application.												
OI	ac			utput over o				LVAA DDI	٠, ١	OUDDENT	MAN This	4	-41	
		after the			it current r	ias e	exceede	יאט_ואיי נ	٧E	_CURRENT_	_IVIAX. This	trip cann	iot de reset u	เทนเ 10 ร
		Sou	rce	xx	у	,	ZZ				Descrip	tion		
		Con syst		00	0		00			eous over-curr	•		easured a.c.	current
		Pov syst		Power modu number	ule 0			exceed	s v	'M_DRIVE_CI	URRENIIN	/IAX].		
•	3	If setChecChecChecChecChecRedtHas	eleration/ en during ck for sho ck integri ck feedba ck feedba ck feedba otor cablo uce the v	deceleration g auto-tune re port circuit on ty of the mote ack device w ack device m ack signals a e length with ralues in the se angle auto	educe the the output or insulation iring echanical re free from in limits for speed loop tune been	cabl cabl coup m no the gail com	ige boos ing sing an in bling sise frame s in param ipleted?	ize eters - (Pr (RFC-S n	• 03	3.010, 03.011,	-	· (Pr 03.0	13, 03.014, 0	03.015)

Safety information	Product information	Mechanica installation			Basic parameters	Functional descriptions	Optimization	on NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information			
Т	rip						Diagn	osis							
OI E	Brake	Brakin	g IGBT o	ver current	detected: s	hort circuit	protection	on for the brakin	ıg IGBT ac	tivated					
				indicates the cannot be				ed in braking IGBT initiated.	or braking	IGBT pro	tection has l	been			
		So	urce	xx	у	zz			Descript	ion					
	4		wer stem	Power module number	0	00	Braking	g IGBT instantane	ous over-c	urrent trip					
0	I dc	CheChe	eck brakir eck brakir	resistor wiring resistor vang resistor in:	llue is great sulation			e minimum resista							
	i uc							drive output stage		activated	The table b	olow			
						•		eset until 10 s afte				elow			
			Source xx y zz												
1	09		Control system 00 0 00												
			Power sy	stem	Power n	nodule num	per	0		00					
		• Dis	mended connect the	ne motor cab	ole at the dri	ive end and	check the	e motor and cable	insulation	with an in	sulation test	er			
OI Sr	nubber	Snubb	er over-c	urrent detec	ted										
				trip indicates e identified b			ndition ha	as been detected	in the recti	fier snubb	er circuit. Th	e reason			
		So	urce	хх	у	zz			Descrip	otion					
			wer	01	Rectifier number*	00	Rectifie	r snubber over-cu	ırrent trip d	etected.					
9	92	rectifie	r has det	ected the fa		the rectifie	number	will be one as it	is not pos	ssible to	determine w	hich			
			mended												
				iternal EMC			he mavim	num for selected s	switching fr	edilency					
				pply voltage	•	HOL GACCEU I	ne maxill	nam for selected s	switching II	cquericy					
		• Che	eck for su	pply disturba	ince such a	•									
				otor and mot line reactor			an insula	ition tester							
Option	Disable						e mode	changeover							
		During	drive mod between	le changeov	er option mo	odules must	acknowle	edge that they have							
2	215	Recom	mended	trip:											
			set the trip	o sists replace	the option	module									

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Advanced parameters	Technical data	Diagnostics	UL listing information								
Т	rip						Diagnos	sis								
Out Ph	ase Loss	Output p	hase loss	detected	i											
		The Out	Phase Los	s trip indi	cates that a	phase loss	has been de	etected at the o	drive output							
		II.		•	•	•	,	ysical output p	hases are r	eversed,	and so sub-t	trip 3 refers				
		to physic	al output p	hase V ar	nd sub-trip 2	2 refers to p	hysical outpu	ut phase W.								
		Sub-tr	Sub-trip Reason													
		1		J phase de	n*											
		2		•				enabled to rui								
		3		•				e enabled to ru								
9	98	4		Outpu	phase loss	s detected v	hen the driv	e is running								
		5		U pha	se lower IG	BT failure d	etection on c	drive enable								
		6		V pha	se lower IG	BT failure d	etection on c	Irive enable								
	7 W phase lower IGBT failure detection on drive enable															
		*These sub-trips could also indicate that the upper IGBT has failed in the indicated phase.														
		Recomn	Recommended action:													
		_			onnections											
		• To di	sable the t	rip set Ou	tput Phase	Loss Detec	tion Enable ((06.059) = 0								

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data Diagnostic	UL listing information						
Т	rip						Diagnos	is									
Over	-Cycle	Over-cy	cle														
1	117		is called by ver-cycle M			in the event	of the over-c	ycle protection	n scheme c	ounting too may star	ts per hour						
Over	Speed	Motor s	peed has	exceeded	the over s	peed thres	hold										
		direction Speed T then equ	an Over S hreshold ir al to 1.2 x	peed trip Pr 03.00 the value	is produced 8 in either of set in Pr 01	I. In RFC-A direction and .006 .	and RFC-S n Over Speed t	node, if the Sp rip is produced	eed Feedba d. If Pr 03.0	eed Threshold (03.0 ack (03.002) exceed 08 is set to 0.0 the t	s the Over nreshold is						
										le (03.047) is set to (naximum position and							
	7	The abor	ve descript ed trip with	ion relate sub-trip	s to a stand 1. This is ca	ard over spoused if the s	eed trip, how speed is allow	ever in RFC-S	mode it is	possible to produce vel in RFC-S mode v	an						
		Recomn	Recommended actions: Check the motor is not being driven by another part of the system Reduce the Speed Controller Proportional Gain (03.010) to reduce the speed overshoot (RFC-A, RFC-S modes only the above description relates to a standard Over Speed trip, however in RFC-S mode it is possible to produce an Over Speed.1 trip. This is caused if the speed is allowed to exceed the safe level in RFC-S mode with flux weakening when Smable High Speed Mode (05.022) is set to -1.														
		• Redu The above Speed.1															
Ove	r Volts	DC bus															
		The Ove	r Volts trip	indicates	that the DC	bus voltage	e has exceed	ed the VM_D0	C_VOLTAG		nown below.						
		Voltag	je rating	VM_D	C_VOLTAG	E[MAX]	VM_DC_VC	DLTAGE_SET	[MAX]								
		2	200		415			410									
		4	100		830			815									
			575		990			970									
		6	690		1190			1175									
		Sub-trip	Identifica	tion													
	2	Sou	rce	xx	у			ZZ									
	_	Con syst		00		Instantaneo _DC_VOLTA		the DC bus vo	ltage excee	eds							
		Con syst		00			ed trip indicat AGE_SET[MA	ing that the D0 \X].	bus voltaç	ge is above							
		IncreDecrChecChec	ck nominal ck for supp	eration ran eraking res AC suppl ly disturba	sistor value y level ances which	` , ,	ove the mining the DC bust	,									

Outsta	Product	Mariliania	Florida	Getting	Devie	F		ADVAM a dia Consul	A d	Technical		I II Patien				
Safety information	Product information	Mechanical installation	Electrical installation	started / Running the Motor	Basic parameters	Functional description		NV Media Card Operation	Advanced parameters	Technical data Diag	nostics	UL listing information				
Т	Ггір						Diagnos	sis								
Phas	se Loss		phase los													
		directly f detected loss is al tripping u in the DO	rom the su using this so detecte unless bit 2 D bus volta	pply where method the d by monite of Action ge the xx p	e the drive e drive trip oring the ri	has a thyri s immedia pple in the tection (10 sub-trip is	stor base char tely and the xx DC bus voltag .037) is set to	rge system (Fr c part of the su ge in which cas	ame size 7 b-trip is set e the drive ase loss is	ce. Phase loss and above). If to 01. In all siz attempts to sto detected by mo	phase les of di p the dr	loss is rive phase rive before				
		Sou		XX		У			ZZ							
		syst		00		0	00: Phase los	s detected from	m DC bus r	ipple						
		Powers (1	-	01		ectifier nber (2)	00: Phase los	s detected dire	ectly from th	ne supply						
		phase su (2) For a detected This trip Recomm Chee Chee Rede Rede Disa) Input phase loss detection can be disabled when the drive required to operate from the DC supply or from a single mase supply in <i>Input Phase Loss Detection Mode</i> (06.047). 2) For a parallel power-module system the rectifier number will be one as it is not possible to determine which rectifier has elected the fault. his trip does not occur in regen mode. ecommended actions: Check the AC supply voltage balance and level at full load Check the DC bus ripple level with an isolated oscilloscope Check the output current stability Reduce the duty cycle Reduce the motor load Disable the phase loss detection, set Pr 06.047 to 2. Check for mechanical resonance with the load													
Phasi	ng error				se offset a											
1	198	Angle (2 to control Recomm Checomm Checomm Checomm Checomm Recomm Checomm Select Spur Over If sensor without coposition Saliency Howevel Saliency permane to limit th Redo If high level	1.020) if the Ithe motor mended act ck the encock encoder or man autoback Phasic Speed The less control. For feedback is Torque Mant magneties current sure that the luce the speak so that the speak so the speak speak so the speak speak so the speak	e second recorrectly. ions: oder wiring oder signal mechanic o-tune to re se Angle (Cong Error tr areshold (One) of is being low salien se used, base ode (05.06 motors re so that the motor par eed contro control is le motor re	is for noise all coupling measure the coupling measure the coupling in can sor a coupling in can so a coupling in can be compared in c	with an ost is being us with an ost is encoder metimes be value green dicates the (Active Sales) motors to control is load, and ains salier reset-up control to the control of the control	scilloscope. phase angle of the seen in very ater than zero at significant in the motor and effection cannowhen low speed lost because so Low Speed at enough for correctly. at Low Speed speeds and his	or manually end dynamic appliants ability has control using the motor has a sensorless Manually end control. Recommendation of the sensorless Manually end control.	ter the corrections. The occurred an < 2) this oppolied. For the over-sp g current in become no dode Current mended act	<i>t</i> (05.071) is se	e into P isabled s accele ame wa notors (I be use used (saliency st be se	e is unable Position by setting erated y as when Active ed instead. Active y of most t to a level				
PID Fee	edbk High	This trip can be disabled by setting Over Speed Threshold (03.008) to a value greater than zero. PID1 feedback going above the PID Feedback High Trip Threshold														
	113	High Trip	Threshold	d (29.041).	This trip c	an be disa	bled by setting	•	Ū	oing above the Threshold (29						
PID Fee	edbk Loss				edback Lo						<u> </u>	-1:1				
1	112							main process		ack when <i>PID I</i>	⊢eedba	CK LOSS				

Safety information	Product information	Mechanical installation install		Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Т	rip					Diagnos	is				
PID Fee	dbk Low	PID1 feedbad	ck going below	the PID F	eedback L	ow Threshol	d				
1	14		ed by the Pump .044). This trip c								dback Low
Power	Comms	A Power Com	nms trip indicat	es a com	nunication	s problem w	ithin the pow	er system	of the d	rive	
			ms trip indicates y the sub-trip nu		nications pr	oblem within	the power sys	tem of the o	Irive. The	e reason for t	he trip can
		Type of drive	xx	у				zz			
ę	90	Control system	Power module number	Rectifie numbe	1 ()(). ⊢XC	essive comm	nunications err	ors detecte	d by the	rectifier mod	ule
		rectifier has d	el power-modul detected the fau ed actions: fault – Contact t	ult.			II be one as i	t is not pos	ssible to	determine v	vhich
Powe	er Data	Power system	n configuration	data erro	r						
		The Power Da	nta trip indicates	that there	is an error i	n the configu	ration data sto	red in the p	ower sys	stem.	
		Source	xx	у	ZZ			Descriptio	n		
		Control system	00	0	02 1	here is no da	ata table to be	•		trol board	
		Control system	00	0		he power sys	stem data table store it.	e is bigger t	nan the s	pace availab	le in the
		Control system	00	0	04 Т	he size of the	e table given ir	n the table i	s incorre	ct.	
		Control system	00	0		able CRC err					
2	20	Control system	00	0	06 ti	able is too lov	umber of the g v. i.e. a table fi res that have l	rom a newe	r genera	tor is require	d that
		Power syster	m 01	0	00 e	error. (For a m	ta table used i nulti-power mo s in the power	dule drive t			
		Power syster	m 01	0	U1 L	ip has an erro					
		Power syster	n 01	0			ta table used i dware identific				es not
		Recommende	ad actions:								
			fault – Contact t	he sunnlie	r of the drive	'e					
Power D	own Save	Power down		are supplie	. Ji tile uliv						
	om oave		own Save trip inc	dicates that	t an error h	as been dete	cted in the pov	ver down sa	ave parar	meters saved	l in non-
3	37	Recommend	•								

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor		Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
T	rip						Diagnos	is				
P	SU	Internal	power sup	ply fau	lt							
		The PSU	trip indica	tes that	one or more	internal pov	ver supply ra	ils are outside	limits or ov	erloaded.		
		Sourc	e x	х	у			Description	1			
		Contro	1 ()	0	0	00: Internal	power supp	ly overload				
	5	Power	mod	wer dule nber	Rectifier number*	00: Rectifie	r internal pov	wer supply ove	erload			
			or a parallel power-module system the rectifier number will be zero as it is not possible to determine which ctifier has detected the fault.									
		Recomm	commended actions:									
		• Rem	Remove any option modules and perform a reset Remove encoder connection and perform a reset Hardware fault within the drive – return the drive to the supplier									
PSL	J 24V	24V inte	rnal powe	r supply	overload							
		consists	of the drive	e digital o	ive and optic outputs and r			d the internal 2	24 V power	supply lin	nit. The user	load
	9		nended ac									
		• Provi	ice the load ide an exte ove all opti	rnal 24 ۱	V power sup	ply on contro	ol terminal 2					
Rectifie	er Set-up	A rectifie	er has not	been se	et-up correc	tly in a mul	ti-power mo	dule system.				
		A rectifie	r has not b	een set-	up correctly	in a multi-po	wer module	system.				
9	94	Recomm	ended acti	on:								
		• Chec	k the inter	-power n	nodule wiring	3						
Re	eset	Reset										
1	00	This is not a valid trip number as this value is used in User Trip (10.038) to reset the drive.										
Rese	t Logs	Reset										
2	:55	This is no	ot a valid tr	ip numb	er as this val	ue is used i	n User Trip (10.038) to rese	et the trip lo	gs.		
Res	erved	Reserve										
161, 16 170-1	104 - 108, 65 - 168, 73, 222 3-246	These trip numbers are reserved trip numbers for future use. These trips should not be used by the user application programs.										

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Ti	ip						Diagnos	is				
Rating N	lismatch	Power sta	age reco	gnition: N	lulti modul	e voltage o	r current rat	ing mismatch	1			
2:	23	This trip is voltage or Recomm • Ensur	s only app r current ra ended ac re that all	licable to atings with tion: modules i	modular dri nin the sam n a multi-m	ves that are e multi-mod	connected in ule drive syst	or current rating in parallel. A material is not allowed the same fractions of the same fractions.	ixture of po wed and wi	wer modu Il cause a	iles with diffo Rating Misr	erent match trip.
Resis	tance	Measured	d resistar	ice has e	xceeded th	e paramete	r range					
		involving in higher that Current K measuren then sub- the drive i	measuring an the max ac (11.061) ment made trip 3 is ap inverter ch	g motor stackimum val), where V e by the depolied. Dut paracterist	ator resistalue that can /FS is the furive then suring the star	nce has faile be used in all scale DC ab-trip 1 is a tor resistance de the comp	ed. The maxing the control all bus voltage to polied, or if it a section of a	r resistance is mum for the st gorithms. If the hen this trip is is because the auto-tuning an dessary for dea	ator resista e value exc initiated. If e paramete additional	nce paran eeds (VFS the value r has beel test is per	meters is ge S / v2) / Full is the resul n changed b formed to m	nerally I Scale t of a by the user neasured
		Sub	-trip				Reason				Ī	
		1	1	Measure	d stator res	istance exce	eded the allo	owed range			†	
2	3	2	2 It was not possible to measure the inverter characteristic									
		3	The stator resistance associated with the presently selected motor map exceeds the allowed range									
		Check preseCheckCheckCheckCheckEnsurSelect	ently select k the moton k the integ k the moton k the moton re the stat	value that ted motor or cable / c grity of the or phase to or resistar ost mode	map) connections motor state o phase res o phase res nce of the n	or winding u sistance at the sistance at the notor falls wi	sing an insula ne drive termi ne motor term thin the rang	nals	model		• .	the
Slot Ap	p Menu				zation con	flict error						
	16	The Slot A and 20. T	App Menu he sub-tri ended ac	trip indica p number tions:	ates that mo indicates w	ore than one hich option	slot has beer	as requested a allowed to cu	istomize the	e menus.		
SlotX D	ifferent				ot X has ch		io comigaroc	1 10 00010111120	то арриос		10, 10 an	.u 20
		The SlotX	(Different	trip indica	ites that the	option mod		slot X on the d				alled when
		Sub-t	rip				R	eason				
		1 No module was installed previously										
20	24	2						t the set-up m		option slo	ot has been	
20	04 09	3						t the application		or this opti	ion slot has	been
	14 54	4	A r	nodule wi	th the same	identifier is	installed, but	the set-up an	d applicatio			n slot
		>99					parameters previously ins	<u>have been loa</u> talled.	ded for the	<u>se menus</u>	•	
		 Confir 	off the pov	ver, ensur e currently				talled in the co	•			

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
Т	rip						Diagnos	is				
2	X Error 202 207 212	The Slot error car	X Error trip	indicates ed by the	ot X has de that the op sub-trip nu	tion module		t X on the driv	e has detec	cted an er	ror. The reas	son for the
	252				lule User G	uide for det	ails of the trip	1				
Slo	tX HF		module X I			arde for dea	ano or the trip	'				
		The Slot	X HF trip in	dicates th			umber.	on the drive h	nas indicate	d a hardw	vare fault. Th	e possible
		Sub-tri	- 					eason				
		1			gory canno							
		2						nas not been s			supplied are	corrupt
		3	There i	s insuffici	ent memory	available t	allocate the	comms buffe	rs for this m	odule		
		4	The mo	odule has	not indicate	ed that it is r	unning corre	ctly during driv	e power-up)		
	200	5	Module	has beer	removed a	after power-	up or it has s	topped workin	ıg			
	205 210	6	The mo	odule has	not indicate	d that it ha	s stopped acc	cessing drive p	parameters	during a	drive mode o	hange
	250	7	The mo	odule has	failed to ac	knowledge	that a reques	t has been ma	ade to reset	the drive	processor	
		8	The dri	ve failed t	o correctly	read the me	enu table fron	n the module o	during drive	power up)	
		9	The dri	ve failed t	o upload m	enu tables	rom the mod	ule and timed	out (5 s)			
		10	Menu t	able CRC	invalid							
		• Ens	•	on modulo		•	neck that this	process was	follwed corr	ectly.		
SlotX N	lot Fitted	Option	module in	option sl	ot X has be	en remove	d					
2 2	203 208 213 253	Recomr • Ensi • Re-i	p. nended ac ure the opti nstall the o	tions: on module ption mod	e is installed ule.	d correctly.		n slot X on the				he last
SlotX V	Vatchdog				unction se		<u> </u>					
2	201 206	then faile	ed to servic	e the wat	cates that the		odule installe	d in Slot X ha	s started the	e option w	vatchdog fun	ction and
	211 251		nended ac									
			lace the op				fallad					
5011	t Start				se, soft sta			iled to close or	r the soft st	art monito	ring circuit h	as failed
2	226		nended ac		iat tile soit	start relay i	i tile dilve la	iled to close of	i tile soit st	art mornto	ing circuit ii	as lalleu.
_	-20				the supplie	er of the driv	re.					
Stor	ed HF				during las							
		The Stor	red HF trip	indicates		vare trip (H	F01 –HF19) I	nas occurred a	and the driv	e has bee	n power cyc	led. The
	221		nended ac									
		• Ente	er 1299 in F	r mm.00 0	and press	reset to cle	ar the trip					

formation	Product information	Mechanical Electric installation			Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data		UL listi nforma
Т	rip					Diagno	sis				
	ray RAM	RAM allocation	error								
		An option modul allocation is che sub-trip is calcul all menu custom below show the	cked in orde ated as (par isation prov	r of resulting s cameter size x ided by option	sub-trip nun 1000) + (p modules, t	nbers, and arameter ty the derivativ	so the failure wi /pe x 100) + sul /e image or the	th the higher b-array nun	est sub-trip nber. Note	number is giv that if this trip	ven. T
		Parameter	size	Value		F	Parameter type)	Value		
		1 bit	0.20	1			Volatile		0		
		8 bit		2			User save		1		
		16 bit		3		Р	ower-down sav	е	2		
		32 bit		4							
		64 bit		5							
2	227		Sub-a	rrav		N	lenus	Valu	Je		
		Applications me		<u>-</u>			18-20	1			
		Derivative imag				1	29	2			
		User program in					30	3			
		Option slot 1 se	t-up				15	4			
		Option slot 1 ap	plications				25	5			
		Option slot 2 se	t-up				16	6			
		Option slot 2 ap	plications				26	7			
		Option slot 3 se	t-up				17	8			
		Option slot 3 ap	plications				27	9			
		Option slot 4 se	t-up				24	10)		
		Option slot 4 ap	plications				28	11			
Temp F	eedback	Internal thermis	stor has fai	led							
		The Temp Feeds	back trip ind	icates that an	internal the	ermistor ha	s failed. The the	ermistor loc	ation can b	oe identified b	y the
		Source		xx		y			ZZ		
		Control board		00	C	00	01: Control boa 02: Control boa 03: I/O board to	ard thermist			
						_	Zero for tempe				r
2	218	Power system	Power mo	dule number	1	0	system comms temperature fe		1 23 IOI UII	eci elv	
2	218	Power system Power system		odule number					1 23 IOI UII 6	eci Elv	
2	218	Power system * For a parallel rectifier has de	power-mod	01 lule system t	Rectifier	number*	temperature fe Always zero	edback.			nich
2	218	* For a parallel rectifier has de Recommended	power-mod tected the f actions:	01 lule system t ault.	Rectifier	number*	temperature fe Always zero	edback.			nich
		* For a parallel rectifier has de Recommended	power-mod tected the f actions:	01 lule system t	Rectifier	number*	temperature fe Always zero	edback.			nich
	ake Res	* For a parallel rectifier has de Recommended	power-mod tected the f actions: ult – Contac	01 lule system trault.	Rectifier	number*	temperature fe Always zero	edback.			nich
		* For a parallel rectifier has de Recommended • Hardware fa	power-mod tected the f actions: ult – Contac over tempe es is initiated braking res	ollule system trault. In the supplier rature d, If hardware	Rectifier he rectifier of the drive	r number v	temperature fe Always zero vill be one as i	t is not pos	ssible to d	etermine wh	•

Check brake resistor wiring
Check braking resistor value is greater than or equal to the minimum resistance value
Check braking resistor insulation

Safety information	Product information	Mechanical installation	Electrical installation		Basic parameters	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information
T	rip			and ivideor			Diagnos	is				
Th Sho	rt Circuit	Motor th	nermisto	short circ	uit							
								alogue input o can be identi				back
		Sub-	•					Source				
		1		nalogue in								
2	25	2		nalogue in								
		3		nalogue in								
		4	· F	Position feed	dback interf	ace						
		• Che	nended a ck temper lace sens	rature feedb	oack connec	ction.						
Ther	mistor	Motor th	nermisto	over-temp	erature							
		or termin	nal 15 on t		terminal (1	5 way D-typ		to terminal 8 has indicated				
		Sub-	Sub-trip Source Analogue input 1									
			1 Analogue input 1									
2	24	2	2 Analogue input 2									
		3	3 Analogue input 3									
		4	F	Position feed	dback interf	ace						
			nended a									
			•	e temperatı ature sens		•	ensor is too h	igh temperatu	re.			
Unde	efined					e trip is Un	defined					
	40		<i>lefined</i> trip p is unkno		hat the pow	ver system ł	nas generate	d but did not ic	lentify the t	rip the pov	ver system.	The caus
1	10		nended a									
	0.41/					he supplier						
Use	er 24V					ntrol termi olv Select (P		set to 1 or Low	Under Volt	tage Thres	shold Select	(06.067)
C	91						rminals 1 and					(******)
	<i>5</i> 1		nended a		only is prose	ont on contr	al tarminals	I (0 \/) and 2 (24 \/)			
User P	Program					ent on cont	oi terriiriais	I (0 V) and 2 (24 V)			
	- J	On board user program error (Cont) The following table gives the differences when compared to the derivative product image.										
		Sub-tri	р				Diff	erence				
		40, 41	Onbo	ard User Pr	ogram: Ena	able (11.047) is reset to z	ero when the	trip is initiat	ed.		
		51					ion not allow					
		6x			-		ons not allow					
		7x 100		•	•		ons not allow npted pointer	r access outsid	de of the IE	C task's h	eap area.	
249 ((Cont)	101					ligned pointe					
		102					•	evented its ac				
		103	Image down.		oted to conv	vert a data t	ype to or fror	n an unknown	data type,	has failed	and has sh	ut itself
		104					user service		/: .			
		200										
			problem as sub-trip 1.)									

Safety information	Product information	Mechanical installation	Electrical started / Basic Running the Motor Rotting Rotting the Motor Rotting the Motor Rotting Rotting the Motor Rotting Rotting the Motor Rotting R								
Т	rip						Diagnos	is			
User P	rog Trip	Trip gen	erated by	an onboa	ard user pr	ogram					
		This trip	can be init	ated from	within an o	nboard use	r program us	ing a function	call which c	lefines the sub-trip nu	ımber.
9	96	Recomm	nended ac	tions:							
		• Che	Check the user program								
User	Save	User Sa	er Save error / not completed								
	20		e <i>User Save</i> trip indicates that an error has been detected in the user save parameters saved in non-volatile memory. r example, following a user save command, If the power to the drive was removed when the user parameters were being ved.								
	36	Recomm	nended ac	tions:							
								esn't occur the pefore removir		ne drive is powered uper to the drive.	p.
Use	r Trip	User ge	nerated tri	р							
40	00	These tr	ips are not	generated	d by the driv	e and are to	be used by	the user to trip	the drive t	hrough an application	n program.
	-89 -159	Recomm	nended ac	tions:							
0		• Che	ck the user	program							
Voltage	e Range	Voltage	Range								
1	69	Not App	icable								
Wato	chdog	Control	Control word watchdog has timed out								
		The Wat	The Watchdog trip indicates that the control word has been enabled and has timed out								
		Recomn	nended ac	tions:							
	30		g trip will b							repeated every 1s or re-enabled if required	

Safety	Prod	duct Mechanical	Electrical	Getting started		Functional	0	NV Media Card	Advanced	Technical Discussion	UL listing
information		nation installation	installation	Runnin the Mot	g parameters	descriptions	Optimization	Operation	parameters	data	information
Tahlo 12-4	l Sor	rial communicat	tions look								
No	- 001	Tr		up tubi	No		Trip		No	Trip	
		Reserv	•				OHt Brake			Destinat	ion
2		Over			101				199	Slot1 H	
3			ac		102		Cloning		200		
4		OI B			103		Inter-connect served 104 - 1	00	201	Slot1 Watc	
5		PS			109	Res	Ol dc	00	202	Slot1 Not F	
					110				203	Slot1 Not P	
7		Extern					Undefined				
		Over			111		Configuration	-	205	Slot2 H	
8		Induc			112		D Feedbk Los		206	Slot2 Watc	
9		PSU			113		D Feedbk Hig		207	Slot2 Err	
10		Th Bra			114	Р	ID Feedbk Lov	V	208	Slot2 Not F	
11		Autot			115		Dry Well		209	Slot2 Diffe	
12		Autot			116		xt Pump Fault		210	Slot3 H	
13		Autotune 3			117		Over-cycle		211	Slot3 Watc	
14		Autotune 4 Autotune 5			118	Motor Over Temp		р	212	Slot3 Err	
15					119		Network Loss		213	Slot3 Not F	
16		Autot			120		ean Over-cycl		214	Slot3 Diffe	
17		Autot			121		Assist 1 Cycle		215	Option Dis	
18		Autotune			122		Assist 2 Cycle		216	Slot App N	
19		Brake R			123		ground Watch		217	App Menu Cl	
20		Motor 1			124		rl Wrd Watchd	_	218	Temp Feed	
21		OHt In	verter		125 - 159	Us	er Trip 125 - 1	59	219	An Output	
22		OHt P			160		Island		220	Power D	
23		OHt C	ontrol		161		Reserved		221	Stored I	
24		Thern			162 - 164		ncoder 12 - 14		222	Reserved	222
25			t Circuit		165 - 168		served 165 - 1		223	Rating Misr	
26		I/O Ov			169		/oltage Range		224	Drive Si	
27		OHt d			170 - 173	Re	served 170 - 1	73	225	Current O	
28		An Inpu			174		Card Slot		226	Soft Sta	
29		An Inpu			175		Card Product		227	Sub-array	
30		Watc	hdog		176		Name Plate		228 - 246	Reserved 22	8 - 246
31		EEPRO	OM Fail		177	C	ard User Prog	1	247	Derivative	e ID
32		Phase			178		Card Busy		248	Derivative I	
33		Resis			179	C	ard Data Exist	s	249	User Prog	
34		Keypac	d Mode		180		Card Option		250	Slot4 H	
35		Contro			181	С	ard Read Only	/	251	Slot4 Watc	
36		User			182		Card Error		252	Slot4 Er	
37		Power Do	own Save		183		Card No Data		253	Slot4 Not F	itted
38		Low			184		Card Full		254	Slot4 Diffe	
39		Line			185		Card File Error		255	Reset Lo	gs
40 -89)	User Tri _l			186		Card Rating				
90		Power (187		Card File Data				
91		User			188	C	ard Derivative	9			
92		OI Sn	ubber		189		Encoder 1				
93		Inductor	Too Hot		190		Encoder 2				
94		Rectifie	r Set-Up		191		Encoder 3				
95		Reserv	ved 95		192		Encoder 4				
96		User Pr	og Trip		193		Encoder 5				
97		Data Ch	nanging		194		Encoder 6				
98		Out Pha	se Loss		195		Encoder 7				
99		CA	AM		196		Encoder 8				
400											

100

Reset

197

Encoder 9

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

The trips can be grouped into the following categories. It should be noted that a trip can only occur when the drive is not tripped or is already tripped but with a trip with a lower priority number.

Table 12-5 Trip categories

Priority	Category	Trips	Comments
1	Internal faults	HF01 - HF26	These are fatal problems that cannot be reset. All drive features are inactive after any of these trips occur. If a basic keypad is fitted it will show the trip, but the keypad will not function. These trips are not stored in the trip log.
1	Stored HF trip	Stored HF	This trip cannot be cleared unless 1299 is entered into Parameter mm.000 (mm.000) and a reset is initiated.
2	Non-resettable trips	Trip numbers 218 to 247, {Slot1 HF}, {Slot2 HF}, {Slot3 HF} or {Slot4 HF}	These trips cannot be reset.
3	Volatile memory failure	{EEPROM Fail}	This can only be reset if Parameter mm.000 is set to 1233 or 1244, or if Load Defaults (11.043) is set to a non-zero value.
4	Internal 24 V power supply	{PSU 24}	
5	Non-volatile media trips	Trip numbers 174, 175 and 177 to 188	These trips are priority 6 during power-up.
5	Position feedback interface power supply	Encoder 1	This trip can override Encoder 2 to Encoder 6 trips.
6	Trips with extended reset times	Ol ac, Ol Brake, and Ol dc	These trips cannot be reset until 10s after the trip was initiated.
6	Phase loss and d.c. link power circuit protection	Phase Loss and OHt dc bus	The drive will attempt to stop the motor before tripping if a Phase Loss.000 trip occurs unless this feature has been disabled (see Action On Trip Detection (10.037). The drive will always attempt to stop the motor before tripping if an OHt dc bus occurs
6	Standard trips	All other trips	

Safety information	Product information	Mechanical installation	Electrical installation	Getting started / Running the Motor	Basic parameters	Functional descriptions	()ntimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing information	
-----------------------	---------------------	-------------------------	-------------------------	--	------------------	-------------------------	---------------	----------------------------	---------------------	-------------------	-------------	------------------------	--

12.4 Internal / Hardware trips

Trips {HF01} to {HF20} are internal faults that do not have trip numbers. If one of these trips occurs, the main drive processor has detected an irrecoverable error. All drive functions are stopped and the trip message will be displayed on the drive keypad. If a non permanent trip occurs this may be reset by power cycling the drive. On power up after it has been power cycled the drive will trip on Stored HF. Enter 1299 in **mm.000** to clear the Stored HF trip.

12.5 Alarm indications

In any mode, an alarm is an indication given on the display by alternating the alarm string with the drive status string on the first row and showing the alarm symbol in the last character in the first row. If an action is not taken to eliminate any alarm except "Auto Tune and Limit Switch" the drive may eventually trip. Alarms are not displayed when a parameter is being edited, but the user will still see the alarm character on the upper row.

Table 12-6 Alarm indications

Alarm string	Description
Brake Resistor	Brake resistor overload. <i>Braking Resistor Thermal Accumulator</i> (10.039) in the drive has reached 75.0 % of the value at which the drive will trip.
Motor Overload	Motor Protection Accumulator (04.019) in the drive has reached 75.0 % of the value at which the drive will trip and the load on the drive is > 100 %.
Drive Overload	Drive over temperature. <i>Percentage Of Drive Thermal Trip Level</i> (07.036) in the drive is greater than 90 %.
Auto Tune	The autotune procedure has been initialized and an autotune in progress.

12.6 Status indications

Table 12-7 Option module and NV Media Card and other status indications at power-up

Table 12-7	Option module and	NV Media Card and other status indications at power-up				
First row string	Second row string	Status				
Booting	Parameters	Parameters are being loaded				
Drive param	eters are being loade	d from a NV Media Card				
Booting	Option Program	User program being loaded				
User progra	m is being loaded fror	n a NV Media Card to the option module in slot X				
Writing To	o NV Card	Data being written to NV Media Card				
	g written to a NV Med uto or Boot mode	ia Card to ensure that its copy of the drive parameters is correct because the				
Waiting Fo	or Power System	Waiting for power stage				
The drive is	waiting for the proces	sor in the power stage to respond after power-up				
Waiting F	or Options	Waiting for an option module				
The drive is	The drive is waiting for the Options Modules to respond after power-up					
Uploadin From	g Options	Loading parameter database				
has changed	d or because an appli	to update the parameter database held by the drive because an option module cations module has requested changes to the parameter structure. This may drive an option modules. During this period 'Uploading From Options' is				

				Getting								
Safety	Product	Mechanical	Electrical	started /	Basic	Functional	Optimization	NV Media Card	Advanced	Technical	Diagnostics	UL listing
information	information	installation	installation	Running	parameters	descriptions	Optimization	Operation	parameters	data	Diagnostics	information
				the Motor								

12.7 Programming error indications

Following are the error message displayed on the drive keypad when an error occurs during programming of drive firmware.

Table 12-8 Programming error indications

Error String	Reason	Solution
Error 1	There is not enough drive memory requested by all the option modules.	Power down drive and remove some of the option modules until the message disappears.
Error 2	At least one option module did not acknowledge the reset request.	Power cycle drive
Error 3	The boot loader failed to erase the processor flash.	Power cycle drive and try again. If problem persists, return drive
Error 4	The boot loader failed to program the processor flash.	Power cycle drive and try again. If problem persists, return drive
Error 5	One option module did not initialize correctly. Option module did not set Ready to Run flag.	Remove faulty option module.

12.8 Displaying the trip history

The drive retains a log of the last ten trips that have occurred. *Trip 0* (10.020) to *Trip 9* (10.029) store the most recent 10 trips that have occurred where *Trip 0* (10.020) is the most recent and *Trip 9* (10.029) is the oldest. When a new trip occurs it is written to *Trip 0* (10.020) and all the other trips move down the log, with oldest being lost. The date and time when each trip occurs are also stored in the date and time log, i.e. *Trip 0 Date* (10.041) to *Trip 9 Time* (10.060). The date and time are taken from *Date* (06.016) and *Time* (06.017). The date / time source can be selected with *Date / Time Selector* (06.019). Some trips have sub-trip numbers which give more detail about the reason for the trip. If a trip has a sub-trip number its value is stored in the sub-trip log, i.e. *Trip 0 Sub-trip Number* (10.070) to *Trip 9 Sub-trip Number* (10.079). If the trip does not have a sub-trip number then zero is stored in the sub-trip log.

If any parameter between Pr **10.020** and Pr **10.029** inclusive is read by serial communication, then the trip number in Table 12-3 is the value transmitted.

Note

The trip logs can be reset by writing a vale of 255 in Pr 10.038.

12.9 Behaviour of the drive when tripped

If the drive trips, the output of the drive is disabled so the load coasts to a stop. If any trip occurs the following read only parameters are frozen until the trip is cleared. This is to help in diagnose the cause of the trip.

Parameter	Description
01.001	Frequency / speed reference
01.002	Pre-skip filter reference
01.003	Pre-ramp reference
02.001	Post-ramp reference
03.001	Final speed ref
03.002	Speed feedback
03.003	Speed error
03.004	Speed controller output
04.001	Current magnitude
04.002	Active current
04.017	Reactive current
05.001	Output frequency
05.002	Output voltage
05.003	Power
05.005	DC bus voltage
07.001	Analog input 1
07.002	Analog input 2

If the parameters are not required to be frozen then this can be disabled by setting bit 4 of Pr **10.037**.

Getting Safety Functional **UL listing** Product Mechanical Flectrical started / Rasic NV Media Card Advanced Technica Optimization Diagnostics information information installation installation Running parameters descriptions Operation parameters data information the Motor

13 UL listing information

13.1 UL file reference

These products are cUL Listed to Canadian and US requirements.

UL file reference is: NMMS/7 E171230.

Products that incorporate the Safe Torque Off (STO) function are Certified for Functional Safety.

UL file reference: FSPC E171230.

13.2 Operating environment

Pollution Degree

Products must be installed in a Pollution Degree 2 environment or better (dry, non-conductive pollution only).

Ambient temperature

The drives have been evaluated for use at ambient temperatures up to 40 °C. The drives have additionally been evaluated for 50 °C and 55 °C ambient air temperatures with a derated output.

The maximum surrounding air temperature is 55 °C.

13.3 Enclosure ratings

Open Type

The products are Open Type as supplied

Type 1

When fitted with a conduit box, the products meet the requirements for UL Enclosed Type 1. Suitable conduit boxes are available.

13.4 Through-panel (Type 12) mounting

Mounting hole access

When the drive is through-panel mounted, the main terminal cover(s) must be removed in order to provide access to the mounting holes. Once the drive has been mounted, the terminal cover(s) can be replaced.

13.5 Mounting bracket torque setting

Frame sizes 3 & 4

Through panel mounting brackets should be tightened to a maximum torque of 2 Nm (16.8 lb in).

13.6 Installation in air handling spaces (plenum rating)

These products have been evaluated in accordance with the Standard for Fire Test for Heat and Visible Smoke Release for Discrete Products and their Accessories Installed in Air-Handling Spaces, UL 2043.

Products installed in air handling spaces must be Enclosed Type 1 as a minimum. A conduit box must be fitted. Alternatively, the product can be through-panel mounted in a Type 12 enclosure with the heatsink protruding through the wall of the enclosure into the air-handling space.

13.7 Mechanical Installation

Mounting

Products can be mounted on a vertical surface using the brackets provided. Several products may be mounted side by side without airspace between them.

In installations where space is limited, products with frame sizes 3, 4 and 5 may be 'Tile Mounted'. In this configuration, the unit is mounted sideways with the side panel against the mounting surface. A Tile Mounting Kit is available but must be ordered separately.

13.8 Terminal Torque

Torque settings are specified in relevant sections of this guide.

13.9 Electrical Installation

Overvoltage category

Drives have been evaluated for OVC III

Branch circuit Protection

Branch circuit protection must be provided in accordance with the National Electrical Code (NEC), The Canadian Electrical Code, and any additional local codes.

The recommended fuses are specified within this guide.

Opening of branch circuit protective device

The opening of the branch-circuit protective device may be an indication that a fault has been interrupted. To reduce the risk of fire or electric shock, the equipment may be examined and replaced if damaged. If burnout of the current element of an overload relay occurs, the complete overload relay must be replaced. Integral solid-state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local "codes", or the equivalent.

Cables

Field wiring must use 75 °C rated copper wire only.

Ground connections

UL Listed closed-loop connectors sized according to the field wiring must be used for all ground connections.

Power connections

Frame sizes 3, 4 and 5: These frame sizes use plug-in terminal blocks for the power connections.

Frame sizes 6 to 11: UL Listed closed loop connectors sized according to the field wiring must be used for all power connections.

13.10 Motor overload protection

All models incorporate internal overload protection for the motor load that does not require the use of an external or remote overload protection device. The protection level is adjustable with the maximum current overload being dependent on the values entered into the current limit parameters (Pr 4.005 motoring current limit, Pr 4.006 regenerative current limit and Pr 4.007 symmetrical current limit entered as percentage) and Pr 5.007 motor rated current parameter (entered in Amperes). The duration of the overload is dependent on Pr 4.015 motor thermal time constant.

13.11 Thermal memory retention

All models are provided with thermal memory retention.

13.12 Motor protection using an external sensor

User terminals are provided that can be connected to a motor thermistor to protect the motor from high temperature, in the event of a motor cooling fan failure

13.13 Transient Surge Suppression

Frames sizes 7 & 8 - 575 V ratings

Transient surge suppression shall be installed on the line side of this equipment and shall be rated to 575 Vac (phase to ground), 575 Vac (phase to phase), suitable for overvoltage category III, and shall provide protection for an impulse withstand voltage peak of 6 kV and a clamping voltage of maximum 2400 V.

13.14 Dynamic braking

The drives have not been evaluated for dynamic braking.

Safety information	Product Mechanic information installation	cal Electrical st on installation R	Getting started / Basic Running parameters the Motor	Functional descriptions	Optimization	NV Media Card Operation	Advanced parameters	Technical data	Diagnostics	UL listing informatio
-----------------------	---	--	---	-------------------------	--------------	----------------------------	---------------------	-------------------	-------------	-----------------------

13.15 External Class 2 supply

Frame sizes 7 to 11

The external power supply shall be marked with the following: "Class 2" and the power supply shall not exceed 24 Vdc.

13.16 Modular Drive Systems

Products with DC+ and DC- supply connections have been investigated for use in Modular Drive Systems as inverters when supplied by the converter sections from the Unidrive-M or Mentor MP range. In these applications the inverters are required to be additionally protected by supplemental fuses.

13.17 AC supply, AC supply fuses and short circuit current rating (SCCR)

Frame sizes 3 & 4

Suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, 480 Volts AC maximum when protected by the specified fuses.

UL Listed closed-loop connectors sized according to the field wiring shall be used for grounding connections. Frame size 6 only for closed loop connectors on all power connections (size 4 has a power connector like size 3 not studs)

Frame sizes 5 & 6

Suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, 575 Volts AC maximum when protected by the specified fuses.

Frame size 7 & 8

Suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, (rated voltage in the ratings table or the product label) Volts AC Maximum when protected by the specified fuses

Frame sizes 9 & 10

Suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, (voltage rating in ratings table or the product label) Volts AC Maximum when protected by the specified fuses.

Frame size 11

Suitable for use on a circuit capable of delivering not more than 100,000 RMS symmetrical Amperes, (voltage rating in ratings table or the product label) Volts AC Maximum when protected by the specified fuses

13.18 Modular / group / parallel installation

Supply wiring

When used in modular drives/group / parallel installation applications the supply wires are not to be larger than 125 % of full load current of the device ratings

CSA (Canadian Standards Authority) approval

Frame sizes 9 to 11 are not certified for CSA approval when used in a modular / parallel setup.

Supply from converters

These devices are only intended to be supplied by converters manufactured by Control Techniques Ltd. when used as inverters.

Appendix A Leroy Somer Permanent magnet motor details

										Par	Parameters							
			04.013	04.014	05.007	05.008	600.30	05.011	05.017	05.024	05.033	05.069	05.072	05.075	05.078	05.082	05.084	05.087
1500 range Motor Type	Pump Drive F600 Drive type	Motor Rated Frequency	Current controller Kp Gain	Current controller Ki Gain	Rated	Rated	Rated	Number Of Motor Poles	Stator Resistance	РЛ		Ó.	t No-load Lq	lq Test Current For Inductance Measurement	Lq At The Defined lq Test Current	ld Test Current for Inductance Measurement	Lq At The Defined Id Test Current	User Defined Rated Torque Angle
		Hz			4	rpm	>		а	HW	V/kmin-1	woul %	НШ	%	Hm	%	Hw	۰
	044-00240A	20				1500	400	t Poles	0.315822	7.63	72	236%	68.5	73	44.8	-108	68.5	56
LSHRM160 MR1_11 kW	044-00240A	09					400		0.315822	7.63	72	244%	68.5	73	44.8	-108	68.5	56
	044-00240A	09	152			1800	460 4	t Poles	0.315822	7.63	72	233%	68.5	73	44.8	-108	68.5	56
	064-00480A	87					400	t Poles	0.105274	2.54	42	218%	22.8	73	14.9	-108	22.8	56
	064-00380A	20	304	493	28	1500	400	t Poles	0.284540	7.48	62	199%	6.79	75	40.5	-106	6'.29	58
LSHRM160 LR1_15 kW	054-00300A	09					400	t Poles	0.284540	7.48	62	204%	6.79	22	40.5	-106	6.79	58
	054-00300A	09					460 4		0.284540		62	204%	6.79	75	40.5	-106	6.79	58
	064-00630A	28	136				400	Poles	0.094847		45	189%	22.6	75	13.5	-106	22.6	58
	064-00480A	20	277				400	t Poles	0.213304	2.68	73	181%	43.3	71	31.5	-109	43.3	22
LSHRM 180 M1_18,5 kW	064-00480A	09	277		35		400	t Poles	0.213304	2.68	73	185%	43.3	71	31.5	-109	43.3	22
	064-00480A	09	277	444		1800	460 4	t Poles	0.213304	2.68	73	183%	43.3	71	31.5	-109	43.3	57
	074-00790A	28			63 2		400	t Poles	0.071101	1.89	42	174%	14.4	71	10.5	-109	14.4	57
	064-00480A	20						t Poles	0.135163	4.25	72	196%	33.1	73	25.0	-108	33.1	26
LSHRM 180 L1_22 kW	064-00480A	09							0.135163		72	207%	33.1	73	25.0	-108	33.1	56
	064-00480A	09							0.135163		72	202%	33.1	73	25.0	-108	33.1	56
	074-00940A	87	127		74 2		400	t Poles	0.045054	1.42	41	189%	11.0	73	8.3	-108	11.0	56
	064-00630A	20					400		0.108310		72	174%	27.5	69	19.7	-110	27.5	58
LSHRM 200 LQ1_30 kW	064-00630A	09					400	t Poles	0.108310		72	181%	27.5	69	19.7	-110	27.5	58
	064-00630A	09			26 1				0.108310	3.49	72	177%	27.5	69	19.7	-110	27.5	58
	074-01120A	87							0.036103		41	168%	9.17	69	9.9	-110	5.6	58
	074-00790A	20	232	. 580			400	t Poles	0.088734	3.03	72	164%	24.1	69	16.7	-110	24.1	58
LSHRM 225 SZ1_37 kW	074-00790A	09					400	t Poles	0.088734	3.03	72	168%	24.1	69	16.7	-110	24.1	58
	074-00790A	09					460	t Poles	0.088734		72	166%	24.1	69	16.7	-110	24.1	58
	084-01550A	87	157		2			1 Poles	0.029578		42	157%	8.0	69	9.6	-110	8.0	58
	074-00940A	20	220					4 Poles	0.045053	2.467	22	201%	23.6	29	14.6	-111	23.6	59
LSHRM225 MG_45 kW	074-00940A	90	220				400	t Poles	0.045053	2.467	22	207%	23.6	29	14.6	-111	23.6	59
	074-00940A	09	220				460	1 Poles	0.045053	2.467	22	198%	23.6	29	14.6	-111	23.6	59
	084-01840A	87	150		2		400	Poles	0.015018	0.822	44	195%	7.9	29	4.9	-111	7.9	59
	074-01120A	50	234				400	t Poles	0.033880	2.015	22	199%	19.7	29	10.9	-111	19.7	59
LSHKM250 ME_55 KW	074-01120A	60	234				400	Poles	0.033880	2.015	77	208%	19.7	29	10.9	-111	19.7	59
	074-01120A	09		8			460	t Poles	0.033880		22	202%	19.7	29	10.9	-111	1.61	59
	094-02210A	87	136	86		2600	400	t Poles	0.011293	0.672	44	189%	9.9	29	3.6	-111	9.9	29
	084-01550A	20					400	t Poles	0.024613		82	185%	16.7	63	9.0	-114	16.7	61
LSHRM 280 SD_75 kW	084-01550A	09						t Poles	0.024613	_	82	190%	16.7	63	9.0	-114	16.7	61
	084-01550A	09		3				1 Poles	0.024613		82	189%	16.7	63	9.0	-114	16.7	61
	094-02660A	28							0.008204	699.0	47	180%	9.6	63	3.0	-114	9.6	61
	084-01840A	20	261	154	163 1	1500	400	4 Poles	0.019819	1.432	08	174%	14.4	63	7.5	-114	14.4	61
LSHRM 280 MD_90 kW	084-01840A	09					400		0.019819	1.432	08	179%	14.4	63	7.5	-114	14.4	61
	084-01840A	09		154					0.019819		08	182%	14.4	63	7.5	-114	14.4	61
	104-03200E	87	149	. 22	279 2	2600	400	4 Poles	0.006606	0.477	46	171%	4.8	63	2.5	-114	4.8	61

										Parameters	eters							
		02.006	04.013	04.014	05.007	05.008	02:003	05.011	05.017	05.024	05.033	05.069	05.072	05.075	05.078	05.082	05.084	05.087
3000 range Motor Type	Pump Drive F600 Drive Type	MotorRated Frequency	Current controller Kp Gain	Current controller Ki Gain	Rated	Rated	Rated	Number Of Motor F Poles	Stator Resistance	Transient Inductance / Ld	Volts per 1000 rpm	Over- current TripLevel	No-load Lq	Iq Test Current For Inductance Measureme nt	Lq At The Defined Iq factors	ld Test Current for Inductance Measurement	Lq At The Defined Id Test Current	User Defined Rated Torque Angle
		Ŧ			∢	rpm	>		а	H	V/kmin-1	moul %	Hm	%	шH	%	шH	0
	044-00240A	100	92	213	20	3000	400	4 Poles	0.250147	4.78	43	238%	41.3	73	27.8	-108	41.3	26
	044-00240A	120	92	213	20	3600	400	4 Poles	0.250147	4.78	43	244%	41.3	73	27.8	-108	41.3	56
LSHRM160 MR1_11kW	044-00240A	120	98	213	20	3600	460	4 Poles	0.250147	4.78	43	243%	41.3	73	27.8	-108	41.3	26
	064-00480A	173	78	173	36	5200	400	4 Poles	0.083382	1.59	25	223%	13.8	73	6.3	-108	13.8	26
	064-00380A	100	117	223	28	3000	400	4 Poles	0.128766	2.88	39	254%	25.5	75	17.7	-106	25.5	55
AND A PORT OF THE PROPERTY OF	054-00300A	120	06	172	27	3600	400	4 Poles	0.128766	2.88	39	259%	25.5	75	17.7	-106	25.5	22
LSHKM 160 MK1_15KW	064-00380A	120	117	223	28	3600	460	4 Poles	0.128766	2.88	39	249%	25.5	75	17.7	-106	25.5	22
	064-00630A	173	52	100	51	5200	400	4 Poles	0.042922	96.0	23	226%	8.5	75	5.9	-106	8.5	22
	064-00380A	100	117	223	8	3000	400	4 Poles	0.128766	2.88	39	209%	25.5	71	16.0	-109	25.5	22
	064-00380A	120	117	223	33	3600	400	4 Poles	0.128766	2.88	39	214%	25.5	71	16.0	-109	25.5	22
LSHKM 160 LK1_18,5KW	064-00380A	120	117	223	33	3600	460	4 Poles	0.128766	2.88	39	212%	25.5	71	16.0	-109	25.5	22
	074-00790A	173	74	140	62	5200	400	4 Poles	0.042922	96.0	23	186%	8.5	71	5.3	-109	8.5	22
	064-00480A	100	104	192	42	3000		-	0.092501	2.13	38	216%	15.8	92	12.6	-105	15.8	54
LSHRM180 M1_22kW	064-00480A	120	104	192	40	3600	400	4 Poles	0.092501	2.13	38	224%	15.8	9/	12.6	-105	15.8	54
	064-00480A	120	104	192	41	3600	460	4 Poles	0.092501	2.13	38	218%	15.8	9/	12.6	-105	15.8	54
	074-00940A	173	64	118	74	5200	400	4 Poles	0.030834	0.71	22	200%	5.3	9/	4.2	-105	5.3	54
	064-00630A	100	116	215	22	3000		-	0.092501	2.13	38	159%	15.8	69	11.0	-110	15.8	58
LSHRM200 LQ1_30kW	064-00630A	120	116	215	29	3600			0.092501	2.13	38	158%	15.8	69	11.0	-110	15.8	58
	064-00630A	120	116	215	29	3600	460	_	0.092501	2.13	38	160%	15.79	69	11.0	-110	15.8	28
	074-00790A	100	109	174	20	3000		Н	0.053326	1.42	37	178%	10.8	71	8.0	-109	10.8	57
LSHRM200 LQ1_37kW	074-00790A	120	109	174	69	3600		4 Poles	0.053326	1.42	37	181%	10.8	71	8.0	-109	10.8	22
	074-00790A	120	109	174	69	3600	460	4 Poles	0.053326	1.42	37	181%	10.8	71	8.0	-109	10.8	22
	074-00940A	100	106	142	84	3000	400	Н	0.037145	1.185	38	180%	9.2	71	8.9	-109	9.2	22
LSHRM225 MY1_45kW	074-00940A	120	106	142	82	3600		_	0.037145	1.185	38	184%	9.2	71	8.9	-109	9.2	22
	074-00940A	120	106	142	83	3600	460	4 Poles	0.037145	1.185	38	181%	9.2	71	8.9	-109	9.2	22
	074-01120A	100	118	104	100	3000		4 Poles	0.021063	1.019	43	226%	9.5	7.1	2.7	-109	9.5	25
LSHRM250 ME_55 kW	074-01120A	120	118	104	101	3600		_	0.021063	1.019	43	225%	9.5	71	2.2	-109	9.2	22
	074-01120A	120	118	104	100	3600	460	4 Poles	0.021063	1.019	43	226%	9.5	71	2.7	-109	9.5	22
	084-01550A	100	123	109	138	3000		-	0.016370	0.794	38	185%	7.4	65	4.1	-113	7.4	09
LSHRM280 SC_75 kW	084-01550A	120	123	109	136	3600		-	0.016370	0.794	38	187%	7.4	65	4.1	-113	7.4	09
	084-01550A	120	123	109	135	3600		_	0.016370	0.794	38	189%	7.4	65	4.1	-113	7.4	09
WELOO CANOCIACIO	084-01840A	190	112	88	167	3000	T	_	0.011253	0.617	38	190%	5.9	65	3.3	-113	5.9	09
	084-01840A	120	112	8 8	168	3600	400	4 Poles	0.011253	0.617	S S	189%	0. c	65	ۍ د.د	-113	5.9	09
	5	3	1	3	3	,			20.0		3	2	;	3	5	2	5	3

Index

Symbols		E	
+24V external input	110, 112, 138, 140	Electrical safety	32
+24V user output		Electrical terminals	83
		Electromagnetic compatibility (EMC)33, 1	121, 452
Numerics		EMC - Compliance with generic emission standards	132
0V common	138	EMC filter dimensions (external, overall)	
_		EMC filter torque settings (external)	458
A		EMC filters (optional external)	
AC supply contactor	117	Emission	
AC supply requirements	105	EN61800-3 2004 (standard for power drive systems)	
Access	31	Enclosure	61
Accuracy	440	Enclosure Layout	62
Acoustic noise	441	Enclosure sizing	65
Advanced menus	146	Environmental protection	31
Advanced parameters	353	_	
Air-flow in a ventilated enclosure	65	F	
Alarm	490	Feedback device cable shielding	132
Alarm Indications	490	Fire protection	32
Altitude	439	Fuse ratings	441
Analog input 2	138	Fuse types	117
Analog output 1	139		
Analog output 2		G	
Autotune		Getting Started	143
		Ground connections	
В		Ground leakage	120
Braking resistor values	450	Ground terminals	
3		Grounding bracket	
C		Grounding clamp	
Cable clearances	132	- 0 1	
Cable lengths (maximum)		Н	
Cable size ratings		Hazardous areas	33
Cable types and lengths		High speed operation	
Cautions		Humidity	
Control connections			
Control terminal specification		I	
Cooling		Internal EMC filter	128
Cooling method		IP Rating (Ingress protection)	
Current loop gains		Isolator switch	
Current ratings		Items supplied with the drive	
Current ratings	420	none supplied with the drive	20
D		K	
DC bus paralleling	108	Keypad and display - Installing / removing	42
DC bus voltage		,, , , , , , , , , , , , , , , , , , , ,	
Deceleration		L	
Defaults (restoring parameter)		Line reactor mounting dimensions	81
Derating		Line reactors	
Destination parameter			,
Diagnostics			
Digital I/O 1			
Digital I/O 2			
Digital I/O 3			
Digital Input 4			
Digital Input 5			
Digital Input 6			
Dimensions (overall)			
Display			
Display messages			
Diopidy moodages	109		

M		R	
Mechanical Installation	31	Reactor current ratings	105, 439
Menu 0		Relay contacts	
Menu 01 - Frequency / speed reference	362	Residual current device (RCD)	
Menu 04 - Torque and current control		Resistances (minimum)	122
Menu 05 - Motor control		Resolution	
Menu 06 - Sequencer and clock		Routine maintenance	86
Menu 07 - Analog I/O			
Menu 08 - Digital I/O		S	
Menu 09 - Programmable logic, motorized pot and binar	У	Safe Torque Off	
sum	388	Safe Torque Off/drive enable	
Menu 10 - Status and trips	391	Safety Information	10, 31
Menu 11 - General drive set-up	394	Saving parameters	
Menu 12 - Threshold detectors and variable selectors		Sealed enclosure - sizing	
Menu 14 - User PID controller	398	Serial communications connections	135
Menu 18 - Application menu 1	406	Single line descriptions	162
Menu 19 - Application menu 2	406	Speed loop gains331, 334,	336, 337
Menu 20 - Application menu 3		Speed range	440
Menu 22 - Additional Menu 0 set-up	406	Start up time	440
Menu structure	145	Starts per hour	440
Mode parameter	137	Status	490
Motor cable - interruptions	134	Status Indications	490
Motor isolator / disconnector-switch	134	Storage	439
Motor number of poles	327	Supply requirements	
Motor operation	119	Supply types	
Motor rated current		Surface mounting the drive	
Motor rated current (maximum)		Surge immunity of control circuits - long cables and	
Motor rated frequency		connections outside a building	135
Motor rated power factor		Surge suppression for analog and bipolar inputs and	
Motor rated speed		outputs	135
Motor rated voltage		Surge suppression for digital and unipolar inputs and	
Motor requirements		outputs	135
Motor thermal protection		Switching frequency	
Motor winding voltage		3 1 7	
Multiple motors		Т	
'		Technical data	425
N		Temperature	439
NEMA rating	139, 440	Terminal block in the enclosure	
Notes		Terminal cover removal	
NV media card operation		Terminal sizes	
		Thermal protection circuit for the braking resistor	
0		Through-panel mounting the drive	
Operating mode (changing)	160	Torque settings	
Operating modes		Trip History	-
Optimization		, , , , , , , , , , , , , , , , , , ,	
Option Module		U	
Option module - Installing / removing		UL Listing Information	492
Options		User Security	
Output contactor		,	
Output frequency		V	
Capat noquonoy		Ventilation	61
P		Vibration	
Parameter access level	161	Voltage mode	
Parameter ranges			J_0, J_0
Parameter security		W	
Planning the installation		Warnings	10
Position feedback module category parameters		Weights	
Power ratings			
Power terminals			
Product information			
1 10440t IIIOIIII440II			

0478-0622-05